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Abstract

Virtual environments open up new opportunities and
challenges for geometric modeling systems. A general
approach to geometric modeling suitable for the Cave
Automatic Virtual Environment is described. The ap-
proach is based on alpha complexes, and some of its ca-
pabilities are demonstrated by applying it to the study
of biomolecules.

1 Introduction

We describe an approach to geometric modeling in vir-
tual environments. Such environments are well suited
for visualizing and exploring 3-dimensional volumetric
data. Our goal is to provide state-of-the-art geometric
modeling software that allows total immersion in the
details of a rendered object. Both inside and outside
views are supported. Our software has been developed
in the CAVE, short for Cave Automatic Virtual En-
vironment. One of the advantages of the CAVE over
other virtual environments is that multiple viewers can
observe the same scene at the same time and place. Our
modeling software is scalable from high-end virtual en-
vironments, such as the CAVE, over mid-range immer-
sive desks, down to low-end graphics workstations.
The implementation of our approach to modeling
combines ideas and methods from geometry, topology,
algorithms, and graphics. The product is a general
modeling software that can be applied to questions
studied in the sciences and in engineering. The appli-
cation areas include computer aided geometric design
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(CAGD), rapid prototyping, medical imaging, geologi-
cal modeling, grid generation and analysis, and physical
modeling.

For the purpose of specificity, this paper concentrates
on modeling macromolecules. These are studied in-
tensely in biology, for the purpose of understanding
how life functions on the molecular level, and for the
semi-automatic design of drugs that can influence the
mechanism of molecular life. Common geometric rep-
resentations for proteins and other molecules are the
space filling (SF), the solvent accessible (SA), and the
molecular surface (MS) models. The SF model was
introduced by Lee and Richards [10] and represents a
protein as the union of possibly overlapping spherical
balls with sizes determined by the van der Waals radii
of the atoms. The SA model was introduced to study
the interaction between a protein and a solvent, itself
modeled as a ball [12]. The solvent is deflated to a point
and all balls are inflated by the same radius. The MS
model is obtained by rolling the solvent ball over the
SF model [12]. It is useful in studying the structure of
and interaction between proteins.

A representation of the molecule that is less direct
than the above sphere models consists of simplices con-
necting atom centers. The simplices are derived from
the Voronoi decomposition of the SF or the SA model
[6]. The collection of simplices is referred to as a sim-
plicial complex. The advantage of the complex over the
sphere models is primarily computational. For exam-
ple, with the complex it is possible to identify cavities
instantaneously, whereas software working directly on
sphere models has difficulties to find the cavities alto-
gether. Furthermore, the complex is instrumental in
the robust construction of a surface triangulation for
any of the above sphere models [1, 2]. In contrast to
previous work, see e.g. [3], the surface triangulation
constructed by our software is topologically correct and
can be exploited for numerical computations e.g. of the
electrostatic potential field, see [14]. We use the sur-
face triangulation to animate continuous deformations
between the sphere and complex models of a molecule.
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These animations are visually striking and may be the
only convincing means to convey the intricacies of the
models and their relationships.

The paper is organized as follows. Section 2 intro-
duces the geometric ideas underlying the software. Sec-
tion 3 describes the geometric kernel of the software.
Section 4 presents the hardware and software of the
CAVE. Section 5 describes some of the more interesting
graphics features of our software, including the above
mentioned deformations. Section 6 concludes the paper
and mentions sites at which software described in this
paper is available.

2 Geometric Foundations

This section introduces some of the geometric concepts
that constitute the foundations of our software. These
are the Voronoi diagram and the Delaunay complex of
a set of points with weights; and the alpha complexes
forming a nested sequence of subcomplexes of the De-
launay complex.

