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Abstract. Visualization of high-dimensional or large geometric data sets is in-
herently difficult, so we experiment ‘with the use of audio to display the shape
and connectivity of these data sets. Sonification is used as both an addition to
and a substitution for the visual display. We describe a new algorithm called wave
traversal that provides a necessary intermediate step to sonification of the data; it
produces an ordered sequence of subsets, called waves, that allows us to map the
data to time. In this paper we focus in detail on the mathematics of wave traversal,
in particular, how wave traversal can be used as a discrete Morse function.

1 Audio as an Experimental and Analytic Tool

Visualization has become an important tool for mathematicians, allowing
them to see complicated spaces and to further their insight into the nature
of these spaces. No amount of imagination can equal a visual ride through
hyperbolic space, for example, as evidenced by the video Not Knot [6] or the
CAVE™ application postEuclidean Walkabout [5]. Visualization is limited
by our ability to see in only three dimensions, however, and by our ability
to see for only short distances, often due to occlusion. The latter problem
becomes particularly acute when we use a two dimensional display to visualize
a three dimensional world.

These observations have led us to investigate sonification. Sonification is
“the use of data to control a sound generator for the purpose of monitoring
and analysis of the data...” [8, p. 187]. Kramer points out in (7] that the
ability of sound to display multiple variables simultaneously can be used to
increase the display dimensionality of a visual system, or it can be used by
itself to display a high-dimensional system. We are investigating sonification
of simplicial complexes of dimensions three and higher, with and without a
visual display.

One problem associated with using geometric data to control an audio
signal is the static nature of the data. Sound is perceived through time: it
has an intrinsic time dimension. We describe in the next section an algorithm
for making the data dynamic. This algorithm, called wave traversal, outputs
an ordered sequence of subsets of the data. We then show how to make wave
traversal on triangulated manifolds into a discrete Morse function. Thus wave
traversal is both an intermediate step to sonification and an analytic tool. In
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this paper we focus on the mathematics of wave traversal, but we describe
now briefly its application to sonification.

We apply maps, called transfer functions, from the output of the wave
traversal into the audio domain. For example, the relative size of each subset
in the sequence might control the carrier frequency (in Hertz) of a tone, and
the number of components of each subset might be mapped to a parameter
that modulates the frequency. The order of the sequence of subsets gives us
a natural map to the time dimension. Critical points are mapped to specific
signals so that they can be easily distinguished from sound that is controlled
by other data.

Wave traversal does not solve the specific problem of how to map geomet-
ric data to parameters of a sound synthesis algorithm, however. So, we still
need to supply arbitrary but meaningful maps from data to sound. These
maps have been developed with collaborators from the National Center for
Supercomputing Applications and refined with experimentation. Some details
of the sonification can be found in [1] and [2]. User training is an important
part of this process; the audio signals must first be interpreted for a new user
before they become meaningful.

2 Wave Traversal

For definitions of terms from piecewise linear topology in this section, see [10],
for example. Let K be a finite simplicial complex and assume K is connected.
Let the distance between two vertices u and v of K be defined as the number
of edges in the shortest path from u to v. We will denote this distance by
d(u,v) and refer to u as the start vertex. For a simplex o € K with dimension
greater than 0, define the distance d{u, ¢) to be equal to the minimum d(u, v)
over all vertices v of g.

Definition 1. Let W ,(i),7 > 0, be the set of o € K such that

1. d(u,v) =i for all vertices v € o, and
2. o is face of some simplex r € K with d(u,7) =i — 1.

For example, Wg ,(0) = {u}. Condition 1 implies that waves are progres-
sively further from u as the index i increases. Condition 2 guarantees that
each wave has dimension strictly less than the dimension of K. We will as-
sume that the complex K and the start vertex u are fixed, and simplify our
notation to W (i) = Wy ,(i). Let D be the maximum d(u,v) for all v € K
and define W = {W (i) | 0 < ¢ < D}. We call the algorithm that produces W
wave traversal because of the analogy to a wave moving through a medium,
see Fig. 1. We will refer to W (i) as a wave and W as the wave subcomplez.

Let S = Sk be the set of simplices of K that do not belong to W.
Def. 1 implies that all vertices of K are in W, so S contains only simplices
of dimension 1 or higher. Let S(i) be the set of simplices in S such that
d(u,o) = 1.

