Adaptive Simplicial Grids
from Cross-sections of Monotone Complexes*

Herbert Edelsbrunnert and Roman Waupotitsch'

Abstract

We study the maintenance of a simplicial grid or com-
plex under changing density requirements. The pro-
posed method works in any fixed dimension and gen-
erates grids by projecting cross-sections of a monotone
simplicial complex that lives in one dimension higher
than the grid. The density of the grid is adapted by
locally moving the cross-section up or down along the
extra dimension.

Keywords. Geometric and topological algorithms, dy-
namic data structures, grid generation, multi-grids, simpli-
cial complexes, hierarchies, directed acyclic graphs.

1 Introduction

For many applications of geometric grids, it is impor-
tant to adapt it to local density requirements. As an
example consider finite element analysis for finding an
approximate solution to a differential equation. For rea-
sons of efficiency and also accuracy, it is desirable that
the density of the grid changes as first approximations
to the solution become available, see e.g. [8]. Ideally,
the grid generator and the solver should be integrated
into a short feed-back cycle. Adaptation requires that
in some regions vertices be deleted and in regions of in-
terest vertices be added. During the course of several
iterations it can happen that some regions change from
coarse to dense and back to coarse. Fluctuations in the
desired density occur in particular in grids modeling
objects that change over time.

*Work of the first author is partially supported by NSF under
grant CCR-96-19542 and by ARO under grant DAAG55-98-1-
0177. Work of the second author is partially supported through
a fellowship by the IBM corporation.

TDepartment of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA.

Results. In this paper we describe a hierarchical ap-
proach to adaptive grid generation based on simplicial
complexes and fast data structures. The method works
in any fixed dimension; in this paper we describe it
for (d — 1)-dimensional Euclidean space, R?"1. The
main idea is to perform local changes to the (d — 1)-
dimensional grid, which is a simplicial (d — 1)-complex,
and to record these changes in a data structure, which
is a directed acyclic graph. A non-geometric interpreta-
tion of the graph is a hierarchically accumulated record
of the history. The novelty of our approach lies in how
we use the history in order to manipulate the presence.
Since the past is recorded in an effective data structure,
we can roll-back time to re-generate earlier states of the
grid. It also offers the possibility to combine states of
the grid at different times in different places. This can
be understood as a consistent snap-shot in the frame-
work of time defined as a partial order of events. A
geometric interpretation of the graph is a simplicial d-
complex imbedded in R¢. We can think of a snap-shot
as a cross-section within the d-complex; its projection
into R?"! is a (d—1)-dimensional grid. In order to make
these abstract ideas work, we need to understand the
topology of the situation, and we need to design and
implement efficient data structures and algorithms that
provide a responsive environment.

Our specific approach is based on ideas in [3, 4], where
a directed acyclic graph, called history dag, is used to
compute weighted and unweighted Delaunay complexes
in R?~!. The simplices of these complexes correspond
to the sinks of the dag. We view the complexes as grids
that discretize geometric objects in R4~1. The dag is
constructed as follows. Initially, it consists of a sin-
gle node or d-simplex. It is repeatedly extended by
attaching nodes or d-simplices to sinks. At any point
in time, the dag represents a complex in R, and the
vertical projection of the lower boundary is a (d — 1)-
dimensional grid. The attachment operation in R¢ can
be interpreted as flipping a local configuration in R4,
see [3, 4]. The idea of the history dag can be gener-

alized to encompass a larger class of d-complexes. In
particular, we consider the class of d-complexes satisfy-
ing a certain monotonicity property. This paper studies
properties of these d-complexes that can be exploited
for fast algorithms manipulating the grid and its his-
tory. These algorithms will make it possible to apply
the data structure to problems where adaptive grids are
required to handle large amounts of possibly dynamic
data.

Outline. Section 2 presents definitions, including the
central notion of a monotone simplicial complex. Sec-
tion 3 studies cross-sections of monotone d-complexes
and their projections into d—1 dimensions. Section 4 in-
troduces ancestors and descendants of simplices and dis-
cusses their relationship to cross-sections. Section § ex-
hibits connectivity properties of monotone 2-complexes
that fail in three and higher dimensions. Section 6
proves connectivity results that hold in all dimensions.
Section 7 considers the algorithmic problem of combin-
ing cross-sections. Section 8 studies the rotation oper-
ation for monotone d-complexes. Section 9 concludes
the paper.

2 Definitions

We begin by introducing basic concepts and notation. A
certain familiarity with simplicial complexes as treated
in the algebraic topology literature is useful in dealing
with the occasional accumulation of notation. We re-
fer to Munkres [6] for an introductory text in algebraic
topology and to Bern and Eppstein [1] for a survey of
combinatorial aspects of grid generation.

Simplicial complexes. A k-simplex, o*, is the con-
vex hull of a set T of k + 1 affinely independent points;
its dimension is dim o = k = card T — 1. Special terms
are used for small k: a vertex is a O-simplex, an edge is
a 1-simplex, a triangle is a 2-simplex, and a tetrahedron
is a 3-simplex. A simplex spanned by a subsets U C T
is a face of o, or ¢-face if £ = cardU — 1. Examples
are the empty set, which is the only (—1)-face of oF,
and o* itself, which is its only k-face. The (k — 1)-faces
are the facets, and the (k — 2)-faces are the ridges of
o*. In R%, at most d + 1 points can be affinely inde-
pendent, so the dimension of simplices can be at most
d. A finite collection of simplices, K, is a simplicial
complez if the faces of every simplex in K also belong
to K, and the intersection of two simplices in K is ei-
ther empty or a face of both. The dimension of K is
dim K = max, ¢k dim o, and if this dimension is k then

we call K a k-complex. A k-complex K is pure if every
o € K is a face of a k-simplex in K. The underlying
space of K is |K| = U, 0. A subcomplex of K is a
simplicial complex £ C K.

