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ABSTRACT
Given a subspace X C R? and a finite set S C R, we introduce the Delaunay
complex, DX’ restricted by X. Its simplices are spanned by subsets T C § for which

the common intersection of Voronoi cells meets X in a non-empty set. By the nerve
theorem, UDX and X are homotopy equivalent if all such sets are contractible. This

paper proves a sufficient condition for U DX and X be homeomorphic.
Keywords: Combinatorial topology, geometric modeling, grid generation; topological

spaces, manifolds, coverings, nerves, regular complexes, simplicial complexes, triangula-
tions; Voronoi cells, Delaunay complexes; homotopy equivalence, homeomorphisms.

1. Introduction

This paper studies the problem of constructing simplicial complexes that repre-
sent or approximate a geometric object in some finite-dimensional Euclidean space,
R%. We refer to the geometric object as a topological space or subspace of R%.
This problem arises in geometric modeling and finite element analysis, and it is a
special case of the grid generation problem.? It is special because we only consider
grids or complexes made up of simplices. The problem can be divided into two
questions:

e How do we choose the points or vertices of the grid?

*This work is partially supported by the National Science Foundation, under grant ASC-
9200301 and the Alan T. Waterman award, grant CCR-9118874. Any opinions, findings, con-
clusions, or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the view of the National Science Foundation.
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e How do we connect the vertices using edges, triangles, and higher-dimensional
simplices?

In this paper we concentrate on the second question. In particular, given a subspace
and a finite point set in R, we give an unambiguous rule for constructing a sim-
plicial complex representing the subspace. Topological properties of this simplicial
complex, such as whether its domain is homotopy equivalent or homeomorphic to
the subspace, can be studied based on local interactions between the subspace and
the Voronoi neighborhoods of the points. This leads us back to the first question:
additional points can be chosen so they improve the local interaction patterns. How
this can be done in a concrete, possibly three-dimensional setting ought to be the
subject of future investigations.

1.1. Simplicial Complezes and Triangulations

An affinely independent point set T C R? defines the simplez o7 = convT. Its
dimension is k = dimor = card T — 1, and it is also referred to as a k-simpler. The
points of T' are the vertices of or. A simplicial complez, K, is a finite collection
of simplices that satisfies the following two properties: if or € K and U C T then
oy € K,andif or,0v € K then orNoy = orny. The first property implies § € K,
and the first and second properties combined imply or Moy € K. The verter set
of K is VertK = UJTGICT’ the dimension is dimK = max, dimo, and the
underlying space is |JK = Ugexco. A subcomplez of K is a simplicial complex
Lk,

A particular simplicial complex defined by a non-degenerate finite set S C R is
the Delaunay complez, D = Ds.® It consists of all simplices o7, T C S, for which
there exists an open ball, B, with SNcl B =T and SNB = (. Given S, D is unique,
dim D = min{d, card S — 1}, and |JD = convS. In computational geometry, D is
usually referred to as the Delaunay ‘triangulation’ of S.67 To avoid confusion with
the topology notion of a triangulation, which is adopted in this paper, we choose to
call D a complex. Following the tradition in combinatorial topology, a triangulation
of a topological space X is a simplicial complex K together with a homeomorphism
between X and |JK.1%1® If there exists a simplicial complex K such that [JK is
homeomorphic to X, then X is triangulable.

1.2. Qutline

Our approach to constructing a simplicial complex that represents a topological
space X C R? is based on a finite set S C R? and the Delaunay complex of this set,
D = Ds. Section 2 introduces the concept of a Delaunay complex Dy restricted
by X, which is a subcomplex of D. This concept is a common generalization of
ideas developed by Martinetz and Schulten,'* Chew,® and Edelsbrunner.” Dy is
defined for every X C R? and every non-degenerate finite S C R?. If § satisfies the
assumptions of the nerve theorem, see section 2, then |JDy and X are homotopy
equivalent. Section 3 presents some topological concepts and discusses the meaning
of non-degeneracy in detail. Sections 4 and 5 study conditions on S that guarantee
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{JDyx be homeomorphic to X. An explicit construction of a homeomorphism is also
given. Section 6 mentions directions for further research.

