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Abstract
Shape deformation refers to the continuous change of one
geometric object to another. We develop a software tool for
planning, analyzing, and visualizing deformations between
two shapes in ��� . The deformation is generated automati-
cally without any user intervention or specification of feature
correspondences. A unique property of the tool is the explicit
availability of a two-dimensional shape space, which can be
used for designing the deformation either automatically by
following constraints and objectives or manually by drawing
deformation paths.

1 Introduction
This paper describes a method for the deformation of one
geometric shape in the plane to another and a software tool
that implements it. In computer graphics this operation is
commonly referred to as morphing. In that area the focus is
on the creation of image sequences that display the morph
[10, 11, 13]. In contrast, this paper constructs the deforma-
tion as a 1-dimensional family of genuine geometric objects.

Rationale. This paper follows the general ideas about
shape representation and deformation laid out in [3, 4]. It
focuses on the special case of two shapes in two dimen-
sions. Even in this simplest of all interesting cases, there
is a frightening amount of freedom and an abundant variety
of possible deformations. It has been suggested we follow
the general trend of making up an evaluation function and
compute the optimal deformation defined by that function.
The authors of this paper believe that this strategy fails to
rationalize the process as it does not eliminate irrational de-
cisions but shift them to a different level. Instead, we follow
�
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a path of deformation design that permits efficient quantita-
tive analysis. The deformations satisfy basic requirements,
such as economy in shape variation, local smoothness, and
geometric integrity. All constructions are global and mathe-
matically defined and employ natural geometric operations,
such as lifting, taking convex hulls, slicing, and projecting.
The full description of these constructions and their higher-
dimensional interpretations is beyond the scope of this paper
and we refer the interested reader to the companion paper [3]
published in the same issue of this journal. All claims made
in this paper are proved in considerable more generality in
[3] and [4], which is the reason this paper adopts a predomi-
nantly descriptive rather than analytic style.

The criticism of lacking an optimality criterion and the
above response apply only to the automatic reconstruction
of deformations. Section 4 explains how the system permits
the specification of evaluation functions and the optimization
within a two-dimensional space of shapes.

Summary of results. The software tool described in this
paper constructs and deforms two-dimensional shapes and it
rationalizes the process through analysis and visualization.
Some of the features of that tool are now listed.

� The source and target shapes are regular sets in ��� , that
is, each set is the closure of its interior. The sets can
have arbitrarily many components and holes. The cho-
sen data structure places no limitations in principle on
the kind of shapes although it is better suited for repre-
senting some than it is for others.

� The deformation can be computed fully automatically,
which means that also the topology of the shape is
changed without user intervention. See Figure 1 for an
example where a ‘0’ with one hole is deformed into a
‘1’ without hole.

� Each intermediate shape is determined by a time pa-
rameter, ���� ������� , and a size parameter, ������� . In
the automatic and unconstrained deformation, the size
is a function of  and the initial and final size values.
Deformation paths satisfying shape constraints can be



designed in the two-dimensional shape space of time
and size.

� The deformation is monitored by keeping track of quan-
titative information, such as the area, boundary length,
number of components, and number of holes. Con-
straints guiding the automatic design of a deformation
can be formulated in terms of these quantities.

The tool provides VCR functionalities for the interactive vi-
sualization, such as play, reverse, step forward, step back-
ward, etc.

Figure 1: Read the pictures like English text from left to right and
rows from top to bottom to see the deformation from ‘0’ to ‘1’.

We should mention that this paper does not address the
question how a two-dimensional shape can be turned into
the representation used in this paper. That question is diffi-
cult and interesting in its own right. The appearance of the
shapes for small data sets is similar to the blobby models in-
troduced by Blinn [1] and the union-of-spheres models used
by Tam and Fournier [12]. We claimed above that the chosen
data structure places no limitations in principle on the kind
of shapes that can be represented. Specifically, this means
that for any subset of ��� and any ��� � we can represent a
shape whose Hausdorff distance from that subset is less than
� . Beyond Hausdorff distance, our representation can ap-
proximate the tangent direction along differentiable bound-
ary segments, but it cannot approximate the curvature along
twice differentiable boundary segments. The more impor-
tant question of how the size of that representation depends
on the type of subset and on � is left open.

Ramifications. The widespread use of image morphing in
the movie and advertisement industries justifies the related

research, maybe also the one reported in this paper. The par-
ticular properties and features of the method described in this
paper suggests additional applications.