Voronoi Diagram. Given a finite set of points, pos-
sibly with weights, the Voronoi diagram decomposes
space into convex cells, see figure 1. Each cell corre-
sponds to a point, z, and contains all locations in space
for which 2 is the closest in the given finite set. In 3D,
a Voronoi cell is a convex polyhedron and its bound-
ary consists of faces, edges, and vertices. The Voronoi
cells have disjoint interiors and overlap at most along
common boundary pieces. Exactly how space is de-

Figure 1: The Voronoi diagram of a set of 7 points in 2D.

composed depends on the notion of distance. We use
a weighted distance function that accounts for the in-
terpretation of input points as centers of balls or atoms
of a molecule. Consider a point z, which is the cen-
ter of an atom with van der Waals radius r. Then the
weighted distance of any arbitrary point z from z is
T.(z) = |z = 2]* — r%. If 7,(z) is positive then z lies
outside the sphere with center z and radius r and 7,(z)

is the square-length of the tangent from z to the sphere.
The bisector of two points, y and z, is the set of points
z with equal weighted distance from y and from 2. It
turns out the bisector is a plane normal to y — 2. Every
Voronoi cell is bounded by pieces of bisectors.

Delaunay Complex. Intuitively, the Delaunay com-
plez decomposes the convex hull of a set of points into
simplices mimicking the neighborhood structure of the
Voronoi cells. The following rules specify the collection
of simplices. Every Voronoi cell corresponds to a vertex
in the complex, and this vertex is located at the data
point that generates the cell. The common face of two
Voronoi cells is represented by the edge connecting the
two corresponding vertices. The common edge of three
Voronoi cells is represented by the triangle spanned by
the three corresponding vertices. Finally, the common
point of four Voronoi cells is represented by the tetra-
hedron spanned by the four corresponding vertices. As-
suming general position of the points in 3D, it is impos-
sible that five or more Voronoi cells share some common
boundary. Figure 2 illustrates the duality between the
Voronoi diagram and the Delaunay complex in the 2-
dimensional case.

Figure 2: Superposition of the Voronoi diagram in figure
1 and the corresponding Delaunay complex.

The Delaunay complex can be constructed directly
from the Voronoi diagram. Indeed, the Delaunay com-
plex contains the same combinatorial information as the
Voronoi diagram, only the geometric expression of the
information is different. An important consequence of
this observation is that algorithms for Delaunay com-
plexes implicitly construct Voronoi diagrams and vice
versa. It seems easier to design a robust algorithm for
Delaunay complexes. The main reason is that the De-
launay complex comprises no new geometric informa-
tion, and all edges, triangles, and tetrahedra can be
stored combinatorially as pairs, triplets, and quadru-
plets of vertex indices. In contrast, the Voronoi diagram
contains vertices that are not part of the input data.
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Alpha Complexes. Each alpha complex is a sub-
complex of the Delaunay complex. The family of alpha
complexes can be defined by sorting the Delaunay sim-
plices and taking prefixes of the sorted sequence. Con-
sider the following scenario. For each point or atom z,
let r,(0) be its van der Waals radius. Use a parameter
a to grow or shrink the balls centered at the points z.
For a given real number a?, the radius of the ball with

center z is
rz(@) = v/r2(0) + 2.

A most important property of the Voronoi diagram is
that it decomposes the union of balls into convex pieces,
called clipped balls, see figure 3. Indeed, this is true for
every real value of a? because changing a? does not
change any bisectors.

To obtain the sorted sequence of Delaunay simplices,
imagine o going from minus infinity to plus infinity. At
the beginning, every ball has imaginary radius. A ver-
tex z is appended to the emerging sequence at the time
its clipped ball becomes non-empty. In typical but not
all cases this is when the radius, r,(a), reaches zero.
The balls grow as the value of a? increases. At the
moment when two clipped balls meet, we append the
edge connecting their two centers to the emerging se-
quence. Similarly, when three clipped balls meet we ap-
pend the corresponding triangle, and when four clipped
balls meet we append the corresponding tetrahedron.
See figure 3 for a 2-dimensional illustration of the sort-
ing process.

When a? is large enough, the sequence contains all
Delaunay simplices. The simplicial complex associated
with a given value of « is a subcomplex of the Delaunay
complex and is referred to as the a-complez 8]; it cor-
responds to a prefix of the sorted sequence of simplices.

3 Geometric Kernel

The geometric kernel consists of two pieces of core soft-
ware: one for alpha complexes and one for surface tri-
angulations. The alpha complex is used as the under-
lying data structure from which more involved or more
elaborate geometric models are derived. Specifically, we
discuss how surface triangulations of the SF, SA, and
MS models can be computed from the alpha complex.
The geometric integrity of the alpha complex makes it
possible to produce topologically correct surface trian-
gulations.

