Shape Reconstruction with Delaunay Complex

Herbert Edelsbrunner

Dept. Comput. Sci., Univ. Illinois at Urbana-Champaign, and
Raindrop Geomagic, Champaign, Illinois, USA

Abstract

The reconstruction of a shape or surface from a finite
set of points is a practically significant and theoretically
challenging problem. This paper presents a unified view
of algorithmic solutions proposed in the computer sci-
ence literature that are based on the Delaunay complex
of the points.
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1 Introduction

This paper considers the problem of reconstructing a
shape from a given finite set of points. Solutions based
on the Delaunay complex of the set are surveyed and
a unified view using restricted Delaunay complexes is
developed

Problem description. Define a shape as a subset of
Fuclidean space. It inherits the topology of that space
and can be viewed as a topological space itself. Given
a finite set of points, S C R?, the shape reconstruction
problem asks for a shape in R? that best approximates
S.

Without quantifying what it means that a shape ap-
proximates a point set, shape reconstruction remains a
vague and primarily morphological problem. In spite
of the importance of the problem there has been little
success in phrasing it as an optimization problem. The
main source of the difficulty is the fantastically rich va-
riety of shape and form as apparent in nature around us
[16, 39]. One way to cope with this difficulty is to limit
the range of shapes. We call the result a narrow prob-
lem specification. An example is the requirement that
the shape produced be a closed surface in R?, assuming
S C R3. The trouble with this problem specification is

that many sets S C R? do not admit any reasonably ap-
proximation by a closed surface. As a consequence, any
algorithm is limited to a subclass of input sets S, and
it is difficult to characterize this subclass other than
through success and failure of the algorithm. A wide
problem specification permits the construction of any
topological space. For example in R?, the shape can be
a point, a curve, a surface, a solid, or any combination
of these. The trouble with this specification is that an
algorithm might not produce a closed surface even in
cases where one approximating S would exist and the
application would prefer one.

Ramifications. Versions of the shape reconstruction
problem can be found in diverse areas of science and en-
gineering. 2-dimensional versions arise in pattern recog-
nition, image processing and computer vision [36]. For
example, solutions to boundary reconstruction from im-
ages based on Delaunay complexes have been studied by
Brandt and Algazi [11] and by Robinson et al. [38]. The
most common 3-dimensional version of the problem is
narrow and requires the reconstructed shape be a closed
surface, see Lodha and Franke [31] for a survey of scat-
tered point techniques for surfaces. The importance of
this case stems from the fact that the closed surfaces
are exactly the boundaries of the solids (3-manifolds
with boundary). Given a closed surface, the solid can
be physically created by modern 3D printing technol-
ogy surveyed by Burns [13]. A particular algorithmic
solution to the wide version of the 3-dimensional shape
reconstruction problem are the a-shapes proposed by
Edelsbrunner and Miicke [21]. They are dual to the
space filling models of molecules and found extensive
applications in molecular biology. The surface recon-
struction problem in R3 has been generalized to the
manifold learning problem in dimensions beyond 3 by
Bregler and Omohundro [12]. This problem arises in
the analysis of dynamical systems and of physical phe-
nomena described by data of a fixed dimension greater
than 3.



Reconstruction methods. This paper focuses on
the Delaunay approach that reconstructs a shape from
the Delaunay complex of the points. This is a simpli-
cial complex that decomposes the convex hull of S by
connecting the points with simplices of all possible di-
mensions. The shape is the underlying space of a sub-
complex chosen from the Delaunay complex by some
algorithm. Other approaches to the shape reconstruc-
tion problem are beyond the scope of this paper.

Most solutions described in the scientific literature
follow either the Delaunay or one of three other ap-
proaches. The first other approach keeps the idea of
taking subcomplexes and replaces the Delaunay by a
different complex. Kirkpatrick and Radke [27] suggest
the one-parameter family of S-skeletons to reconstruct
the shape of a finite set in R2. The sphere-of-influence
graph has been proposed by Toussaint, see [6], and used
by Edelsbrunner, Rote and Welzl [22] to find short-
est curves. The f-skeletons have been generalized by
Veltkamp [41] and used for the reconstruction of sur-
faces in R3.