� The shape is well defined at every moment during
the deformation. If we stack up all two-dimensional
shapes we get a pipe-like three-dimensional shape that
smoothly starts, branches, joins, and ends. Such pipes
are good models of blood vessels and complicated ex-
haust systems. The constrained deformation option can
be used to maintain, say, a constant cross-section area
in the design of such a system.

The construction of pipes is similar to shape reconstruction
from slices, which is a widely studied problem in computer
graphics [7] and computational geometry [2]. The algorithm
developed for this problem are however fundamentally dif-
ferent from the algorithm in this paper because they start
from different assumptions on how a cross-section or two-
dimensional shape is represented.

� The automatic deformation between two given shapes is
canonical. The kind and amount of change can be used
to define a distance measure between shapes useful for
example in automatic pattern recognition. It might be
worth trying out this idea in the classification of printed
and possibly even handwritten Chinese characters.

� The shape space embedding the deformations is explic-
itly given as a two-dimensional strip of pairs �  � � ��� �
� ����������� . If the source and target shapes are signifi-
cantly different then this space is an index into a rich
variety of shapes. This suggests applications in shape
compression and the design of shape databases.

This particular application is further developed in [3], where
it is used to organize general ideas about shape deformation.

Outline. Section 2 reviews the two basic ingredients to our
deformation tool: the shape representation of [4] and the de-
formation technique of [3]. Section 3 explains the various
geometric concepts used in the construction and visualized
by the software tool. Section 4 discusses the structure of the
shape space and how it is exploited in the design of special
deformation paths. Section 5 concludes the paper.

2 Shape and Deformation
The full details of the shape representation and the shape de-
formation methods can be found in [4] and in [3]. This sec-
tion describes only a residual amount of both formalisms and
relies on illustrations to provide an intuition for the ideas.
Every shape is represented by two data structures: a com-
plex that captures structure and connectivity and a set with
differentiable boundary that serves as the appearance of the
shape. We explain the two data structures and the deforma-
tion method.
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Structure and connectivity. We begin by specifying the
input data, which is a set of weighted points or disks, and the
Voronoi decomposition of the plane this set defines. Each
disk in the input set ��������� �	� � ��
�
�
 ������ is specified by
its center and its radius: ����� ����� ����� � with ��� � � � and
��� � � � . We permit negative square radii, ��� � , which cor-
responds to imaginary radii, ��� , and to imaginary disks, ��� .
The weighted square distance of a point � � � � from � � is� � ��� ������� �!� � � � �!� � � , and the (weighted) Voronoi cell of
� � is the set of points at least as close to � � in terms of the
weighted square distance function as to any other disk:

" � � ��� � � �$# � � ��� �&% �(' ��� � � for all )*�+

See Figure 2 for an example. The Voronoi cells decompose

Figure 2: The Voronoi cells of nine disks. Seven of the disks have
positive and two have imaginary radii. Two of the centers do not lie
in their Voronoi cells.

the union of disks into convex cells: ,-�.�/, �102� � " �43 � � � .
Any two of these cells are either disjoint or they meet along
a portion of their boundaries.

The complex data structure is denoted as 57698&� and
records the overlap between the cells : � � " �43 � � . Specifi-
cally, � � is a vertex in 57698&� iff : �<;�>= and � � � ' is an edge
iff : �+3 : ' ;�?= . Furthermore, @�A+B4C<�D� � #�E �GF*� is a two-
dimensional cell, for F a set of three or more disk indices, iffH ��IKJ :<� ;��= and F is maximal with this property. For � in
general position all cells in 57698L� are triangles. However,
we cannot reasonably make this simplifying assumption be-
cause the deformation method described shortly systemati-
cally creates degenerate disk sets, such as the one shown in
Figure 2. Even if we have general position at times M� �
and N� � , there are parallelograms in the intermediate com-
plexes, as shown in Figure 3.