Vertical ordering of simplices. A few definitions
are needed before the notion of monotonicity of a com-
plex can be introduced. This notion depends on the fact
that a (d — 1)-simplex in R¢ can be a facet of at most
two d-simplices. Call the direction parallel to the z4-
axis vertical. For simplicity, we assume general position
with respect to the vertical direction, that is, each o,
k < d, intersects a vertical line in at most one point. Let
%1 be a facet of 0%, and let [be a vertical line that
intersects the interior of o?~!. We call ¢%~! a lower
facet of o if INg?~! is the lowest point of INo?. Sym-
metrically, we call 0?~! an upper facet of o¢ if INog¢!
is the highest point of I N o%. Two d-simplices, o and

o, are adjacent if they share a facet, 0?~!. In this case,

Vi b
0?1 is a lower facet of one d-simplex, say o¢, and an
upper facet of the other, a;-i. We say that o¢ lies above
o and of lies below of. This relationship between the
d-simplices of a simplicial complex, K, in R? can be ex-
pressed by a directed graph, G = G(K). The nodes of
G are the d-simplices of K, and there is a directed arc
(0f,0%) in G if the two d-simplices are adjacent and o
lies above of. We call of the predecessor of ¢f, and
of the successor of off. Since the arcs of G correspond
to facets shared by two d-simplices, every node in G
has at most as many predecessors and successors as a
d-simplex has facets, namely d + 1. A node without
predecessor is a source, and a node without successor is

a sink. If dim /C < d then G is empty.

DEFINITION. A simplicial complex, K, in R? is mono-
tone with respect to the vertical direction if

(M1) its underlying space, |K]|, intersects every ver-
tical line in a single and possibly degenerate
interval, and

(M2) the corresponding directed graph, G = G(K),
is acyclic.

Note, that G may be disconnected. See Figures 2.1 and
2.2 for small examples of monotone and non-monotone
complexes.

Interior, closure, and boundary. It is convenient
to introduce notions for complexes and their subsets
that mimic the common point set topological concepts
of interior, closure, and boundary. The notions of

Figure 2.1: Example of a monotone 2-complex and its
directed graph. The lower boundary is marked by solid
and the upper boundary by dashed edges.

o Ddpr b O cdar
Q7P edr
O abed
g{a\cdq
5 adpg

c

Figure 2.2: Example of a non-monotone 3-complex and
its directed graph. Condition (M2) is violated because
the digraph of the 3-complex contains a cycle. Here and
in later drawings of 3-dimensional examples we look at a
complex from below.

boundary and interior are defined relative to the imbed-
ding space, rather than relative to the complex or set
of simplices.

Let K be a collection of simplices so that the intersec-
tion of any two simplices in K is either empty or a face of
both. In other words, K is a subset of a simplicial com-
plex. The closure of K is the smallest complex cl K so
that K C cl K. If K is a complex, the boundary of K is
the smallest subcomplex bd K C K that contains every
ok € K, k < d, that is a face of at most one d-simplex.
If K is not a complex we define bd K = bdcl K. The
interior of K is int K = K —bd K. By first taking the
interior and then the closure we can eliminate simplices
that are not face of any d-simplex. The result is either
empty of a pure d-complex. This sequence of operations
will be used repeatedly, so we define reg K = clint K
and call it the regularization of K. The corresponding
concept for subsets of R? is indeed common in the solid
modeling literature, see e.g. [7]. We list a few properties
that are both instructive and useful.

Fact 2.1 Let K be a pure d-complex, let K C K,
and let £1, L5 C K be pure d-dimensional subcom-
plexes.

(i) regK =K.

(ii) bd K is a pure (d — 1)-complex.

(iii) reg K is the largest pure d-complex contained
in cl K.

(iv) reg (L1 ULs) = L1 U L is a pure d-dimen-
sional subcomplex of /.

(v) reg (L1 — L2) = cl (L1 — L) is either empty
or a pure d-dimensional subcomplex of K.

(vi) reg (L1 N Ls) = clint (L1 N Ls) is either emp-
ty or a pure d-dimensional subcomplex of K.

3 Cross-sections

The central notion in this section is that of a cross-
section of a monotone d-complex. Cross-sections are
interesting because their vertical projection into R?~!
are grids, and by adjusting the cross-section we can ma-
nipulate the grid.

Prefixes and cross-sections. Most complexes con-
sidered in this paper are d- or (d — 1)-dimensional and
imbedded in R? or R%"!. Particularly important are
pure monotone d-complexes, and throughout we let M
denote such a complex. Every subcomplex of M inher-
its (M2) but not necessarily (M1). We are interested
in subcomplexes that also satisfy (M1). These subcom-
plexes need not be d-dimensional, and if their dimension
is less than d then (M2) is vacuous because G is empty.
Clearly, the complex obtained by removing a sink from
M satisfies (M1) and (M2). Formally, by removing a
sink o we mean the operation that deletes ¢ and all
faces of o¢ not shared by any other d-simplex. Us-
ing the above notation, this is the same as substituting
reg (M — {0?}) for M. We call a complex obtained by
repeated removal of a sink a prefix of M.