The second approach reconstructs surfaces in R? from
slices. Each slice represents the intersection of the shape
with a plane by a collection of polygons in that plane.
It is usually assumed that the slices are defined by a se-
quence of parallel planes. If two adjacent slices consist
of a single polygon each then the reconstruction prob-
lem reduces to finding a cylindrical surface that con-
nects the two polygons. Fuchs, Kedem and Uselton [25]
describe a polynomial time algorithm for constructing
minimum area and other optimal cylinders. In the gen-
eral case each slice consists of several pairwise disjoint
but possibly nested polygons. Solutions that first match
and second connect the polygons are surveyed by Mey-
ers, Skinner and Sloan [35]. Boissonnat and Geiger [10]
combine the matching and connecting into one step us-
ing the Delaunay complex of the two slices.

The third approach takes advantage of the fact that
the points in S used to specify the shape have otherwise
no significance. S can be replaced by any set that leads
to the same or a similar shape. Assuming a dense dis-
tribution along the hypothetical surface, Hoppe et al.
[26] construct a signed distance function, f : R® — R.
The surface is defined as the zero-set, f~1(0), and con-
structed by the marching cube algorithm [32]. The limi-
tation to sets S that are dense everywhere along the sur-
face has been partially overcome by Curless and Levoy
[15] who assume S is obtained by a scanner that pro-
vides, for each point, also the ray meeting the surface
at that point.

Outline. Section 2 introduces the restricted Delaunay
complex, which is the central notion in the unified view
of solutions following the Delaunay approach. Section
3 discusses versions of the Delaunay approach that con-

struct the restricting space from the data set. Section
4 considers version that assume the restricting space is
given, either implicitly or explicitly. Section 5 concludes
this paper.

2 Restricted Delaunay Complex

This section presents the definitions needed to unify and
classify the proposed solutions following the Delaunay
approach to shape reconstruction. The main concept is
the so-called restricted Delaunay complex first defined
in full generality by Edelsbrunner and Shah [23].

Voronoi cells. A finite set S C R? induces a decom-
position of the space into regions of influence. Specif-
ically, let ||z — p|| be the Euclidean distance between
points z,p € R?. The Voronoi cell of p € S is the set of
points x whose distance from p is less than or equal to
the distance from any other point in S:

Vo, = {zeR[]lz—pll <llz—qllq €S}

Each Voronoi cell is a closed and possibly unbounded
convex polyhedron, see Figure 1. The Voronoi cells meet

Figure 1: Decomposition of the plane by Voronoi cells of
a finite set. The points are the locations of trees in the
Allerton Park near Monticello, lllinois.

at most along common boundary faces, and together
they cover the entire R?. The collection of Voronoi cells
is denoted as Vg = {V, | p € S}.

In this paper we only consider Voronoi cells defined
by finitely many (unweighted) points and the Euclidean
metric. Refer to the survey article by Aurenhammer
[5] for generalizations to points with weights, to infinite
point sets, and to other metrics.



Nerve. The nerve of a finite collection of sets, A, is
the set system (or set of collections) consisting of all
subcollections with non-empty common intersection:

NrvA = {XCA|[)X #0}.

It has been introduced by Alexandrov [1] as a tool to
construct simplicial complexes. Observe that ¥ C X
and X € Nrv A implies Y € Nrv A; this is the defining
property of an abstract simplicial complex. To obtain an
embedding we represent each set in A by a point in the
Fuclidean space of some dimension, e, and each collec-
tion X € Nrv A by the convex hull of the correspond-
ing points. Specifically, we find an injective function
p: A — R so that

convp(X)Nconve(Z) = convp(XNZ)

holds for all X, Z € Nrv A. In words, ¢(X), ¢(Z), and
(X NZ) are finite sets of points, their convex hulls are
simplices, and the intersection of the first two simplices
is the simplex spanned by the intersection of the first
two point sets. K = {conve(X) | X € NrvA} is a
simplicial complex and K together with ¢ is a geometric
realization of Nrv A. The underlying space of K is the
part of R® covered by its simplices: |K| =K.

A general position argument shows that there is al-
ways a geometric realization in dimension e > 2m — 1,
where m is the maximum cardinality of any X € Nrv A4,
and there are examples that show e = 2m — 1 is some-
times necessary [24, 40]. For computational purposes
it is important to keep e as small as possible, and for
A = Vg it turns out that e = m — 1 = d is sufficient.