Auditory Morse Ana. s 225

grounded
triangle T

Fig. 1. Waves on a 2-dimensional torus. W (8) includes both vertices of edge o but
not, o itself. Therefore, o is a grounded edge in S(8). W (12) includes all the edges
of triangle T but not 7 itself, so 7 is a grounded triangle in S(12).

We would like to extend d(u,v) linearly to a continuous function d(u, )
over all points of K, so that d(u,z) = i for all points of ¢ € W (i), and d(u, x)
varies from i to i+ 1 for all points of ¢ € S(i). For most o € S(i) this presents
no problem, since some v € ¢ belong to W (i) and some belong to W (i + 1).
However, it is possible to have a simplex in S(7) which has all vertices in T'(¢).
We call such a simplex a grounded simplex. This can happen, for example,
when W (D) is the boundary of a simplex of maximal dimension, or when.
W (i) consists of two components which divide all the vertices of a simplex in
S(i) between them, see Fig. 1. Note that in these cases, grounded simplices
occur at critical places where the connectivity of wave W (i + 1) is different
from wave W (7). We will investigate this relationship further in Sec. 4.

Let ¢; < ¢; denote o; is a proper face of ¢;. We consider the barycentric
subdivision sdK of K, whose vertices are the barycenters b, of the simplices
o € K. sdK is the collection of all simplices of the form b, b;, ...bs,, where
gg <01 < ... = op. Let Wiqx be the wave subcomplex of sdK, and let Ssqx
be defined accordingly. The start vertex u is defined to be the same for both
W and Wiqg. Somewhat surprisingly, we can eliminate grounded simplices
from the wave traversal using barycentric subdivision, and we state this as a
theorem and prove this in the rest of this section.

Theorem 1. All vertices of a simplex o € sdK have distance 7 if and only
if 0 € Wsar (i). That is, sdK contains no grounded simplices.

We first prove a lemma which says that the distances in K are doubled
in sdX.

Lemma 2. For vertices v and v in K, d(by,b,) = 2d(u,v).
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Proof. We will show that there is a shortest path from b, to b, in sdK that
is restricted to sd(K), where K1) is the 1-skeleton consisting of all edges
and vertices of K. The lemma then follows. Let fd(b, ) (for former dimension
of b,) be equal to dim(e). We want to show that there is a shortest path
from b, to b, in sdK whose vertices b, have only fd(b,} = 0 or 1. Note that
fd(b,) # fd(b;) if b, is adjacent to b,. Also, no 3 contiguous vertices in the
shortest path. b,. b, .b,, can have fd(b,) < fd(b,) < fd(b;), since this would
imply that p < ¢ < 7, and so there would be an edge from b, to b;. Similarly
we cannot have fd(b,) > fd(bs) > fd(b;). Thus, any shortest path from b, to
b, must have a sequence of former dimensions of the form

0 < fd(by) > fd(bo) < fd(bs) > -+ < fd(by) >0 .

fd(by), fd(bs),. .. ,fd(b,—1) are all locally minimum in this sequence, and so
we can replace the vertices by, by, ... ,b,—1 with original vertices of K to get

a path of the same length with
0 < fd(by) > 0 < fd(bs) > --- < fd(b,) > 0

(see Fig. 2). Now vertices by, b3, ... ,b, are all between two original vertices,
and so can be replaced by the barycenters of the edges connecting those
vertices in K. (]

Lemma 2 suggests that every other wave in sdX{ is also a wave in K,
or rather the barycentric subdivision of one. We present a technical lemma
before proving that this is indeed the case. Call a simplex L' € K that
has d(u,v) = 2i in sdK for all vertices v € 2 a dip, a flat, or a bump if
d(u,by) =2i— 1, 2¢, or 2i + 1, respectively.

Lemma 3. I. K contains no dips.
2. If ¥ € K is a flat then d(u,w) is the same for every verter w € sdX.

Proof. 1. Suppose K contains a dip X. Then d(u,by) = 2i—1 and d(u, z) =
2i — 2 for the predecessor of by along some shortest path from u to byg.
If x is a vertex of sdX then it is connected by an edge to at least one
vertex v € X, and if # ¢ sd X then it is the barycenter of a coface ! of 2
and therefore connected by an edge to every vertex v € X. In either case
we have a contradiction because d(u,z) = 2i — 2 and d(u,v) = 2i.