2. Restricted Delaunay Complexes

2.1. Coverings and Nerves

Let X C R? be a topological space and S C R? a finite point set. We assume
non-degenerate position of the points in S, which generically means that anything
vanishing under a slight perturbation of the points is precluded. For example, we
require that 7' C S be affinely independent if cardT < d + 1, and that no d + 2
points of S be cospherical. Further particulars of this assumption will be discussed
in section 3. The Voronoi cell of p € S is

Vo = {z € R?| |pz| < gz, g € S},

where |yz| denotes the Euclidean distance between points y,z € R%. The collection
of Voronoi cells is V = Vs = {V; | p € S}.2! The Voronoi cell restricted to X of
pe Sis L;,X = X NV,, and the collection of restricted Voronoi cells is Vx =
Vsx ={V,x #0|pe S} Forasubset T C S we have corresponding subsets
Vr = {V, [peT}gVandVT,xz{V;,x;éﬂlpeT}gvx. We will consider
their common intersections, (| Vr and ﬂVT,X = XN[Vr. In the computational
geometry literature common intersections of Voronoi cells are usually referred to as
Voronoi vertices, Voronoi edges, and higher-dimensional Voronoi faces.6:17

A covering of X is a collection C of subsets of X so that X = UC. It is a closed
(open) covering if each set in C is closed (open), and it is a finite covering if C is
finite. For a subset D C C consider the common intersection, N D. The nerve of a
finite covering C is

NrvC={DC C|[)D #0}.

We remark that the nerve can be defined for a finite covering of any abstract set,
not just for subsets of R%, A geometric realization of Nrv C is a simplicial complex,
K, together with a bijection 8 between C and the vertex set of K, so that D € NrvC
iff 3(D) spans a simplex in K.

Observe that the collection of Voronoi cells restricted to X, the set Vy, is a
finite closed covering of X. The Delaunay complex restricted by X, Dx =Dgx, is
the geometric realization of Nrv Vy defined by 8(1 ,X/=p.-forall pe S. That is,
Dx={or|TCS N Vrx # 0}. Following the terminology in the computational
geometry literature, we could call Dy the Delaunay dual of the Voronoi diagram
restricted to X: ﬂVT‘x # 0 iff o7 € D. Note that Dy is a subcomplex of the
Delaunay complex D = De of S. See figure 1 for an example. The nerve theorem
of combinatorial topology*223 sheds some light on the relationship between X,
Vx, and Dy. See section 3 for a formal definition of homotopy equivalence and
contractibility.

Theorem 1 (nerve) Let C be a finite closed covering of a triangulable space X C R?
so that for every D C C, D is either empty or contractible. Let K be a geometric
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(b)

Fig. 1. (a) The Voronoi cells of ten points decompose three spaces, X1, Xz,
and X3. (b) The three corresponding Delaunay complexes consist of an edge,
two triangles sharing an edge, and a cycle of three edges, respectively.

realization of Nrv C. Then X and |J K are homotopy equivalent.
In particular, if (D is empty or contractible for every D C Vy then X and
(UDx are homotopy equivalent.

2.2. Related Farlier Work

Martinetz and Schulten'* study neural nets modeling a topological space X. In
geometric language, a neural net consists of finitely many points and edges between
them. The algorithm by Martinetz and Schulten constructs the net by choosing
a finite set S € X and selecting edges based on points sampled from X found
in Voronoi cells associated with point pairs. A cell is associated with every pair
{p.q} C S for which V, NV, # 0.57 This cell can be interpreted as a “thickened”
version of the face common to V}, and V;, and a point of X sampled in this cell is
taken as evidence that X NV, NV, # (. Martinetz and Schulten call the resulting
net the induced Delaunay triangulation of S and X; in the limit it is the same as
the edge-skeleton of Dy.