Alpha Shape Library. We have implemented alpha
complexes as a software library that provides geometric
primitives and can be linked to any application soft-
ware. The main two data structures are the Delaunay

Figure 3: Simplices form when clipped disks appear and
when they meet.

complex and the sequence of Delaunay simplices which
contains all alpha complexes as prefixes.

In 3D, we represent a Delaunay complex by a
triangle-based pointer structure [5]. Each triangle
stores pointers to the 6 neighboring triangles sharing
an edge. Following appropriate pointers, each in con-
stant time, it is possible to traverse the triangles around
a given edge, or the triangles opposite a given vertex, or
all triangles on the convex hull boundary. Details can
be found in [11]. An important ingredient in the con-
struction of a Delaunay complex, which is synonymous
to constructing its triangle-based pointer structure, is
the use of exact arithmetic and symbolic computation.
The input coordinates and radii are restricted to inte-
gers or fixed-point reals. All geometric tests are per-
formed in exact arithmetic so that degenerate cases can
be identified without ambiguity, see [7] for details.

The linear list representation of the simplex sequence
contains slightly more information than just the se-
quence of simplices as they enter the alpha complex.
Each simplex occurs up to three times: first when it
enters the alpha complex, second when the first sim-
plex containing it as a face enters the alpha complex,
and third when it becomes completely surrounded by
simplices. After the first occurrence the simplex is sin-
gular, after the second it is regular, and after the third it
is interior. Quite commonly some of the occurrences co-
incide or vanish. For example, a simplex on the convex
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hull boundary is never interior, and an entering tetrahe-
dron is right away interior. The additional information
available through the multiple occurrences is e.g. useful
in selecting the simplices needed for a graphical repre-
sentation. Only the boundary triangles (singular and
regular), the singular edges, and the singular vertices
need to be drawn.

Surface Triangulation Library. This library is an
implementation of the algorithm for molecular surfaces
triangulation proposed in [2]. The algorithm uses con-
vex polyhedral approximations of spheres computed [1].
Starting with a random distribution of finitely many
points on a sphere, a good approximation is created by
an iterative process that moves points in an attempt
to maximize the surface area of the convex hull. Ap-
proximations of sphere patches, as opposed to spheres,
are computed as follows. The patch is bounded by cy-
cles of arcs which are approximated by cycles of edges.
A given sphere approximation is modified so it contains
the cycles of edges in its boundary. Finally, a depth-first
traversal of the modified sphere approximation accepts
triangles in the patch and rejects other triangles.

The most time-consuming step in the entire compu-
tation is the triangulation of all patches. The perfor-
mance of this step is improved by using parallel algo-
rithms and hardware. Once we know all the arc cycles
bounding patches on a given sphere, these patches are
triangulated independently of any other spheres. We
distribute computations equally over p processors. In
the end, we collect all triangles constructed in approx-
imating the various sphere patches and connect them
into a triangle-based data structure that reflects connec-
tivity in a way similar to the quad-edge data structure
of Guibas and Stolfi [9]. Local navigation is possible in
constant time per step simply by following adjacency
pointers to neighboring triangles. These pointers glue
triangles along shared edges and patches along shared
arcs.

The patch computation is done on an SGI power chal-
lenge parallel machine, while graphics and other compu-
tations are done on a workstation. The required com-
munication between the workstation and the parallel
machine uses DTM, short for data transfer mechanism.
This is a message passing facility designed to simplify
the task of interprocess communication. It provides
methods for interconnecting applications at run-time
and reliable message passing complete with synchro-
nization and transparent data conversion.

4 Cave Automatic Virtual Envi-
ronment

The geometric models are constructed in the geomet-
ric kernel of the software and rendered in CAVE. The
visualization software, VAlvis, short for Virtual Alpha
Shapes Visualizer, is in many ways similar to the bet-
ter known desktop version, Alvis. This section gives a
brief description of the immersive virtual environment
architecture of CAVE and of its programming environ-
ment.

Figure 4: CAVE architecture.