2. We have d{u, by) = 2¢ if £ is a flat in K. By claim 1, no vertex w € sd%
has d{u,w) = 2i — 1, because then w = by for a face T" of X and T would
be a dip. So, d(u,w) > 2i. Let = again be the predecessor of by along
a shortest path from w. d(u,z) = 2i — 1 and @ ¢ sdX. Therefore x is
the barycenter of a coface of X' and thus connected by an edge to every
vertex w € sd¥. So d(u,w) < 2i. Therefore d(u,w) = 27 as claimed. O

' A coface of ¥ is a simplex which has T as a face.
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Fig. 2. Shortest paths from b, to b,. In (a), the path goes through the barycenters
of the two triangles and their common edge. The fd sequenceis 0 < 2> 1 < 2 > 0.
Since the barycenter of the edge has former dimension which is a local minimum,
we can replace it with an original vertex to get (b), with fd sequence of 0 < 2> 0 <
2 > 0. Finally, we can replace the barycenters of the two triangles, now between
original vertices, with barycenters of edges to get (c), a shortest path contained
entirely in sd(K™)).

By Lemma 3, a simplex in K whose vertices all have the same distance
from u is either a bump, or a flat whose faces are also flats. Lemma 3 is used
in the proof that every other wave in sdK is the barycentric subdivision of a
wave in K.

Lemma 4. sdWi (i) = Woqp(21).

Proof. First we show Wiqg (2i) C sdW (i). Let o be a k-simplex in Wear (21)
and let X' € K be the simplex of lowest dimension that contains o. By
definition, d(u,v) = 2i for all v € o; in particular, d(u,bs) = 2i. All original
vertices w € X are adjacent to by, and so must have distance 2i —1, 27, or 2i +
1. Lemma 2 implies that d(u, w) must be 27 in sdJ(, and so d(u, w) =i in K.
In other words, X is a flat.

Now, o is face of a simplex T € sdK with d(u, 7) = 2i — 1. We may assume
that = has dimension & + 1. Let T be the simplex of lowest dimension in K
that contains 7. Since X is a flat it cannot contain 7 and therefore ¥ < T.
Also note that the vertex of 7 at distance 2i — 1 is the barycenter by. The
predecessor x of by along a shortest path from u to by has distance 2i — 2.
Assume that no vertex of T has distance 2 — 2. Then z is not one of the
vertices of T and so it must be the barycenter of a coface of T or of a face
of T'. If  is the barycenter of a coface of T, then x is adjacent to a vertex v
of ¥, implying that d(u,v) < 2i, a contradiction. If 2 is the barycenter of a
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face of T, then at least one vertex w of this face has distance 2i — 2, or else
that face is a dip, which would contradict Lemma 3(1). But d(u, w) = 2i -
is also a contradiction. Thus z must be a vertex of T and d(u,T) =i —1in
K.

Now we will show that sd Wg (i) € Wsak(2i). Let £ be a k-simplex in
Wi (i). X is face of a (k + 1)-simplex T with d(u,T) = ¢ — 1. The vertices
of X have distance 27 in sdK and the other vertex of T' has distance 2i — 2.
Since br is adjacent to all of these, d(u,br) = 2¢ — 1. All (k + 1)-simplices
7 € sd T with a k-face in sd ¥ thus have distance 2i — 1. By Lemma 3(1),
the barycenter of X cannot have distance 2 — 1 and it has distance at most
2i because it is adjacent to by. So, by Lemma 3(2), all vertices of sdX have
distance 2i from u. Hence all simplices ¢ in sdK contained in X satisfy both
conditions for belonging to wave 2i of sdK. O

It follows from Lemma 4 that the barycenters of all simplices in Sk belong
to odd-numbered waves of sd K. We can show a stronger result.

Lemma 5. The barycenters of all simplices in Sk (i) belong to Wqi (2i+1).

Proof. If ¥ € Sk (i) has vertices at distance i and i 41 then d(u,by) = 2i+1
in sdK and bx belongs to Wiax (2i+1) as claimed. The only other case is that
¥ is grounded, that is, all its vertices have distance 2z in sdK'. By Lemma 3(1)
we have d(u, bs) # 2i — 1, and by Lemma 4 we have d(u,bx) # 2i. The only
remaining possibility is d(u, bx) = 2i + 1.