Chew? introduces a method for constructing a simplicial complex approximating
a (two-dimensional) surface in R®. Let X be such a surface and S C X a finite point
set. Three points p,q,7 € S span a triangle in the approximating complex if they
lie on the boundary of an open ball B C R® with center in X so that SN B = 0.
Assuming non-degeneracy, such a ball B exists iff XNV, NV, NV; # 0. Chew’s
method can thus be seen as a special case of our definition of restricted Delaunay
complexes.

Finally, Edelsbrunner” defines the dual complex of a union of balls in R. Con-
sider the case where all balls are equally large. Let S C R? be a finite point set, and
define X = {z € R? | minpes |zp| < p}, for some fixed positive p € R. The Voronoi
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cells of S decompose X into closed convex regions, and the dual complex is defined
as the nerve of these regions, geometrically realized by the map 6(Vp,x) = p, for
all p € S. We see that it is the same as the Delaunay complex, Dy, restricted by
X. The common intersection of any subset of these regions is convex and therefore
contractible, so the nerve theorem implies that the underlying space of the dual
complex is homotopy equivalent to X.

3. Some Topological Concepts

8.1. Neighborhoods, Homotopies, Homeomorphisms, and Manifolds

An open ball in R? is a set B = B(z,p) = {y € R? | |yz| < p} for some point
z € R and some positive p € R; z is the center and p the radius of B. For Y C X,
a neighborhood of Y in X is an open subset of X that contains Y.

Let X and Y be two topological spaces. Two maps f, g : X — Y are homotopic if
there is a continuous map h : X x [0,1] = Y with h(z,0) = f(z) and h(z,1) = g(z)
for all z € X. The two spaces, X and Y, are homotopy equivalent if there are
continuous maps f : X = Y and g : Y = X so that go f is homotopic to the identity
map in X and f o g is homotopic to the identity map in Y. X is contractible if it is
homotopy equivalent to a point. For example, the open ball B(z, p) is contractible
but the unit circle is not contractible.

Topological spaces X and Y are homeomorphic, written X = Y, if there is a
bijective map ¢ : X = Y so that ¢ and ¢~ are continuous. ¢ is a homeomorphism
between X and Y, and X and Y are homeomorphs of each other. Homeomorphs of
open, half-open, and closed balls of various dimensions play an important role in
the forthcoming discussions. For k > 0, let o be the origin of R* and define

HY = {z=(&,....&) ER* | & >0},
B* = {zeR"[|zo[ <1}, and

gkl {z e R* | |zo| = 1}.

l

For convenience, we define RF = H* = B = §* = 0 if k < 0. An open k-ball is
a homeomorph of R¥, a half-open k-ball is a homeomorph of H*, a closed k-ball is
a homeomorph of B*, and a (k — 1)-sphere is a homeomorph of §¥1 Fork>1
these are disjoint classes of spaces, that is, open balls, half-open balls, closed balls,
and spheres are pairwise non-homeomorphic. This is not true for k = 0: open,
half-open, and closed 0-balls are points, and a O-sphere is a pair of points.

Our first theorem is about topological spaces that are manifolds, with or without
boundary. X C R? is a k-manifold without boundary if each z € X has an open k-
ball as a neighborhood in X. X C R? is a k-manifold with boundary if each z € X
has an open or half-open k-ball as a neighborhood in X, and there is at least one
z € X that has no open k-ball as a neighborhood. The set of points without open
k-ball neighborhood forms the boundary, bd X, of X. Note that the boundary of a
half-open k-ball is an open (k — 1)-ball, which is therefore without boundary. From
this it follows that the boundary of a k-manifold with boundary is a (k— 1)-manifold
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without boundary. The interior of a manifold X is int X = X — bd X; it is the set
of points with open k-ball neighborhoods. Note that our definition distinguishes
between manifolds with and without boundary, which is somewhat non-standard as
the set of manifolds without boundary is usually considered a subset of the set of
manifolds with boundary. A manifold X is compact if every open covering of X has
a finite subcovering, or equivalently, if it is closed and bounded. A manifold Y C X
is a submanifold of X.