FactT 3.1 Every prefix of a pure monotone d-complex is
either empty or again a pure monotone d-complex.

By Fact 2.1 (ii), the boundary of M is a pure (d — 1)-
complex. Each (d—1)-simplex 0%~ € bd M is either a
lower or an upper facet of a d-simplex in M. In the more
general case of a monotone subcomplex K C M, there
are also (d — 1)-simplices that are not a facet of any d-
simplex. Let L, H C bd K be the set of (d—1)-simplices
that are lower, upper facet of some d-simplex in I, and
let M C bd K be the set of remaining (d — 1)-simplices.
The lower boundary of K is bdr, K = ¢l (L U M), and the
upper boundary is bdgK = cl (H U M), see Figure 2.1.
Note that bd M = bd, M UbdyM and bdybdgM =
bdy M.

DEFINITION. The cross-section defined by a prefix P of
M is the (d — 1)-complex C = bd(P UbdgM).

If P contains the upper boundary of M then the cross-
section it defines is the same as its lower boundary.
Otherwise, it is its lower boundary together with some
simplices of bdg M. In either case, the cross-section is
a monotone (d — 1)-complex.

Projections. Next we consider vertical projections of
cross-sections into R4~1. Let M be a pure monotone
d-complex, as usual. We write proj X for the vertical
projection of X C R¢ into R%~!. Thus, Z = proj|M| =
Uy e Proj o is the vertical projection of M| into R*~;
it is a polytope in R?~!. Because of condition (M1) and
because of the requirement that all o%, k < d, be non-
vertical, the vertical projection of bdp M,

projbdzM = {projo | o € bdpM},

is a simplicial (d — 1)-complex in R4~!. Furthermore,
Z = proj|bdr M| = |projbdr M|. We call a simplicial
(d — 1)-complex £ in R%1 a grid of Z if |£| = Z. For
every cross-section C of M, we can consider its vertical
projection, projC = {projo | o € C}, which is a pure
simplicial (d — 1)-complex in R?~1.

FacT 3.2 The vertical projection of any cross-section
C of M into R?~! is a grid of Z.

By definition, there is a one-to-one correspondence be-
tween cross-sections and prefixes. It is important to no-
tice, that the grids of Z corresponding to cross-sections
constitute all possible grids of Z that can be obtained
by projecting lower boundaries of monotone complexes

K CM.

Cross-section poset. As we will see shortly, the set
of cross-sections of a pure monotone d-complex has itself
a nice structure, namely it forms a lattice. Observe that
the collection of prefixes of M together with the con-
tainment relation defines a partially ordered set. This
set has the structure of a lattice (see below), because
intersections and unions of prefixes lead again to pre-
fixes.

LeMMA 3.3 Let P; and Ps be prefixes of M. Then
reg (P1 NPs) and Py U Py are also prefixes of M.

ProOF. Consider intersection first. Note that P;NPy =
P; — (P1 — P2). Choose a sink o? € P; — Py. If o
does not exist then P; NPy = P; and we are done.
Otherwise, remove ¢? from P;. By Fact 3.1, the result

is again a prefix of M. Iterate this operation until P; N
‘P, is generated; it is a prefix by induction. Similarly,
P1UPy = PLU(Py—P1), and we can construct Py UPs
by repeatedly adding a source of P, — Py to P;.

From the one-to-one correspondence between prefixes
and cross-sections we get another partially ordered set
for the cross-sections of M. Let C = Cpq be the set
of cross-sections of M. For C;,C> € C let P; and Ps
be the prefixes so that C; = bdg(P; UbdgM) and
Cz = de(Pz U deM), and write Cl j CQ if Pl g Pz.
The poset (C, <) has a unique minimum, bdy M, and
a unique maximum, bdy M. A partially ordered set is
a lattice if for every pair of elements, there is a unique
maximal element preceding both and a unique minimal
element succeeding both in the order.

THEOREM 3.4 (C, <) is a lattice.

PrROOF. Let C;,Co € C be cross-sections and let
P1,P2 be the corresponding prefixes. Define Py =
reg (P1 N Ps) and Pr, = P; U Py, and let

Cyg = de(PH U deM),
CrL de(PLUdeM).

We have Cy < Ci,C; <X Cp. Furthermore, C < Cqg
for every C that precedes C; and C3, and Cp, < C for
every C that succeeds C; and C;. Hence, Cqy is the
required unique maximal element that precedes both
cross-sections, and Cy, is the unique minimal element
that succeeds them.

Changing one cross-section to another is like tracing
a path from one element in (C, X) to another. The fact
that (C, <) is a lattice simplifies navigation significantly.
In other words, there are efficient ways to manipulate
cross-sections in a predictable manner.

4 Extreme Cross-sections

An important question discussed in Section 7 is how
to select and manipulate cross-sections. We introduce
terminology that will help us to study this question in
detail.