Delaunay complex. Recall that S is a finite set of
points in R? and Vg is the collection of Voronoi cells.
We assume general position so that the common inter-
section of any k Voronoi cells is either empty or a convex
polyhedron of dimension d + 1 — k. It follows that the
collections X in the nerve of Vg have cardinality at most
d+1. The Delaunay complex of S is the geometric real-
ization of Nrv Vs defined by the injection ¢ : Vg — R?
that maps every Voronoi cell to its generator, ¢(V,) = p:

DelS = {convy(X)|X € NrvVs},

see Figure 2. In other words, if two Voronoi cells share
a common (d — 1)-face then their generating points are
connected by an edge, if three cells share a common
(d — 2)-face then their generators are connected by a
triangle, etc.

General position is a convenient bua nyot a neces-
sary assumption. Without this assumption we get cells
that are not simplices. Specifically, the convex hull of
k points is a cell in the Delaunay complex iff the cor-
responding k Voronoi cells have a non-empty common
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Figure 2: Delaunay complex corresponding to the decom-
position of the plane into Voronoi cells shown in Figure
1.

intersection not contained in any other Voronoi cell. In
this paper we assume general position, which can be
simulated computationally by a symbolic perturbation
[20].

Restricting Voronoi cells and Delaunay complex.
Just as the Voronoi cells decompose R?, they decompose
any topological subspace X C RY. We call V, N X the
restricted Voronoi cell of p and consider the collection
of all such cells: Vs x = {V,NX | p € S}. The restricted
Delaunay complex is the geometric realization in R? of
the nerve of the collection of restricted Voronoi cells:

DelxS = {convp(Y)|Y € NrvVsx},

see Figure 3 in the section on alpha shapes. Observe
that the restricting space specifies a subcomplex of the
Delaunay complex: DelxS C Del S.

The nerve theorem of Leray [29] implies that if all
restricted Voronoi cells are contractible then X and the
underlying space of the restricted Delaunay complex,
|Delx S|, are homotopy equivalent. This means that
the two topological spaces are connected the same way:
they can be geometrically different but they have the
same kind and arrangement of holes. Edelsbrunner and
Shah [23] prove that if X is a k-manifold with boundary
then X and | Delx S | are homeomorphic if the restricted
Voronoi cells satisfy the closed ball property:

(i) the common intersection of X and any k+ 1 — ¢
Voronoi cells is either empty or a closed ¢-ball, and

(ii) the common intersection of the boundary of X and
any k+1—/¢ Voronoi cells is either empty or a closed
(£ — 1)-ball.

The closed ball property generalizes to a sufficient condi-
tion that implies homeomorphic reconstruction for gen-
eral triangulable spaces X.



3 Constructing the Restricting
Space

All algorithmic solutions to shape reconstruction sur-
veyed in this paper use restricted Delaunay complexes
and only differ in how they arrive at the restricting space
and how they treat it computationally. This section dis-
cusses solutions that generate the restricting space from
the given data points.

Alpha shapes. In 1983, Edelsbrunner, Kirkpatrick
and Seidel introduced the a-shape of a set S C R? as
the space generated by connecting point pairs that can
be touched by an empty disk of radius « [19]. Specifi-
cally, points p,q € S are connected by a straight edge if
there is a circle of radius a that passes through p and
¢, and all other points of S lie strictly outside the cir-
cle. The collection of edges decomposes R? into interior
regions that belong to the a-shape and exterior regions
that constitute the background. The unbounded region
is always exterior. An equivalent definition restricts the
Delaunay complex of S with open disks of radius a cen-
tered at the points:

X = {z€R||z—p| < for somep € S}.

The a-shape is the underlying space of K, = DelxS,
see Figure 3. The a-complez, K, triangulates the in-

Figure 3: Each Voronoi cell in Figure 1 is restricted to
within the open disk of radius a centered at the generating
point. The result is a subcomplex of the Delaunay complex
in Figure 2 that represents the shape at the resolution
determined by a.

terior regions and thus clarifies the distinction between
interior and exterior.