2.2. Non-degeneracy

In section 4, we are interested in the intersection between manifolds and affine
flats. An f-manifold ' C R? is an £-flat if it is the affine hull of £+ 1 points, or
equivalently, it is the intersection of d — ¢ hyperplanes, or linear functionals. Let
X C R? be an m-manifold. Intuitively, a point z € R% has d degrees of freedom, and
it loses d—m of them if it is constrained to lie in X. Similarly, z looses d— £ degrees
if it is constrained to lie in F. So if z € X N F then z should have lost 2d — m — £
degrees of freedom. Hence, XN F should be empty if d—(2d—-m—£) = m+£€—-d < 0.
In general, we expect « to have m + £ — d degrees of freedom and X N F to be an
(m + £ — d)-manifold. Algorithmically, such a non-degeneracy assumption can be
simulated by conceptual perturbation techniques.8:24

This intuitive argument can be formalized for smooth or piecewise smooth mani-
folds. We need some definitions from differential topology. For an open set X C R™,
amap f: X = R™ is smooth if it has continuous partial derivatives of all orders and
at all points of X. For arbitrary X C R™, f is smooth if for all z € X there exists an
open ball B = B(z,e) C R™ and a smooth map g : B — R" so that g equals f on
XN B. Topological spaces X C R™ and Y C R™ are diffeomorphic if there exists a
homeomorphism ¢ : X — Y so that ¢ and ¢~! are smooth. An m-manifold X with
or without boundary is smooth if each z € X has a neighborhood diffeomorphic to
R* or H*.

Now, let X be a smooth m-manifold, and let f :X = R be a smooth map. Then
y € R is a regular value of f if for every z € f~(y) some partial derivative of f
at z is non-zero; otherwise, y is a critical value of f. By the preimage theorem in
differential topology, the preimage of any regular value is a smooth submanifold of X
with dimension m—1, and by Sard’s theorem, the set of critical values has measure 0
in R This implies that with probability 1, the intersection between a smooth m-
manifold X and a hyperplane with prescribed normal direction is a smooth (m —1)-
manifold. Hence, with probability 1, the intersection between X and an {-flat F with
prescribed normal (d — ¢)-flat is a smooth (m + £ — d)-manifold. By non-degenerate
position of F' we mean that this is indeed the case, and it is reasonable to assume
non-degenerate position because F just needs to avoid a measure zero set in R%2.

One of the conditions necessary for our results is the non-degeneracy of the
intersections between Voronoi cells and the manifold. We thus extend the above
notions to Voronoi cells and their intersections. An intersection of Voronoi cells is
the common intersection of finitely many closed half-spaces, and thus a convez poly-
hedron. Let P be a convex polyhedron and let X be a manifold without boundary.
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We say that P intersects X generically if XNP = @ or XNP has the right dimension
and X Nint P = int (XN P). If X is a manifold with boundary, then P intersects X
generically if P intersects int X and bd X generically. By non-degenerate position of
P we mean that P intersects X generically. Again, this is a reasonable assumption
to make.

4. Triangulating Compact Manifolds

We are now ready to state conditions under which the restricted Delaunay com-
plex is a triangulation of X. These conditions will be applied only when X is a
compact manifold. To avoid any misconception, we note that our results do not
settle the open question whether or not all compact manifolds are triangulable.

4.1. The Closed Ball Property

Throughout this section we assume non-degenerate position of flats and discrete
point sets. Let m > 0 and let X C R be a compact m-manifold with or without
boundary. Let S C R be a finite point set. We say that S has the generic
intersection property for X if for every subset T C S, [V intersects X generically.
We say that S has the closed ball property for X if for every £ <m and every subset
T C S with cardT = m + 1 — £, the following two conditions hold:

(B1) MV x is either empty or a closed £-ball, and
(B2) NV pq X Is either empty or a closed (£ — 1)-ball.