Ancestors and descendants. Let M be a pure
monotone d-complex, as usual, and let o € M. An-
other d-simplex, 0§ € M, is an ancestor of o if 0f = 0!
¢ is a predecessor of o in the transitive closure of
G = G(M). The ancestor complez of o¢ is

A(ed) = cl{o? € M |o?is ancestor of of}.

or o

For a set M C M of d-simplices, A(M) is the union of
ancestor complexes of d-simplices in M. Symmetrically,
ol is a descendant of of if o¢ is an ancestor of of. The

descendant complex of o¢ is
D(sf) = cl{o? € M |o?is descendant of o},

and D(M) is the union of descendant complexes of d-
simplices in M. See Figure 4.1 for an example. Observe

Figure 4.1: The lower boundary of the ancestor complex
of the shaded triangle is marked by solid edges. lIts pro-
jection to the horizontal line is not a grid of Z = proj|M]|
because it misses three edges of the upper boundary. The
lower boundary of the complex obtained by removing all
descendants of the shaded triangle is marked by dashed
edges. Its projection is a grid of Z.

that for any set of d-simplices M C M, it is possible
to construct A(M) and reg (M — D(M)) by repeatedly
removing sinks from M. If not geometrically then this
is most easily seen by considering the directed graph

G = G(M).

FAcT 4.1 Let M be a pure monotone d-complex, and
let M C M be a set of d-simplices. Then, both
A(M) and reg (M — D(M)) are prefixes of M.

Next, consider a prefix P C M and let 0? € P. Observe
that of € A(0?) cannot be a sink of P unless of = o*.
The following is an extension of this simple observation.

LEMMA 4.2 Let P be a prefix of M and ¢ € M.

(i) If o¢ € P then A(0?) C P.
(ii) If 0% ¢ P then int D(c?) NP = 0.

To prove Lemma 4.2 one can use the directed graph G
of M, which is acyclic by assumption. Let M C M
be the set of d-simplices in P, and let M C M contain
all other d-simplices. A direct consequence of Lemma
4.2 is P = A(M) = reg (M — D(M)). Clearly, M and
M are not the smallest sets 7' and S that satisfy this
relation.

Highest and lowest cross-sections. A convenient
mechanism to select a cross-section is to choose a few
simplices of M and then build a cross-section that con-
tains all these simplices. It can happen that no such
cross-section exists, or that there are many such cross-
sections. In the latter case, one can ask for the mini-
mal or the maximal such cross-sections. For a subset
M C M, the intersection of all prefixes that contain M
defines the minimal prefix

Pu = Pu(M) = reg ﬂ P.
POM

We call CH = CH(M) = de(PH U deM) the hz'ghest
cross-section of M, see Figure 4.1 for an example. Since
Py is a prefix of M, it is the ancestor complex of a set
of d-simplices. To describe the smallest such set, let
a = a, be the d-simplex in M so that ¢ € M is a
face of a, and if dim o < d, « lies vertically above o. If
dimo = d then a = 0, and if dim o < d then « is either
undefined (if 0 € bdygM) or it exists and is unique.
Note that all facets of a that contain o are lower facets
of a. Now, Py = A(am), where ay = {a, |0 € M}.

The notion of a lowest cross-section of M is less natu-
ral since M itself contains M and is, of course, the max-
imum prefix with this property. Such a notion becomes
useful only if we add more requirements. Note that it
is not possible in general to require that all o € M be
part of a cross-section. However, if we require that no
o € M be below, then there is a unique maximal subset
of M that can be on such a cross-section. This subset
is M, = M NCyg. The union of all prefixes with o € M},
in the corresponding cross-section defines the maximum
prefix

Pr = PrL(M) = U P.

bdr (PUbdg M)D M,

We call CL = CL(M) = de(PL UdeM) the lowest
cross-section of M.

Cy and Cj, serve as brackets for the collection of cross-
sections that in some sense most accurately represent
the chosen set of simplices, M. More specifically, this is
the set of cross-sections C so that Cg < C <X Cr. We see
that Theorem 3.4 has algorithmic consequences. If we
have any prefix P, with M C P, then the highest cross-
section of M can be generated by removing sinks that
are not a, for any o € M. Conversely, we can generate
the lowest cross-section of M from the highest cross-
section by adding sinks that do not remove any 0 € M
from the lower boundary. Removing and adding sinks
without back-tracking is possible only because (C, <) is
a lattice.

5 Anomalies in 3 Dimensions

Instead through growing and shrinking a prefix one d-
simplex at a time, as suggested by Theorem 3.4, we can
change cross-sections by direct manipulation of their
(d — 1)-simplices. For example, the cross-section de-
fined by the union of two prefixes can be constructed
by choosing the appropriate (d — 1)-simplices from the
two old cross-sections. As it turns out, this approach
encounters difficulties that stem from possibly surpris-
ing structural irregularities of monotone d-complexes.
This section looks at a few such irregularities relevant
to the algorithms in Sections 7 and 8. The surprising
behavior begins in dimension d = 3.

Ancestors without lower boundary facets. Let
M be a pure monotone d-complex in R¢, as usual.
For d = 2, every d-simplex that has a ridge in bdr M
also has a facet in bdy M. This is no longer true for
d > 3. Let 0 € M and let A = A(c) be the corre-
sponding ancestor complex. Let 0?~! € bdy.A, define
0% = a,a-1, and let 042 be the ridge common to o4~!
and some upper facet of 0?. We assume that & = a,a—2

exists. By construction we have a # o¢.

LEMMA 5.1 Let A and a be as defined above.

(i) If d = 2 then « has a lower facet in bdp.A.

(if) If d > 3 then it is possible that a has no lower
facet in bdp A.