CAVE Architecture. The CAVE [4] is a surround-
screen, surround-sound, projection-based virtual reality
(VR) system. The illusion of immersion is created by
projecting 3D computer graphics pictures into a 10 by
10 by 9 feet cube defined by display screens that com-
pletely surround the viewer. Electrohome Marquis 8000
projectors throw full-color workstation fields (1024 by
768, stereo) at 96 Hz onto the screens, giving approxi-
mately 2,000 linear pixel resolution to the surrounding
composite image. Computer-controlled audio provides
a sonification capability to multiple speakers. The the-
ater area of the CAVE can fit inside a 30 by 20 by 13
feet light-tight room, provided the projector optics are
redirected with mirrors. A user’s head and hand are
tracked with Ascension tethered electromagnetic sen-
sors. The viewer explores the virtual world by moving
around inside the cube and manipulating objects with
a 3D input device, or wand.

CAVE users do not need to wear helmets to experi-
ence VR. Instead, they put on lightweight stereo glasses
and walk around inside the CAVE as they interact with
virtual objects. At any given instance, one user is the
active viewer, defining the stereo projection reference
point, while the other users are passive viewers. Multi-
ple viewers can share the same virtual experience and
verbal interaction in the CAVE is easily possible.

38 VRST’%6

July 1-4, 1996




CAVE Programming Environment. Application
programs using the CAVE library run on a multipro-
cessor SGI Onyx workstation. This machine performs
all CAVE tasks. When application programs are exe-
cuted, they are automatically forked into several con-
current processes. There is an independent rendering
process for each projection wall, plus another process
for all additional computations. Any data that might
change during the execution of the program needs to be
put in shared memory to ensure that all graphics and
other computations refer to the properly updated data.

For each frame of animation, the stereo image is cre-
ated by generating two views, one for the left eye and
one for the right eye. This implies that each rendering
process is called twice, and it is generally advised that
expensive computations are separated from all render-
ing processes.

The CAVE library provides all the functions that are
necessary to create a CAVE program. It liberates the
developer from dealing with low level tasks, such as the
synchronization of CAVE devices, the computation of
stereo transformations, etc. Due to the cost and spatial
constraints of the CAVE it is impractical to assemble a
CAVE for every researcher interested in using it. The
CAVE simulator bridges the gap and runs CAVE appli-
cation programs on any SGI workstation that supports
SGI’s IrisGL library. The simulator makes it possible to
develop CAVE applications at remote sites. The CAVE
viewer is similar to the CAVE simulator except that it
provides a set of Motif controls and can dynamically
load the application specific code for a CAVE program.
Its main purpose is the distribution of CAVE applica-
tion demos through Mosaic.

5 Graphics Features

This section discusses a few graphics and geometry
based features of our modeling software. The first topic
is the continuous deformation between different molec-
ular models. The animation of these deformations is
visually striking and illuminates relationships between
the models. The second topic is the construction of
exploded views. Additional topics are the VAlvis in-
terface, real-time high quality shading, and fast sphere
clipping.

Deforming SA to Complex. The deformation is
governed by a time parameter, t € [0,1]. ¢ = 0 cor-
responds to the SA model, and ¢ = 1 corresponds to
the appropriate alpha complex. The surface of the SA
model consists of sphere patches, circular arcs, and cor-
ner points. As ¢ goes from 0 to 1, each spherical patch
shrinks towards a vertex of the alpha complex. Each

circular arc shrinks and widens to form a cylindrical
section that eventually becomes an edge of the alpha
complex. Each corner point of the SA model grows to-
wards a triangle of the alpha complex. Recall that the
SA surface is triangulated, so each patch is approxi-
mated by a collection of triangles, each arc is approxi-
mated by a sequence of edges, and each corner point is
a vertex.

The deformation can be specified by prescribing the
motion of the vertices in the SA triangulation. We use a
straightforward linear motion determined by the start-
ing and ending positions. Denote the vertices of the
SA triangulation by S; and the vertices of the alpha
complex by A;. Each motion follows the formula

(1-¢)-S;+1t-A;.