In section 3, we argued that it is reasonable to expect X N[ Vr be an £-manifold,
if X is a smooth m-manifold. This is reflected in condition (B1). A similar non-
degenerate position assumption is implied by (B2) for the boundary of X. We will see
that the closed ball property guarantees that dimension is preserved. As an example
consider X; and Dy, in figure 1. Condition (B2) is violated by the common edge of
the two Voronoi cells intersecting X;. Indeed, |JDyx, # Xi because the dimension
of X; is two and that of |J Dy, is one.

4.2. Two Technical Lemmas

Before proving the first theorem we establish two facts about the closed ball
property. The first says that the closed ball property preserves dimension locally,
and the second is a statement about the way Voronoi cells intersect a compact
manifold and its boundary. We work with arbitrary, that is, possibly non-smooth
m-manifolds since we do not need any smoothness properties for our proofs. We
do, however, need the non-degenerate intersection property whose introduction was
motivated by smooth manifolds. A simplex o7 € Dy is a principal simplez if there
is no proper superset U D T with oy € Dy. The first fact is formalized in the
following lemma.

Lemma 1 (preservation of dimension) Let m > 1, let X C R? be a compact m-
manifold with or without boundary, and let S C R‘i be a non-degenerate finite set



372 H. Edelsbrunner & N. R. Shah

of points that has the generic intersection property for X. If S has the closed ball
property for X then every principal simplez of Dy is an m-simplez.

Proof. Let o7 € Dy be a principal simplex, and define ' = (|Vr and F =
NVx- By condition (B1), F = XN F'is a closed ¢-ball, with £ =m+1-cardT.
Since o1 € Dy, we have F # 0, which implies £ > 0 and therefore cardT < m+1. If
card T = m+1 then o7 is an m-simplex and we are done. So suppose cardT < m+1.
Since o7 is a principal simplex, it follows that F C int F', for otherwise there is a
proper face G’ = (Vy of F! with XNG' # 0. It follows that T' C U and oy € Dy,
which contradicts the principality of o7.

Finally, we show that F C int F’ also leads to a contradiction. As mentioned
above, F is a closed £-ball and hence bd F' is an (£ — 1)-sphere. This (£ — 1)-sphere
is contained in int F', so it must lie in bd X. Indeed, bd F = bdX N F'. This
contradicts condition (B2), which requires bd XN F' be a closed (£ —1)-ball. O

For the next lemma we need a classic result on subdivisions of a certain type
of complex. A closed ball is called a cell, or a k-cell if its dimension is k. A finite
collection of non-empty cells, R, is a regular complezr if the cells have pairwise
disjoint interiors, and the boundary of each cell is the union of other cells in R.
A regular complex generalizes the concept of a simplicial complex by substituting
cells for simplices. A subset of R is a chain if its elements can be ordered so that
each contains its predecessors and is contained in its successors. Let Cpp be the
set of chains in R and note that NrvCp is well defined. The result mentioned
is that any geometric realization of NrvCp is homeomorphic to |JR. It can be
found in Ref. [4] and Ref. [13] and also in Ref. [2] where it is applied to manifolds
subdivided by the cells of a regular complex. Another classic result needed is the
weak Schonflies theorem, see e.g. Ref. [19], which implies that if A is a piecewise
linear k-sphere and B C A is a piecewise linear closed k-ball then 4 —int B is also
a closed k-ball.

Lemma 2 (complementary closed ball property) Let m, X, and S be as in lemma
1. Let T C S be so that G = (\Vppgx # 0, and define F = NVyx and £ =
m — cardT. If S has the closed ball property for X then bd F — intG is a closed
£-ball.