The essential difference between d = 2 and d > 3 that
leads to Lemma 5.1 is that in R? there are only two
sides one can pass by a d-simplex. To verify Lemma
5.1 (i) notice that 092 is a vertex and « is a triangle
with two lower edges; the two edges meet in o9 2. If
both edges are not in bdz.A then both successors of a
belong to .A. Now, since A = A(c¢), both successors of
a are ancestors of of. We thus have two paths from «
down to o, and they surround the vertex g¢=2. This
contradicts that ¢?~2 belongs to bd;.A. An example
for 5.1 (ii) is given in Figure 5.1.

The positive and negative results in Lemma, 5.1 have
algorithmic consequences. Because of (i) it is easy in R?
to construct the lower boundary of an ancestor complex
without visiting its interior triangles. Because of (ii)
this is not or to a lesser extent possible in R?, d > 3.

Absence of connecting directed paths. Let o¢,

A, 0% 091, 6772 and a be as above. By construction,

0?72 is a face of another (d — 1)-simplex 79! # gd-1

a b
‘7 o abed
 abdp

et acdp

b cdpg

%bodq
c

Figure 5.1: A pure monotone 3-complex and its directed
graph. Consider the ancestor complex A = A(bcdg) and
note that no lower facet of apq = abed belongs to bdp A.

d-2 is common to

in bdyA. Define 7¢ = @, a-1. Since o
a lower and an upper facet of o, we have 7¢ # ¢?. In
d = 2 dimensions we have 7¢ = a because, by Lemma
5.1 (i), o has a lower edge in bdr.4, and this lower
edge can only be 7¢71. In d > 3 dimensions, 7¢ # « is

possible, as demonstrated in Figure 5.2. Since 0 and 7¢

a b
W o abed
\ d (abdp
RN
Y acdp % (B
b cdpr
4 cdgr

C

Figure 5.2: A pure monotone 3-complex and its directed
graph. Consider A = A(cdgr). The tetrahedra abdp and
bedgq contain the triangles bdp and bdg of bdr.A. The two
triangles share the ridge bd, but the two tetrahedra do not
lie on a common directed path in G(A).

are both different from a and they are both successors
of a, there can be no directed path in G(M) from o?
to 7¢ or vice versa. We will see some complications
in combining cross-sections that arise from the possible
absence of a directed path between the two d-simplices.

Non-simply connected ancestor complexes. An-
other difference between two and higher dimensions oc-
curs for ancestor complexes of a single d-simplex. Let
A = A(o) as before. In d = 2 dimensions, bd.A and
bdg A are two open polygonal curves that share the two
endpoints. So bd A =bdpAUbdgA is a closed polyg-
onal curve, and |4| is a simply connected subset of R2.
As we will see in Section 6, 4| and also int | A] = [int A]
are connected even for d > 3. However, already for

d = 3 dimensions, it is possible that |A] is not simply
connected. This is demonstrated in Figure 5.3.

o abep
o*adep
 adpq
d acdq
& cdfq
b cfgr
‘o befr
c o befr

o defz

Figure 5.3: A pure monotone 3-simplex and its directed
graph. Consider A = A(befr). A contains all tetrahedra
except for defz in the middle. Its underlying space is a
solid torus pinched along the edge be.

6 General Connectivity Results

In spite of the structural irregularities of monotone d-
complexes in d > 3 dimensions exhibited in Section 5,
weaker connectivity requirements hold for all dimen-
sions. These weaker properties are crucial for the effi-
cient manipulation of cross-sections. This section stud-
ies what happens when the ancestor complex of a d-
simplex is added to a prefix, and it considers the lower
boundary of a pure monotone d-complex.

Connectivity in ancestor complexes. We consider
connectivity in d-complexes and in (d — 1)-complexes.
Two k-simplices, of and o¥, in a k-complex are adjacent
if they share a (k — 1)-simplex, and we call them k-
connected if there is a sequence of k-simplices,

O';: :le,’l'2k,...,7'k :U'I?

so that 7/ and 7§, are adjacent for all 1 < ¢ < m —
1. A pure k-complex is k-connected if every pair of k-
simplices is k-connected. Let now A = A(c?) be the
ancestor complex of o € M, and let P be a prefix of
M. As noted in Lemma 4.2 (i), A C P if o € P.
If o ¢ P then B = reg(A — P) is a non-empty pure
d-complex.

LEMMA 6.1 B = reg(A —P) is either empty or a d-
connected d-complex.

PROOF. If 6 € P then A—P = (), and therefore B = 0.
So assume o ¢ P. Every o? € B is ancestor of of.

It follows that of is the only sink in B and B is d-
connected.

If B # 0 then it is a pure d-complex. It follows that
its boundary, bd B, is a pure (d — 1)-complex, and be-
cause B is d-connected, bd B is (d—1)-connected. Mono-
tonicity of B now implies that bd B and bdgB are also
(d — 1)-connected. However, as shown in Section 5, the
underlying spaces of B, bd B, bdrB, and bdgB are not
necessarily simply connected.

Paths in lower boundaries. Consider the lower
boundary of a pure monotone d-complex M. (d — 1)-
connectivity in bdz, M is defined in terms of sequences of
adjacent (d — 1)-simplices. It will be useful to construct
such connecting sequences, and we do this indirectly by
considering sequences of d-simplices in M. A path in
M is a sequence of d-simplices so that any two contigu-
ous d-simplices share a (d — 1)-simplex; it corresponds
to an undirected path in G = G(M). A path in M is
directed if its corresponding path in G is directed. We
think of a path as a subcomplex, Z C M, namely the
closure of the set of d-simplices in the path. The inter-
section with the lower boundary of M is a subcomplex
of bdp M.