Now we have the tools to prove Theorem 1, which says that if we first take the
barycentric subdivision of a complex, we can eliminate the second condition
of Def. 1; in sdK equidistance of vertices is the sole determining condition
for inclusion of a simplex into a wave.

Proof (of Theorem 1). We show that the assumption that o € sdK is ground-
ed leads to a contradiction. Let X be the simplex of lowest dimension in K
that contains o; by is a vertex of o. X' cannot belong to a wave of K, otherwise
Lemma 4 implies that ¢ belongs to a wave of sdK and can therefore not be
grounded.

We may therefore assume that X € Sk (j). By Lemma 5, d(u, bg) = 2j+1.
For o to be grounded it must have all vertices at distance 2j + 1. Besides o,
sd X also contains simplices T that contain & and one original vertex v of X.
If d(u,v) = 2j for any such 7 then ¢ is in a wave and cannot be grounded,
a contradiction. If d(u,v) = 2 + 2 for all choices of 7 then we have a face
of X that is a dip; its vertices are the vertices v of the simplices 7, and its
barycenter is a vertex of o. This contradicts Lemma 3(1).

Since Seqx contains no grounded simplices, we may conclude that if all
vertices of o € sdK have distance i, then o € Wyqi (i). In other words, we
do not need the second condition of Def. 1. O

Figures 3 and 4 illustrate the cases where &' € K is a triangle not contained
in W (i) for any 7. In Fig. 3 X is a grounded simplex, and in Fig. 4 it is not.
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d(bu) = Zj

d(bmr) = 2}4‘] d(bl'u) = 2_]+1

d(b...-) = Zj d(bm’) = Zj d(") = 2j

Fig. 3. Before subdivision, vertex u and the segment wv were in W(j), while tri-
angle ¥ = uwwv was in S(j), a grounded simplex. After barycentric subdivision, all
simplices with equidistant vertices belong to W.

d(bu) = 2]'!‘2

d(buw) = 2}+} d(bm) = 2j+1

d(bn') = Zj d(bn'l') = 2j d(b\') = 2j

Fig. 4. Before subdivision, vertex u was in W{j + 1) and the segment wv was
in W(j), while triangle ¥ = wwv was in S(j), not a grounded simplex. After
barycentric subdivision, the white triangles belong to S(2j) and the black ones
belong to S(2j + 1).
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3 Wave Traversal as a Morse Function

Morse theory relates the critical points of a smooth function on a smooth
manifold to the connectivity of the manifold; details of Morse theory can be
found in [9]. A smooth function that is often used for Morse analysis is a
height function h : M — IR that maps a point of M to its distance from a
hyperplane, see Fig. 5. In this section, we will construct a piecewise linear
function f analogous to the smooth height function h, and show how to isolate
the critical points of f so that we obtain a discrete Morse function.

e e S 1

h(x)

Y
|

X3

N .

JCZ x;

Fig.5. h: M — IR takes points of the 2-torus to real numbers, (z1,22,23) = 3.

In classical Morse theory, critical points of h are found by examining the
gradient of A, and the index of each critical point is found by examining the
matrix of second derivatives of h evaluated at the critical point p. If this
matrix has full rank, the critical point p is non-degenerate. For our purposes,
though, we are interested in a geometric interpretation of critical points and
their indices, and we will present these as Banchoff does in [3].

Assume M is a smooth 2-manifold in IR®. If  : M — IR is a Morse
function, then critical points of h are isolated and have only three types:
minima, saddle points, and maxima, of index 0, 1, and 2, respectively. If p is
a critical point for h then the tangent plane to M at p is horizontal. Consider
a small circle about p on M. If p is a minimum or maximum, the plane
through p does not intersect the circle. If p is a saddle point, it intersects
the circle in 4 points. Another way to describe this is that the tangent plane
at a saddle point p divides a small disk neighborhood of p on M into “four
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separate pieces.” The horizontal plane through a regular or non-critical point
g is not the tangent plane, and therefore meets a small circle about ¢ in two
points, and divides a small disk neighborhood of g on M into two pieces.

We will use these observations to find critical points of our discrete func-
tion. In the following we assume that K is a triangulated oriented closed
surface; i.e., K is homeomorphic to an oriented compact 2-manifold. We also
assume that K is embedded in IR?, although what follows is applicable to ab-
stract manifolds as well. Finally, we assume now that K is the first barycentric
subdivision of another simplicial complex, so that we can apply the results
of the previous section, in particular Theorem 1.