Proof. By condition (B1), F is a closed (£+ 1)-ball, and thus an (£+ 1)-manifold
with boundary. Let R consist of all sets (1V,,x and (\Vy,qx overallU C S with
T C U. Assuming S has the closed ball property for X, these sets are cells, so R is
a regular complex and F' = |JR. Let K be a geometric realization of Nrv C and
let ¢ : F = |JK be a homeomorphism; it exists because of the homeomorphism
result mentioned above. Note that ¢(bd F) = bd|JK is the underlying space of
a subcomplex of K, and similarly, ©(G) = |JL for a subcomplex £ C K. By
construction, bd | J K is a piecewise linear £-sphere and | J £ C bd |J K is a piecewise
linear closed ¢-ball. The weak Schénflies theorem implies that bd|JK —int|J L is a
closed £-ball. Since ¢ is a homeomorphism, ¢~*(bd JK —int{J£) = bd F —int G
is also a closed £-ball, as claimed. a
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4.8. Theorem for Manifolds

We need a few additional definitions. The barycentric coordinates of a point
T with respect to a simplex o, T = {vo, ..., vk}, are real numbers &o,. .., &k SO
that 2;;0 ¢ =1and S5, &v; = z; they are unique and non-negative if z € o7.
Let K and £ be two simplicial complexes, and let f : Vert X — Vert £ take the
vertices of any simplex in K to the vertices of a simplex in £. The simplicial map
implied by f is g : UK — UL, which maps a point z € o1, T = {vo,.--, Uk}
to g(z) = Y&, &f(vi). We will use the fact that if f is a bijection then g is a
homeomorphism. The barycenter of or is by = Zfzﬂ 747, and the barycentric
subdivision of K is :

Sd K = {conv{br |oT € C}|Ce C}C}'

Figure 2 (c) shows the barycentric subdivision of the simplicial complex in 2 (b).
Note that SdX can be constructed inductively by connecting bz to all simplices

X
() (b) (©) (d)

Fig. 2. (a) The space X is a closed 2-ball in the form of a boomerang. It
is covered by the restricted Voronoi cells of six points, which define a regular
complex R with [ JR = X. (b) The restricted Delaunay complex, Dy, con-
sists of four triangles connecting six points. (c¢) The barycentric subdivision,
Sd Dy, has the same underlying space as DX‘ (d) A geometric realization of
NrvCp consists of a simplicially homeomorphic copy of Sd Dy (not shaded),
surrounded by a layer of triangles (shaded).

sd DK

subdividing the proper faces of or. The star of a vertex v € Lis Stv = {0 € K |
vEOo}. : ;

We will use these tools to show our first result stated in theorem 2 below. The
proof constructs 2 homeomorphism between X and (J Dy one step at a time. In
this process, the pasting lemma of point set topology!® 1% is employed. It can be
stated as follows. If f : A= Y and g : B = Y are continuous maps that agree on
AN B and A, B are closed in AU B, then h: AU B — Y. which agrees with f on
A and with g on B is continuous.

Theorem 2 Let X C R? be a compact manifold, with or without boundary, and
let S C R? be a non-degenerate finite point set that has the generic intersection
property for X. If S has the closed ball property for X then UDyx = X.

Proof. For each i, define V; = {\Vyx # 0 | cardT = m + 1 — i} and note
that because of the closed ball property all elements in V; are closed i-balls. We
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inductively construct simplicial complexes K; and homeomorphisms ; : |JV; =
UK, so that K;—1 C K; and ¢; agrees with ¢;_; on [JVi—1. When we arrive at
K = K and ¢ = ¢,, we show there is a simplicial homeomorphism between K and
Sd Dy The result follows because X = JVn, = JK ~ JSd Dy = UDx.

To start the induction, let each T C S correspond to a point vr in R®. Let e
be large enough and choose the points in R® so that any collection of simplices of
dimension up to m spanned by these points satisfy the properties of a simplicial
complex. Define Ko = {vr |T C S, cardT =m+1, (Vg x # 0}. At this stage
the homeomorphism g : Vo — Ko defined by ¢, ((\Vyx) = vr is just a bijection
between two finite point sets. ,

Suppose 0 < j < m—1and K; and g, : JV; = UK, are constructed. Let
i = j+ 1 and initialize K; = K;. Let T C S with cardT = m + 1 — 7 so that
F = Vyx # 0 and vr is not yet in K;. Define G = NVypax: We add
simplices to K; that will allow us to extend the homeomorphism so it includes
F € V;. Specifically, consider all sets U C S, with T C U and |V x # 0.
Each such set U corresponds to a vertex vy € K;, and each nested sequence of
such sets U corresponds to a simplex o € K;. These simplices o are contained in
@;(bd F — int G). Add all simplices conv (o U {vr}) to K.