LEMMA 6.2 Let M be a pure monotone d-complex and
a;i € M with a facet in bdy; M. Then there exists
a directed path Z C M from of to a sink of € M

d

with the property that the facets of of and of in

bdy M are (d — 1)-connected in J = Z N bdp M.

PROOF. If of itself is a sink of M we are done. So
assume that of is not a sink. Then it has at least two
lower facets, at least one in bdy, M and at least one
other not in bdp M, which it shares with a successor
d-simplex. Let 0?2 be common to two lower facets of
od, one in bd;, M and one not in bd;, M. There exists a
d-simplex o # o with a facet in bd;, M that contains
0?72, Consider a maximal sequence of = 7{,0 =
78, ..., 7, where 7, |, for 1 < <'m — 1, is obtained
from 7§ in the same manner as of is obtained from o¢.
By maximality of the sequence, 75, = ¢ is a sink. For
every 1 < £ < m—1, there is a directed a path in G(M)
from 7/ to 7{, ;. By acyclicity of G(M), these paths and
their concatenation into a single path, Z, are finite. By
construction, the (d — 1)-simplices in Z NbdM define
a subcomplex of bd; M in which the lower facets of
of and of are (d — 1)-connected. The assertion follows
because this subcomplex of bd M is also a subcomplex

of J.

7 Combining Cross-sections

Cross-sections can be combined using set operations on
the corresponding prefixes. In this section we follow a
more direct approach that avoids an exhaustive search
through the d-simplices of a prefix. We represent a
cross-section as a collection of (d — 1)-simplices identi-
fied by marks within an otherwise unmarked represen-
tation of M. The few details about the data structure
necessary for our discussion are reviewed after charac-
terizing the resulting cross-section combinatorially. We
focus on adding the ancestors of a d-simplex to a given
prefix as a representative example. In terms of cross-
sections, this operation corresponds to constructing the
point-wise minimum of two cross-sections interpreted as
continuous maps from R?~! to R.

Characterization of lower boundary. Let M be
a pure monotone d-complex, as usual, and let P;
and P> = A(cd) be two prefixes. The correspond-
ing cross-sections are C; = bdr(P1 UbdgM), C2 =
de(Pz @] deM), and C;, = de(P1 UuPU deM).
A simplex 0 € M belongs to Cy, iff

(1) 0 € Cy and o & Ps,
(2) 0 €Ce and o &€ Py, or

(3) o €Cy and o € Cs.

It is algorithmically more convenient to combine cases
(1) and (3) and to write the new cross-section as the
union of two sets: Cp = (C; — int P3) U (C2 — P1). The
only shared simplices in the two sets belong to bdy. M,
so we can write C;, as the disjoint union of two sets if
we subtract bdg M from the second set. This leads to
the formula used for the algorithm.

FACT 7.1 Cr, = (C1 —int P2) U (bd P2 — P1).

Data structure details. We assume a representa-
tion of M based on (d — 1)-simplices linked together
at common (d — 2)-simplices. For brevity we refer to
(d — 1)-simplices as facets and to (d — 2)-simplices as
ridges. A ridge, 0?2, belongs to an ordered cycle of
facets, and we store the cycle as two sorted lists, one
for each side of the vertical hyperplane passing through
0?72, Let 0%! and 797! be two facets that both con-
tain ¢¢~2. They are comparable if they lie on the same
side of of the hyperplane, and incomparable otherwise.
In the former case, 0¢~! lies above 74!, and 77! lies
below o%~1, if a1 is an ancestor of a;a—1 in G(M).

The topmost facet is the one above all other comparable
facets.

The vertical direction is used to distinguish between
different positions of a ridge 0?2 relative to a facet
0?1 that contains it. Let @ = o, a—1 be the d-simplex
d-1 5d4-2 ig a face of two facets of a, one being
, and we call 09~2 a rim if the other is an upper
facet of a. For a rim 0?2 of %! the data structure
provides direct access to the topmost facet, 741, that
shares 092 with 09! and is incomparable with ¢~ 1.
We call 741 the steepest extension of o%~1 across %2,
see Figure 7.1.

above o
i1

Figure 7.1: The edges to the left of the dashed vertical
line are pairwise comparable and so are the edges to the
right of that line. Each top edge is the steepest extension
of every edge on the other side of the vertical line.

Algorithm. Initially, all facets in C; are marked, no
other simplices in M are marked, and o & P is given.
The basic idea in constructing Cy, is to extend the lower
facets of od in the steepest possible way across their
rims until facets of C; are encountered. This works
fine in R2, but for reasons discussed in Lemma 5.1 (ii),
there is trouble in three and higher dimensions. We
account for the indicated difficulties by extending the
lower facets of o in two steps: the first step distributes
temporary marks, and the second step converts appro-
priate temporary marks into permanent ones. Together,
the two steps compute the second set on the right side
of the formula in Fact 7.1. A third step handles the
first set by visiting and unmarking all facets of C; that
lie in the interior of Py. We see that the work focuses
on the changes in the cross-section and avoids visit-
ing the remaining facets in C; N Cr,. However, because
of the mentioned complications we cannot substantiate
the claim that the running time of the algorithm is at
most proportional to the number of facets added to or
removed from Cj.