We extend the distance function for the vertices linearly to all points of K.
Since K contains no grounded simplices, we do not lose the correspondence
between distance and waves. Let x € o and let #, = ¢.(x) be its barycentric
coordinates, where t, = 0if v ¢ o,

I:Ztt, \ and;r:Zt,_.-v :
v v

Definition 6. The distance from u to x is

d(u,z) = Z ty - d(u,v) .

Observe that d{u,z) is defined over the entire set of points of K and is
continuous. If we embed K in IR* so that

T = (z1,T2,33) = (21,22, 73.d(u, 7)) ,
then f(z) = d(u,2) becomes a height function.
Lemma 7. All critical points of f are in the wave subcomplez 1V .

Proof. We will show that all points z € |S|. where |S| = |J,cqint o, are
regular. Consider a point = € int o, with ¢ € 5. Since grounded simplices
have been eliminated, o has two vertices at different heights and is therefore
not contained in the horizontal hyperplane passing through z. It follows that
this hyperplane cuts a suitable neighborhood of & into precisely two pieces,
compare (3, p. 478]. ]

Observe that each wave W (i) is in a horizontal hyperplane in R*. A vertex
v € W (i) is a regular point of f if W (z) cuts the star of v, St(v), into exactly
two pieces, one a subset of S(i — 1) and the other a subset of S(i) (Fig. 6).
Similarly, all points & of an edge e € W (i) are regular if 1 (i) divides St(e)
into two pieces, where St(e) contains e and the two triangles that share e.

f has only one minimum and it is non-degenerate; it is the start vertex
w. All simplices in St(u), except u, belong to S(0). Similarly, for an isolated
local maximum v € W (), St(v) consists only of ¢ and simplices in S(i — 1).
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W(i)

Fig. 6. The star of a regular point v € W (i). W (i) divides the star into two pieces,
one a subset of §(i — 1) and the other a subset of S(i).

If v € W (i) is an isolated saddle point, then W (i) divide‘s St(v) intofi pieces,
alternating between S(i — 1) and S(i) (Fig. 7(a)). I.t is also possible that
several saddle points come together at a single location. The star of an m-
fold saddle point is cut by W (i) into 2m + 2 pieces. A 2-fold saddle point is

also know as a “monkey” saddle.

(b)

Fig. 7. (a) illustrates the star of an isolated saddle point v. (b) illustrates a com-

ponent of a critical subcomplex.

Critical points of f are not isolated in general, so we need a way to iden-
tify and resolve these degeneracies. A degeneracy oceurs when one or more
adjacent edges e € W (i) all have St(e) C W) u S = 1), see for example
Fig. 7(b). More formally, we define a ( degenerate) cm'tzcal s‘ubcompvler C of
TW (i) as the closure of all edges e such that St(e) C W(z) uS(i— 1}_. Nf:)te t‘hat
it is possible for some vertices in C to have stars which also contain simplices

in S(i).
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Since C' is itself a simplicial complex, wave traversal is defined for its
components and we use it to isolate critical points. We choose an arbitrary
vertex w in a component C, of C' and compute d(w,z) on C,. > Then we
replace f on C}p with

f(z) = d(u,w) — € - d(w,z) , (1)

for small € > 0. After redefining f on critical subcomplexes, we need to
recalculate f on the rest of K.

Theorem 2. Let z and y be two vertices of C, connected by an edge e. Then
flz) # f(y), i.e., (1) isolates critical points of f in C.

Proof. Suppose d(w,z) = d(w,y) = j. Then edge e is in wave j of the
wave traversal on Cj, since otherwise it would be grounded. But C,, is a 1-
dimensional complex, so wave j must be 0-dimensional and cannot therefore
contain e. Therefore d(w, z) # d(w,y) and as a consequence f(z) # f(y). O

We now illustrate with some examples. Suppose C, comprises an entire
connected component of wave W (z). Then St(v) C W({i)uS(i—1) for all v €
C}, because K is a manifold. The new start vertex w becomes a local maximum
for f. If Cp contains no closed curve, then it contains no further critical point.
If Cp contains a closed curve, then (1) isolates both a saddle point and a
maximum. This happens, for example, when 1V (D) is a (homologically) non-
trivial closed curve on the torus, see Fig. 8. We prove this in the following
claim.