To extend the homeomorphism we distinguish two cases. Assume first that
G = 0, and therefore F C intX. Since ¢, is a homeomorphism and F' is a closed
i-ball, bd F and n;(bd F) are both (i — 1)-spheres. It follows that {JStvr is a
closed i-ball, and a homeomorphism ¢p : F' — | St vr that agrees with ¢; on bd F°
can be constructed, see figure 3. Now assume G # 0. By lemma 2, bd F —int G

F B B F' =JStor

Fig. 3. g is constructed from homeomorphism 7 : F = B, o' : F' — B', and
the retriction of ¢; to bd F', 7; : bd F — bd F'. B and B are geometric closed
balls of the same dimension as F and F'. By restricting ! to bd B we get
2 homeomorphism 1’ o ; o n~! : bd B — bd B’, which can be estended to a
homeomorphism 5" : B = B’, e.g. by mapping radii of B to radii of B’. Then
opr =(n)"Yon" on: F — F'is a homeomorphism that agrees with ¢; on
bd F.

and therefore @;(bd F' — int G) are closed (i — 1)-balls. Furthermore, bdG is an
(1 — 2)-sphere.
Let £ C K; consist of all simplices ¢ C ¢;(bdG). UL is an (i — 2)-sphere

™y
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and |J£', with £’ = {conv(c U{vr}) | o € L}, is a closed (i — 1)-ball. A home-
omorphism ¢ : G — [J£' that agrees with ¢; on bd G can be established by the
method illustrated in figure 3. Now we are in the same situation as in the first
case, and a homeomorphism ¢ : F — |JStvr that agrees with ¢ on G and
with ¢, on bd F' — int G can be constructed. After adding all F' = Vyx with
cardT = m + 1 — 1 in this fashion, we get ¢, by combining all ¢+ using the pasting
lemma.

Observe that K and Sd Dy contain a vertex for each T’ C § with (V. x # 8, s0
Vert Sd Dy = {br | vr € Vert K}. It follows that f : Vert K — Vert Sd Dy defined
by f(vr) = br is a bijection. By construction of K, if a collection of vertices
belong to a common simplex in K, then their images belong to a common simplex
in Sd Dy. It follows that the simplicial map g : [JK — |JSd Dy implied by f is
a homeomorphism. Therefore, |JK =~ |JSd Dy = |JDy, and the assertion of the
theorem follows. O
REMARK. As illustrated in figure 2, the Delaunay complex restricted by X is related
to the complex obtained from the chains of the regular complex defined by the
Voronoi cells. Besides being smaller, an advantage of the Delaunay complex is that
it naturally imbeds in the same space that contains X and S.

5. Non-manifold Spaces

In this section, we generalize the result for compact manifolds to non-manifold
spaces. A simple example of such a space is the ‘cross’ defined as the union of
two crossing line segments. The requirements will automatically exclude spaces
that cannot be expressed as the underlying space of a finite regular complex. In
order to generalize theorem 2, we need extensions of the generic intersection and
the closed ball properties. Let X C R be a topological space and let S C R? be a
non-degenerate finite point set. S has the eztended closed ball property for X if there
is a finite regular complex R, with X = |JR, that satisfies the following properties
for every T'C S with V. x # 0:

(E1) there is a regular complex Ry C R so that |V, x = URr,

(E2) the set Ry = {7y € R | inty C int(\Vr} contains a unique cell, 77, so that
T C v for every v € RY,

(E3) if 77 is a j-cell then 77 Nbd (V7 is a (j — 1)-sphere, and

(E4) for each integer k and each k-cell v € Ry — {77}, yNbd[Vr is a closed
(k — 1)-ball.