Each restricted Voronoi cell is the intersection of the
original Voronoi cell with the disk of its generating

point. Since the cell and the disk are both convex, the
restricted cell is convex and therefore contractible. The
nerve theorem implies that X and the a-shape are ho-
motopy equivalent. This fact is reflected in Figure 3
where both spaces consist of 2 components, one with 4
holes and the other with 1 hole. The two spaces are
not homeomorphic since K, contains 3 isolated edges,
which under any retraction are the pinched images of
locally 2-dimensional regions in X. Each one of these
edges violates condition (ii) of the closed ball property
stated in section 2. The fact that restricted Voronoi cells
are open, rather than closed as required by the closed
ball property, is a minor difficulty that can be remedied
by taking slightly smaller closed cells. Bernardini and
Bajaj [8] reconstruct 2-dimensional shapes, and they
prove that under some density requirements a-shapes
correctly reconstruct uniformly sampled smooth curves.

Alpha shapes generalize to R? by using open balls in
the definition of the restricting space. Edelsbrunner and
Miicke [21] discuss this construction in R® and Bajaj,
Bernardini and Xu [7] use it to reconstruct shapes and
surfaces. The 3-dimensional case has also applications
to computational biology where molecules are modeled
as unions of spherical balls. Such models have been in-
troduced by Lee and Richards [28] in 1971 and are com-
monly used to assess spatial properties of molecules such
as volume, surface area, connectivity, shape, etc. Edels-
brunner [17] generalizes alpha shapes to points with
weights in order to model molecules made up of atoms
of varying size. That paper also contains inclusion-
exclusion formulas that compute the volume and sur-
face area of a molecule directly from the a-complex,
without constructing the union of balls. These formulas
have been used to measure molecules and their voids
and pockets by Liang and collaborators, see e.g. [30].

Crust. In 1997, Amenta, Bern and Eppstein defined
the crust of a set S C RZ? as the subcomplex of
Del (S UU) induced by S, where U is the set of vertices
of the Voronoi cells defined by S [3]. In other words,
a simplex in Del (S UU) belongs to the crust if all its
vertices are points in S, see Figure 4. To reformulate
the definition we consider the collection of Voronoi cells
of SUU and use the subset of cells generated by points
in S to restrict the Delaunay complex of S:

X = int(Upesz).

Note that X is the set of points closer to S than to U,
or equivalently it is the complement of the union of the
Voronoi cells generated by points in U. The crust is the
resulting restricted Delaunay complex: C = DelxS. No
triangle in Del S can be in C because the corresponding
intersection of the three Voronoi cells is a point in U,
which necessarily lies outside X.
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Figure 4: Point set and crust are courtesy of Nina Amenta at the University of Texas in Austin. The crust reconstructs

the goose from a collection of points sampled from the outline.

The crust is suitable for the reconstruction of smooth
boundary curves in the plane. The main result in [3] is
a fairly modest condition on the sampling density under
which the crust is guaranteed to reconstruct a smooth
closed curve, 7. Define the medial axis of v as the set of
points y € R? with two or more closest points on «y, and
for a point z let f(x) be the distance to the medial axis.
A finite set S C +y is an e-sample if every point = € 7 is
within distance e- f(z) of some point in S. For e < 0.252
the crust is guaranteed to contain an edge connecting
points p,q € S iff they are contiguous along <. This
result justifies the definition of crust by the observation
that the points in U approximate the medial axis of +.

It is straightforward to extend the definition of crust
to 3 and higher dimensions. However, already in R® the
Voronoi vertices of points sampled on a smooth surface
no longer approximate the medial axis of that surface.
The source of the trouble are slivers, which are Delau-
nay tetrahedra whose 4 vertices are almost cocircular.
The center of the circumsphere belongs to U which im-
plies that the sliver does not belong to the crust, but in
many cases neither do the 4 triangles of the sliver. As a
consequence, the crust develops holes or windows in the
reconstructed surface. Amenta and Bern [2] cope with
this difficulty by using only a subset of the points in U
for the restricting space.