Each step is a search through a subset of the facets in
M; breadth-first and depth-first search [9] are possible
implementations. A search is completely determined
by specifying which facets adjacent to the current facet
are visited next. If no adjacent facet is visited then the
search backtracks and possibly continues elsewhere.

STEP 1. Start a search at every lower facet of od. Let
0?1 be the currently visited facet, and attach a
temporary mark to ¢%~'. For each rim ¢%~2 of

—1 that does not belong to C; let 7¢~! be the
steepest extension across o@=2. Visit 79~ recur-
sively, unless 7¢~! already has a temporary mark
or there is another facet below 7¢~! that shares
0?2 and has a temporary mark.

Next, temporary marks are converted to permanent
marks, which are of the same type as the marks used
for facets of C;.

STEP 2. Start a search at every lower facet of of. Let
0?1 again denote the currently visited facet, and
change its temporary mark to a permanent mark.
For each rim 0?2 of 0¢~! that does not belong to
C1 and is not yet a face of two permanently marked
facets, let 727! be the lowest temporarily marked
facet that shares 0?2 and is incomparable to o¢~!.
Visit 7971 recursively.

The final step unmarks facets of C; that no longer be-
long to Cr. By Lemma 6.1, these facets are (d — 1)-
connected and can thus be unmarked in a single search.
An arbitrary first such facet can be identified by re-
membering one facet, 77!, marked in Step 2, that has
arim, 742 in C;. The marked facet, o0 ', that shares
79=2 and lies above 79! belongs to C; but not to Cr.

STEP 3. Start a search at gd~'. Let 0?~' be the cur-
rently visited facet, and unmark it. Consider each
ridge 0?72 of 09! not contained in a facet marked
in Step 2. Recursively visit the other marked facet,
7971, that contains ¢¢~2. If 79! exists then it is
incomparable to o471,

After executing the three steps we need to remove all
remaining temporary marks. This can be done by re-
peating a search as in Step 1.

8 Rotations

As described in [3, 4], the history dag M of a (d — 1)-
dimensional Delaunay complex can be constructed in-
crementally by adding one point at a time. Provided
the points are added in a random order, M is only
a small constant times the size of its lower boundary,
which is also the size of the Delaunay complex. Since
we incorporate update operations issued by the user,
we cannot assume randomness and a bias in the order
is indeed likely to exist. For this and other reason, we

introduce the rotation operation, whose sole purpose
is the restructuring of the dag, without adding or re-
moving points. As a side effect, a rotation changes the
number of simplices in M and can thus be used to re-
duce the memory requirements of the hierarchy. Owing
its name to the more familiar rotations for balanced
binary trees [9], this operation has been studied in the
general context of dynamically maintaining randomized
data structures by Mulmuley [5].

We begin with the case where M is a pure monotone
d-complex constructed with the incremental algorithm
in [3]. Let po, .- -, Pi,Pit+1,- - - , D¢ be the points added to
the Delaunay complex in this sequence. Different per-
mutations result in different monotone complexes, but
the lower boundaries are all the same. Although we
assume a particular ordering of the points, we do not
actually have to know that ordering. Let M’ denote
the pure monotone complex that results by adding the
points in an order that differs from the above permuta-
tion by exchanging p; and p;41, for some 0 <i < £. We
define the operation rotation(M,i) for M, p;, and
piv1 as the transformation that takes M to M'. Fig-
ure 8.1 shows a rotation for a complex in R2. Define the

il
e

Figure 8.1: Example of a pure monotone 2-complex be-
fore and after the rotation that exchanges the order of
p; and p;11. The triangles in the cups of p; and p;y1
are separated by the dashed edges. The triangles in the
symmetric difference of the two complexes are shaded.

before

cup of a point p; as the closure of the set of d-simplices
added by the algorithm beginning with «;,; and end-
ing before a,,,,. The cup of p; in M is denoted as
Uj and in M' it is denoted as Uj. The cups of points
po through p; 1 are unaffected by later insertions, so
they are the same in M and in M’. Similarly, the cups
of points p;y2 through p, are the same in both com-
plexes. Furthermore, the cups of p; and p;y1 together
cover the same subset of R? in both complexes. We can
thus define the rotation operation more formally:

rotation(M,i) = M —-U; — Ui U U+1 uu;.

This expression suggests a somewhat different view of

a rotation. Instead of explicitly changing the insertion
order of the points, we can view a rotation as changing
the dependency among the cups.

There are different ways to implement a rotation. For
example in d = 2 dimensions, a rotation can be per-
formed using edge flips. In general, a good implementa-
tion will avoid removing and reinserting d-simplices that
belong to U;UU;41 as well as Ui’UUi’_H. The correctness
of a rotation operation depends on convexity conditions
for certain cross-sections of the complex. These condi-
tions are satisfied by the monotone d-complexes gener-
ated by incremental Delaunay complex algorithms, but
they may fail for general monotone complexes. In other
words, rotations as described may generally not exist.