Claim 8. Let C, comprise an entire connected component of W (i) and sup-
pose Cp contains a closed curve P. (1) isolates both a mazimum and a saddle

point on C,.

Proof. We recalculate f on C, with (1) and as in the general case. w is
an isolated maximum. Since there are no grounded simplices in the wave
traversal on C), there is a vertex x on P which has a minimum value for f on
P. This vertex x becomes an isolated saddle point, because f increases from
z in two directions on €}, and f decreases in two directions in S(i —1). O

In fact, it is clear from the proof that (1) will isolate one saddle point for
each closed curve in C),. To give an intuitive understanding of why this must
be, we prove the following claim.

Claim 9. Let Cy be as in Claim 8. The closed curve P in C, must be non-
trivial.

? It is a fact that there are no grounded simplices in this wave traversal, but we
will not prove it here.
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A
W(7) W(8) W(7)

Fig. 8. W(8) has a maximum and a saddle point.

Proof. Assume that P is a trivial closed curve on the surface K. P divides K
into two pieces, only one of which contains the start vertex u. Any path from
u to a vertex x in the other piece, and in particular the shortest path, must
go through P, and so d(u,z) = i + 1. Therefore St(v) for some v € C) qlust
have simplices in S(i), a contradiction. If the piece that does not contain u
does not contain any vertices at all, then it must contain a grounded simplex,
which is also impossible. a

Now suppose C, is a subcomplex of a larger connected component of ‘H:’ (1),
see Fig. 7(b). In this figure, C}, consists of two edges and their three endpoints.
The two outer endpoints include triangles from S(i) in their stars. Call these
vertices r and y and suppose w is different from both. After recalculati.ng fon
Cp. w again becomes an isolated maximum and both z and y becom.e isolated
saddle points. If w = z, then y becomes the only isolated critical point on Cp;
it is a saddle point. Since a maximum and a saddle point effectively cancel
each other out, the net result in both cases is a saddle point.

When only one vertex v € C, has simplices in S(i), then a similar case
analysis for w shows that the critical points isolated by (1) all cancel; this is
analogous to the “shoe” saddle on a continuous manifold.

4 Computation of Waves, Critical Points and Sound

Computing the waves on sdK is straightforward. We find f(v) = d(u, :u) for
each vertex using breadth-first search [4]. We alter this algorithm slightly
because we do not compute sdK explicitly first; we perform the breadth-first
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search on an implicit subdivision of K. We add a simplex to 17" (i) = Wsar (i)
if all its vertices have f(v) = 1.

We locate critical subcomplexes in odd-numbered waves by locating ground-
ed simplices of the original complex K. It is a fact that the barycenter by
of a grounded simplex X' is either an isolated critical point of f.oritisina
degenerate critical subcomplex. For example, in Fig. 3 the barycenter of the
triangle is in a degenerate critical subcomplex. If X' is not grounded. then by
is a regular point of f, see Fig. 4. In even-numbered waves. we analyvze the
star of each simplex to locate critical subcomplexes.

We find the connected components of critical subcomplexes and identify
them using the cases illustrated in Sec. 3. For example. if a critical subcomplex
Cp contains no closed curves and St(v) C W(i)uS(i—1) for all v € C, then
Cp contains a local maximum for f and no other critical points.

To compute the sound, we map properties of waves and critical points
dynamically to parameters of a sound synthesis algorithm, so that we listen to
the process (the wave traversal) as well as the analysis (the result of the Morse
analysis). The sonification of the wave traversal itself conveys to a trained
user some of the features of each wave. for example, its relative size and
number of components. Critical points are mapped to specific sound signals,
so that they can be distinguished from the underlying bed of sound produced
by the wave traversal. These signals indicate the type and number of critical
points found at a particular wave step. The user then gains knowledge of the
shape and connectivity of the data by listening to the entire composition. The
ideas in this paper are adapted to sonification of general 2- and 3-complexes,

The algorithms are implemented in C++ on the SGI platform. with a
visual display for complexes of dimension 3 or less. A program called vss (for
vanilla sound server) provides the sound synthesis algorithms and an interface
for controlling these algorithms with our data (see http://www.ncsa.uiuc.edu /-
VEG /audio).
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