We call 71 the hub of R3. Furthermore, S has the ertended generic intersection
property for X if for every T C S and every v € Rt — R there is a § € R so that
yCé.

It is not difficult to see that if X is a compact manifold and S has the generic
intersection and the closed ball properties for X, then the extended generic intersec-
tion and the extended closed ball properties follow. Indeed, the regular complex, R,
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required by condition (E1) consists of all non-empty sets (Vo x and (V44 x;
T C S. Fix asubset T C S and define F =V, x and G = [Vypqx- If non-
empty, F and G are closed balls, and if G # 0 then F # ( and the dimension of F
exceeds the dimension of G by one. There are three possible cases. If F = G = 0
then (\Vyx = F = 0 and conditions (E2) through (E4) are void. If F' # 0 and
G = 0 then R} = {F}, and 71 = F satisfies conditions (E2) and (E3); condition
(E4) is void. If F # 0 and G # 0 then R7 = {F,G}, 7r = G satisfies conditions
(E2) and (E3), and v = F satisfies condition (E4). In any case, the establishment
of the homeomorphism in the proof of theorem 2 can be viewed as introducing a
vertex vy for 77 and connecting it to the simplices inductively constructed for the
cells in Ry —R%. This idea also works in the general case considered in this section.
Let X C R? be a topological space, and let $ C R? be a non-degenerate finite
point set that has the extended generic intersection and the extended closed ball
properties for X. To construct a homeomorphism between X = |JR and UDX,
we consider one subset T' C S at a time, in order of non-increasing cardinality.
Inductively, we assume the cells in Ry — RT are already mapped homeomorphically
to appropriate simplices. We extend the homeomorphism to the cells of R, again
inductively in order of non-decreasing dimension. We introduce a vertex, vr, for
the hub, 7. If 77 is a k-ball, its boundary is a (k — 1)-sphere, and by (E3) and
the induction hypothesis, the cells in this (k — 1)-sphere are already part of the
homeomorphism. After connecting vr to the simplices that correspond to the cells
in bdrr, we can extend the homeomorphism to 77. Every other cell in R is
treated the same way, only that the reason the homeomorphism can be extended is
now a combination of the two induction hypotheses. This implies the generalization
of theorem 2 to topological spaces other than manifolds.
Theorem 3 Let X C R? be a topological space, and let S be a non-degenerate finite
point set that has the extended generic intersection property for X. If S has the
extended closed ball property for X then | Dy = X.

6. Remarks and Further Work

This paper is targeted at problems requiring the discretization of possibly com-
plicated geometric objects in finite-dimensional Euclidean spaces. Such problems
are abundant in the computational science literature, see e.g. Kaufmann and Smarr,*?
where the discretization of continuous domains is common practice. The dimensions
of the domain and the imbedding space can be the same, as e.g. common in fluid
dynamics problems, or they can be widely different, as in the study of many dy-
namical systems. The restricted Delaunay complex introduced in this paper is a
general method that produces simplicial discretizations in all cases.

The introduction of a general concept typically gives rise to many specific ques-
tions and directions for further research. We see three directions of progressively
more basic work necessary to bring restricted Delaunay complexes closer to the
targeted application areas. The first is the design of efficient algorithms that con-
structs the Delaunay complex of a finite point set, S, restricted by a domain or
space, X. Special cases under different assumptions on how X is specified are con-
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sidered in Ref. [3,7,14]. The second direction is the design of methods that choose
finitely many points resulting in good quality discretizations of X. Such methods
have a long history in the somewhat different contexts of finite element analysis®®
and free-form modeling.22 We remark that the method by Welch and Witkin?? uses
the algorithm due to Chew® to connect a chosen point set to form a surface; it can
thus be seen as an application of the idea of restricted Delaunay complexes. The
third direction is the study of maps from a problem specific domain to a space,
possibly imbedded in higher dimensions, that depends on functionals studied over
the domain or on approximate solutions thereof.
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