In the case of a triangle on an SA patch the three ver-
tices, 51,52, S3, move linearly towards a vertex, Ay, of
the alpha complex. The deformation of the triangle is
implied by the motion of its vertices. In the case of an
edge on an SA arc, the two vertices, S; and S, move
simultaneously and linearly towards two vertices of the
alpha complex, A; and A,. For any t strictly between
0 and 1 we have 4 points forming a rectangle, which is
part of the shrinking and widening cylinder that eventu-
ally collapses to an edge of the alpha complex. A corner
point, Sj, moves simultaneously towards three vertices
of the alpha complex, Ay, A,, and As. Figure 5 shows
snap-shots of the deformation from the SA model to the
alpha complex of the Gramicidin A protein.

Deforming SA to MS. The MS model is smoothed
by rolling a solvent ball over the SF model. Its surface
consists of sphere patches, torus patches, and inverse
sphere patches. As the time parameter ¢ goes from 0 to
1, each sphere patch of the SA surface shrinks towards a
smaller but otherwise identical sphere patch of the MS
surface. Each arc of the SA surface shrinks and widens
to a torus patch. Each corner point of the SA surface
grows towards an inverse sphere patch.

Again we use a straightforward linear motion that
deforms the SA triangulation into a triangulation of the
MS model. The motion of each vertex is determined by
its starting and ending positions. Denote the vertices of
the MS triangulation by M;. Each motion follows the
formula

(1-1) -Si-l't'Mj.

Figure 6 shows snap shots of the deformation from the
SA model to the MS model of the Gramicidin A protein.

Exploded View. An exploded view is obtained by
moving the pieces of a geometric shape or complex
apart. Such a view can be very informative and reveal a
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great deal about how the pieces fit together. We define a
continuous exploding motion so the user can animate an
explosion or implosion with growing or shrinking gaps.
Such an animation is especially impressive in the CAVE
where it enhances the feeling of immersion.

The exploding motion is defined by another time pa-
rameter e € [0,+00). e = 0 corresponds to the unex-
ploded state. To specify the motion choose a center, C;,
for each piece, P;. The motion moves the center away
from the origin, and with the center it moves the piece.
More formally, the piece at time e is

Pite- Ci

Figure 7 illustrates the explosion for a small collection
of carbon atoms arranged in a diamond lattice. At the
left, the surface of the overlapping balls is shown in the
unexploded state, and in the middle the sphere patches
of the surface are moved apart.

It is important to choose the centers so that collisions
between different moving pieces are avoided. In the
case of a simplicial complex this is achieved by choosing
C; equal to the barycenter of the simplex P;. To see
that the resulting explosion avoids collisions consider
the deformation

(l_t)Pt"i'tCl:

for t € [0,1], which contracts P; to the point C; € B;.
There are no collisions if simplices are contracted simul-
taneously, each towards its own center. The exploding
motion is obtained from the contraction by scaling the
entire space:

(1-t)-P+t-C; _ t

= Bl G5,
T—1 Fiog G

It follows the explosion is also free of collisions. We use
the same barycenters for motions that explode SA, MS,
and partially deformed models. There are three cases.

(1) A vertex of the alpha complex corresponds to
sphere patches of the SA model, of the MS model,
and of partially deformed models. The centers of
all these spheres coincide with the vertex.

(ii) An edge of the alpha complex corresponds to torus
patches of the MS and SA-to-MS deformed mod-
els and to cylinder patches of SA-to-complex de-
formed models. The barycenter is the midpoint of
the edge.

(iii) A triangle of the alpha complex corresponds to in-
verse sphere patches of the MS and SA-to-MS de-
formed models and to triangles of SA-to-complex
models. The barycenter of the triangle with ver-
tices Ay, Ap, Az is %(A]_ + Ay + Aa)

The reason why these choices of explosion centers avoid
collisions have to do with properties of Voronoi cells and
arguments are omitted.

User Interface. An event driven Motif-like interface
is incorporated into the software to give the user flex-
ibility and control over the system. The widgets are
drawn on the front wall of the CAVE, and the user can
select different options by pointing and clicking with
the wand.

A position on the front wall is specified by pointing
with the wand, and the position is reconstructed from
the location and the direction vector available from the
CAVE library. The appropriate callbacks can be im-
plemented based on this information. In addition to
interacting with VAlvis through the interface, we use
the three buttons on the wand and its orientation, an-
gle, and direction to control VAlvis.