A-shape. In 1997, Melkemi proposed a general family
of shapes that includes a-shapes and the crust as spe-
cial cases [34]. Let S be a finite set in R*. A member in
this family is identified with the help of a second finite
set A C R2. The A-shape of S is generated by drawing
an edge connecting points p,q € S if there is a circle
that passes through p, ¢, and a point a € A, and all
other points of S U A lie strictly outside the circle. The
crust is the special case where A = U is the collection of
Voronoi vertices defined by S. The a-shape is the spe-

cial case where A is the collection of points a on Voronoi
edges that span empty circles of radius o with points in
S. The reformulation of the definition is similar to the
crust. The restricting space is the set of points closer to
S than to A:

X = int(U,esV)

and the A-shape is the boundary of the underlying space
of the Delaunay complex restricted by X.

The trouble with this definition is the high degree of
freedom. A can be anything and it is not clear how to
construct sets that bring out the shape of S best. To
address this concern, Melkemi suggests a two-parameter
family of point sets, 4 = A(a,t). The first parameter,
a > 0, controls the resolution and the second parame-
ter, t € [0, 1], interpolates between the unweighted case
and the case where points are weighted by the local den-
sity. To be specific, let §(p) be the minimum Euclidean
distance between p € S and any other point in S. For
a given t, the weighted distance of a point x € R? from
peSis

mp(@) = |z —pl* —t*-3(p)%

which is the square length of a tangent line segment
from z to the circle with center p and radius ¢ - 6(p).
A point a € R? belongs to A(a,t) if there are points
p,q € S with o®> = m ,(a) = m4(a) < m.(a) for all
r € S —{p,q}. The family A(a,t) does in general not
contain the particular sets that generate the a-shapes,
but it would be easy to define a similar family that does.

Wrap complex. Commercial software produced at
Raindrop Geomagic reconstructs the shape of a finite
set S C R® through an iteration that refines both the
shape and the restricting space [37]. Let F' map X C R?
to the Delaunay complex restricted by X, and let G map



Figure 5: Wrap complex of a collection of points sampled on the surface of a monkey saddle.

a subcomplex K C Del S to a topological subspace of R?.
The composition maps a subcomplex of Del S to another
such subcomplex, and we write K <X £ if £ = F(G(K)).
Edelsbrunner constructs G so the relation is acyclic [18].
It follows that the maximal elements in the relation are
fixed points of F o G. Another property implied by the
special choice of G is that the union of two fixed points
is again a fixed point. This implies there exists a unique
largest fixed point, which we call the Wrap complex of
S, see Figure 5. It can be obtained by iterating F' o G
starting with Del S = F(R?):

Del S = Xo,Xl,...,/Yj = Xj+1,

with Xj11 = F(G(X;)). The software developed at
Raindrop Geomagic offers the user convenient con-
trol that permits the transition between different fixed
points, each representing a locally reasonable approxi-
mation of S.

4 Assuming the
Space

Restricting

This section discusses variants of the Delaunay ap-
proach to shape reconstruction that assume the restrict-
ing space is given, either implicitly or explicitly. The
first two solutions make use of an oracle that returns
a small bit of information about the restricting space.
The third solution aims at reconstructing the restricted
Delaunay complex without any information about the
restricting space other than the sampled data points.

Neural network. In 1994, Martinetz and Schulten
designed what they initially called the neural gas algo-
rithm [33]. It constructs a neural network modeled as a
1-dimensional complex of nodes and edges that approx-
imates a target space X C R?. The approximation is
achieved by sampling points from X and using them to
locally adjust the nodes and connect them with edges.

For example, if X is the state space of a dynamical sys-
tem then each sample is a snapshot of that system dur-
ing its evolution. The algorithm starts with a loose col-
lection of nodes or points distributed in R?, see Figure
6. For each sample x € X, the positions of the nearby
nodes are adjusted towards x and the age of every edge
is increased by one. Furthermore, if the two nodes p
and ¢ closest to z are already connected by an edge,
pq, then z is interpreted as further justification of that
edge and its age is set back to 0. If pg is not yet in the
network then it is now added with age 0. Edges whose
age exceeds a certain threshold are removed from the
network.

The connection to restricted Delaunay complexes
arises from the fact that a sample point x with clos-
est nodes p and ¢ can be interpreted as evidence that
the Voronoi cells of p and ¢ share a common (d — 1)-
dimensional face that has a non-empty intersection with
X. It is therefore reasonable to expect that the neural
gas algorithm approaches the 1-skeleton of the Delau-
nay complex of the nodes restricted by X. The simple
strategy of connecting the k + 1 = 2 closest nodes does
not extend to k-simplices for k£ > 1 because already the
3 closest nodes do not, in general, span a triangle in the
Delaunay complex.