9 Discussion

A few years ago, Guibas, Knuth and Sharir [4] intro-
duced the history dag as a data structure that supports
efficient point location necessary in the incremental con-
struction of Delaunay complexes in d — 1 = 2 dimen-
sions. The history dag has been generalized to weighted
Delaunay complexes and to dimensions d—1 > 3 in [3].
In this paper we promote the notion that this dag is
a versatile representation of simplicial grids. There are
several advantages the dag offers over more traditional
representations of grids:

(i) it is hierarchical and combines fine and crude sim-
plicial decompositions into a single data structure,

(ii) it is adaptive so that the grid can be changed locally
by moving the active cross-section within the dag,

(iii) it is dynamic and admits operations such as adding,
moving, and removing a point.

While the dag is more flexible and more efficient in
terms of speed, it suffers from somewhat higher memory
requirements. Experimental results obtained with the
second author’s implementation of the dag for dimen-
sion d — 1 = 2 and 3 show that the required memory
for the dag is only a small constant times the mem-
ory required by the most refined grid. In exchange the
dag offers improved access efficiency. For example for
d — 1 = 3 the selection of grids with various densities
in a precomputed dag is approximately one thousand
times faster than the computation of that grid, see [10].

We conclude this paper by mentioning a few experi-
ments related to possible applications of the dag. First
we illustrate the construction of grids needed in the so-
lution cycle of the multigrid method [2]. Figure 9.1

10

depicts cross-sections defined by initial percentages of
the set of points whose Delaunay complex is shown in
the first of the six pictures. Second, we demonstrate
the general efficiency of the dag achieved through hier-
archical organization. Figure 9.2 shows results of an iso-
surface visualization tool that allows the user to change
the iso-value and get feedback in terms of an updated
picture in real time.

Third, we examine the use of the dag in adapting
grids to local density requirements. The need for dy-
namic grid adaptation arises in finite element analysis
and in fly-through scenarios. We illustrate the gradual
change in density enforced by the combinatorial con-
straint of keeping cross-sections (d — 1)-connected. Re-
dundancy in explaining the experiment is avoided by fo-
cusing on the 2-dimensional case. Choose a large num-
ber of points uniformly distributed in the unit-square
[0,1]2. From the history dag of these points choose
the cross-section that contains all points in the central
square, defined as Qo = [%, 2]%, and as few points out-
side the central square as possible. Figure 9.3 (a) plots
the fraction of points in a narrow square annulus that
moves out from the boundary of @)y to the boundary of
[0,1]%. Specifically, define Q, = [+ —za, 2 +za)?, where
2 > 0 and a2 is the area of Qg divided by the number
of points in Q. Partition [0,1]? into the center square
Qo and a sequence of square annuli ;4. — @,. The
graph in Figure 9.3 (a) shows the fraction of the points
in Qz+e — @, that are used in the cross-section. Both
in 2 and in 3 dimensions the fraction quickly decreases
with growing distance from the center.

References

[1] M. BERN AND D. EPPSTEIN. Mesh generation and op-
timal triangulations. In Computing in Euclidean Ge-
ometry, vol. 1, D.-Z. Du and F. K. Hwang (eds.), World
Scientific, Singapore, 1992, 23-90.

W. L. BrigaGs. A Multigrid Tutorial. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pennsyl-
vania, 1987.

H. EDELSBRUNNER AND N. R. SHAH. Incremental
topological flipping works for regular triangulations.
Algorithmica 15 (1996), 223-241.

L. J. GuiBas, D. E. KNUTH AND M. SHARIR. Ran-
domized incremental construction of Delaunay and
Voronoi diagrams. Algorithmica 7 (1992), 381-413.

K. MULMULEY. Randomized multidimensional search
trees: lazy balancing and dynamic shuffling. In “Proc.
32nd Ann. IEEE Sympos. Found. Comput. Sci., 1991”7,
180-196.

SO
\ N

N
W
\!

7
b

<
A
S,

»,IAP
NS

B
g

4

Figure 9.1: Cross-sections defined by initial 100%, 75%, 50%, 25%, 12%, 6% of the points used for the finest grid in the
first picture. Each cross-section projects to the Delaunay complex of its points.

[6] J. R. MUNKRES. Elements of Algebraic Topology.
Addison-Wesley, Redwood City, California, 1984.

[7] A. A. G. REQUICHA. Representations of solid objects
— theory, methods, and systems. ACM Computing Sur-
veys 12 (1980), 437-464.

[8] B. SonI. Grid quality control in CFD. Paper presented
at the 3rd STAM Conf. Geometric Design, Tempe, Ari-
zona, 1993.

[9] R. E. TARJAN. Data Structures and Network Algo-
rithms. Society for Industrial and Applied Mathemat-
ics, Philadelphia, Pennsylvania, 1983.

[10] R. WAUPOTITSCH. Simplifying and Deforming Hierar-
chies of Simplicial Grids. Ph.D. Thesis, Tech. Report
1559, Dept. Comput. Sci., Univ. Illinois, Urbana, 1996.

11

Figure 9.2: Iso-surfaces constructed from 3-dimensional grids obtained for the initial 100%, 50%, 25%, 10% of the points
used for the finest grid in the first picture. Each grid is the projection of a cross-section in the 4-dimensional history dag.

100 100
75 75
50 50 -
25 25
N —— NN ——t X
012345678910 012345678910
@ (b)

Figure 9.3: The decay of the function relates to the steepness of the ancestor complex defined by the points near the
center of [0,1]471. We have d —1=2in (a) and d —1 = 3 in (b). By comparing the functions we see that the decay is
faster in two than in three dimensions.

12