Shading and Clipping. Real-time texture mapping
capabilities of high-end graphics workstations can be
exploited to compute Phong shading in real-time [13].
The normals of the vertices are computed the same way
as for Gouraud shading, but rather than to construct-
ing an interpolating surface, the normals are used to
automatically generate texture coordinates. In this con-
text, the texture map is the image of a sphere perfectly
rendered with traditional Phong shading. Consider a
triangle of the surface. Its three vertices define three
normals, and the corresponding three texture coordi-
nates identify a portion of the texture map used to give
the triangle the appropriate shading. The result is a
map from the surface of the geometric model to a per-
fectly shaded sphere that creates the illusion of a Phong
shaded surface in real-time.

A unique feature of our software is the generation of
uncluttered inside views of SA and MS models. Indeed,
there are other software packages that generate high
quality renderings of views from the outside, but un-
cluttered views from the inside require that all spheres
and tori are appropriately clipped. Voids and tunnels
can be detected by walking into the model and view-
ing the surface from the inside. In CAVE, the user feels
the complete immersion into the model. Figure 8 shows
views from the inside of an SA model, an MS model,
and the voids of an MS model.

6 Discussion

There is an ongoing debate on whether the high cost of
virtual environments can be justified in the face of very
affordable high quality graphics interfaces. We wish to
contribute a piece of anecdotal evidence for the claim
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that the immersive experience indeed generates new in-
sights and discoveries. After presenting this evidence,
we summarize the contributions of this paper and give
pointers to distribution sites for the software.

Self-intersections of the molecular surface. Con-
sider the MS model of a molecule. It is well known that
this surface can have self-intersections, but these are
often discarded as “degeneracies”. It was only in the
CAVE that we noticed the seriousness and frequency of
such self-intersections. The easily imagined first type of
self-intersection involves pieces that are fairly far apart
along the surface: the solvent ball peeking inside-out
and outside-in through a narrow window. Example of
such self-intersections can be seen in figure 6.

There is another and apparently more frequent
second type of self-intersection resulting from torus-
sweeping motions of the solvent ball. If the radius of
the sweeping ball is larger than the radius of the circle
swept by its center then the torus intersects itself. In
most cases, only a small patch of such a torus is part of
the surface. Locally, the surface sharply folds backward
and again forward.

Contributions of this paper. A general approach
to geometric modeling in the CAVE is described. The
approach is based on alpha complexes and applications
specific to macromolecules are used to demonstrate its
capabilities. All algorithm mentioned in this paper are
implemented, with an option to run time-consuming
tasks on a parallel architecture.

The visualizer, VAlvis, is used to display all ge-
ometric concepts and structures in the CAVE. It is
based on two geometric software packages, the Alpha
shape library and the surface triangulation library. The
CAVE library is responsible for rendering and track-
ing in the CAVE. The Alpha shape library can be ob-
tained via ftp at f£tp.ncsa.uiuc.edu from directory
Visualization/Alpha-shape. The CAVE library is
available via ftp at evl.eecs.uic.edu from directory
pub/CAVE. Copies of VAlvis and the surfaces triangu-
lation library are not available via ftp and can be re-
quested by sending email to alpha®ncsa.uiuc. edu.
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Colour Plates

t=0.00 t=0.36 t=0.63 t=1.00

Figure 5. Four snap-shots during the deformation of the SA modal into the alpha complex.

t=0.00 t=0.36 t=0.63

t=1.00

Figure 6: Four snap-shots during the deformation of the SA model into the MS model Observe that the
spheres shrink from left to right. There seems to be one exception to this trend. namely the growing bulge
roughly in the middle of the picture. The reason for this anomaly will be discussed in section 6.

Colour Plates for Edelsbrunner, Fu, and Qian (page 35)
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Figure 7 3} Inside view of the union of atems arranged in a diamond lattice. b) Exploded view of the
surface c) Wireframe of the exploded trianguiation

~ A e MEoided votds i the MS odel

Fisure ~ dnside views of the Gramicidin A protein

Colour Plates tor Edelsbrunner, Fu, and Qian (page 35), continued
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