Surface triangulation. In 1993, Chew defined the
Delaunay triangulation of a finite set S of points on a
surface X in R® by modifying the Euclidean empty disk
criterion [14]. Specifically, the triangle formed by points
p,q,7 € S belongs to the surface Delaunay triangulation
if there is a sphere K with center on X so that p, g, r lie
on and all other points lie strictly outside K. Chew uses
this definition in combination with a point placement
mechanism to produce surface triangulations with good
quality triangles, see Figure 7.

The connection to restricted Delaunay complexes
should be obvious: the sphere K exists iff the 3-
dimensional Voronoi cells of p, ¢, and r meet along an
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Figure 6: The pictures are courtesy of Klaus Schulten from the University of lllinois at Urbana-Champaign. The target
space consists of a 3-dimensional box, a 2-dimensional rectangle and a ring with line segment. The left shows the starting
configuration and the right shows the ending configurations after 40,000 steps of the neural gas algorithm.

Figure 7: The triangulation is courtesy of Paul Chew at
Cornell University. The surface is part of an airplane wing
and it is triangulated using the modified empty disk crite-
rion.

edge that has a non-empty common intersection with
X. In other words, Chew’s surface Delaunay triangula-
tion is the same as the 3-dimensional Delaunay complex
restricted by that surface. This suggest that the closed
ball property of section 2 be used as part of the point
placement mechanism to guarantee the restricted com-
plex is homeomorphic to the surface.

Normalized mesh. In 1997, Attali defined the nor-
malized mesh of a finite set S C X as a complex that
approximates the space X [4]. It contains the convex
hull of a subset T' C S as a cell if there is a point z € X
equally far from all points in T and further from all other
points: ||z — p|| = ||z — ¢|| < ||z — r|| for all p,q € T and
r € S—T. Observe that for X a surface in R® this is the
same as Chew’s surface Delaunay triangulation. In gen-
eral, the normalized mesh is the same as the Delaunay
complex restricted by X.

The algorithmic problem tackled in [4] is the recon-
struction of X through the construction of the normal-

ized mesh. The problem is made difficult by assuming
that X is not given at all, other than indirectly through
the points in S. In two dimensions the strategy is to dis-
criminate edges pg € Del S by §(pq) defined as the sum
of angles opposite to pq in the two incident triangles. If
only one triangle exists, the other opposite angle is set
to 0. Under some smoothness conditions it is possible to
prove that the normalized mesh consists exactly of all
edges with small value of §. Call Y C R? an R-regular
shape if the circle passing through any three boundary
points has radius greater than R. We assume that R is
positive and X is the boundary of Y. This implies that
the curvature at any point z € X is smaller than %. A
finite set S C X is an e-sample if every point z € X
is within distance € - R of some point in S. The main
result in [4] states that if ¢ < sin § then the normal-
ized mesh consists exactly of all edges pg € Del S with
d(pq) < € - R. For similar reasons as mentioned in the
discussion of the crust, this result does not generalize
to R® and Attali presents heuristics that patch up the
holes in the partially reconstructed surfaces.

5 Conclusions

This paper unifies algorithmic solutions to the shape re-
construction problem following the Delaunay approach
by identifying a common underlying concept: the re-
striction of the Delaunay complex by a topological
space. The unification succeeds in all cases known to the
author at this time, except for the work of Boissonnat
[9] who suggests to sculpt a shape from the Delaunay
complex by removing simplices from outside in. This
idea is closely related to the crust, the wrap complex,
and the normalized mesh, but in its general form it is
not guided by any restricting space.



The seven solutions to shape reconstruction surveyed
in this paper are classified according to their treatment
of the restricting space. The four methods in section
3 construct the space from the data points, while the
three methods in section 4 assume the space is given
and cannot be altered by the algorithm. Another use-
ful classification criterion for shape reconstruction is the
one-dimensional scale from narrow to wide. The surface
reconstruction methods ought to be classified as nar-
row, and examples are the crust, the surface Delaunay
triangulation, and the normalized mesh. The other four
methods show no bias for any particular type of shape
and ought to be classified as wide.
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