Shape appearance. The body is defined as a union of an
infinite family of disks, and the skin is its boundary, which is
the envelope of an infinite family of circles. To define these

Figure 3: The Voronoi decomposition and complex of the union of
disks in Figure 2. The complex contains only two cells, namely
the shaded triangles. The transparent parallelogram does not be-
long to the complex (only its edges do), although it would if the
corresponding four disks were large enough to fill the hole.

families, we observe that ���O� � �QP � �9�<R � � � and its bound-
ing circle is � � P � � � � . The weighted square distance func-
tions span the usual vector space defined by function addition
and scaling. Let ST�U� � � # �V% E %XWY� be the collection of
weighted square distance functions defined by � . The affine
hull of S is the family of combinations Z\[ �^] � � , in which
the [ � add up to 1. The convex hull is the subfamily defined
by non-negative scaling factors:

@�AKB_C&S � �
`
�a0^�
[ �b] � � #

`
�102�
[ � � � �9[ �Yc � for all E �4


The convex hull is an infinite family of paraboloid func-
tions and we construct the skin and body by shrinking each� �d@�AKB_C&S using a parameter �X%feg% � . For � ��� �h�
��� �!��� � �g� � , we define the shrunken function as

�2i ��� �j� �
e ] ��� �!�k� � �l� � 


The zero-set of � i is the circle with center � and radius m e�� .
The envelope and union of the infinite family of shrunken
disks is now defined with the help of the pointwise minimum
function, n i ��� ���poMq1Br� � i ��� � # � �h@�AKB_C&Ss� :

6ut_qaB i � � n P �i � � � �v A(w(x i � � n P �i �Q�<R � � �y

They are referred to as the e -skin and the e -body of � , as
illustrated in Figure 4.

Shape deformation. Fix a parameter e � � ������� and let
� and z be two finite sets of disks defining the initial and
the final shapes of the deformation. Intermediate shapes
are constructed by interpolating between the two sets. It
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Figure 4: The skins for ��� �����	�
��� ���
��� ��
��� ������� � of the same set of
disks as in Figures 2 and 3. Observe that the complex is contained
in the five bodies and they are all connected the same way: each has
two components of which one has a hole and the other does not.

is convenient to project a cross-section of the vector space
of weighted square distance functions onto the set of disks.
Formally, if � and � are disks with weighted square distance
functions � and � and ���l[g� � then � ��� ] ���l[ ] � is
the disk with weighted square distance function � ] � � [ ] � .
With this introduction, we define

��� � � � �� � ] ���  ] z
� � � �L�� � ] ���  ] � # � �h� ��� �Gz-�

for every  � � ������� . Clearly
��� �f� and

� � �fz . For
a given value of e , we thus have a one-parameter family
of shapes,  � � v A(w(x i ��� , that deforms the initial shape, � � v A(w(x i � , into the final shape,  7�L� v A(w(x i z . Figure 5
uses ten snapshots to illustrate the deformation from a shape
defined by four disks to one defined by only three disks. Ob-
serve the automatic change of topology that happens syn-
chronously for the skin and the complex. In Figure 5, there
is a change in topology between all contiguous snapshots ex-
cept for the last three. Even though the seventh and the eight
snapshots have the same topology, the latter is obtained from
the former by two changes, one filling a hole and one open-
ing a hole. The second, third, fourth, and sixth snapshots are
taken right at the time of topology changes when two com-
ponents or two portions of the same component touch in a
point and locally separate the complement.

3 Visualization of Concepts

The display panel of the software tool can be used to visual-
ize all geometric concepts mentioned in Section 2 and more.
As mentioned earlier, the expositions of these concepts are
primarily descriptive.

Basic structures. Let � be a finite set of disks as before.
The (weighted) Voronoi complex, denoted as ! A�"�� , is the
collection of two-dimensional Voronoi cells together with
common intersections among them. The (weighted) Delau-
nay complex, denoted as 5$#&%�� , records the overlap among
two-dimensional Voronoi cells, as shown in Figure 6 to the
right.

Next we discuss a nested sequence of subcomplexes of the
Delaunay complex. Let � � � � and define ��� � � � as the disk
with center ��� and radius ' ��� � � � � . We have ��� � � � �/��� ,
and if ��� � � � then the radius of ��� � � � is � . Let � � � �M�
��� � � � � # � � � � � and observe that the Voronoi complex of
� � � � is the same as that of � . In other words, the Voronoi
complex and the Delaunay complex do not vary with ��� . The
cells of the convex decomposition of , � � � � grow with � :

:<� � � � � � " � 3 ��� � � � �)( " � 3 ��� � � � � � :7� � � � �
whenever � � % � � . We call 5<6Q8+**� � 57698L� � � � the � -
complex of � . The collection of such complexes is nested
and the last one is the Delaunay complex:

= � 5<6Q8 *�, �-( 5<6Q8 */. �-(f576Q8 *10 � � 5$#&%D� �
where � �� is sufficiently small, � �� is sufficiently large, and
� �� % � � � % � �� . Figure 6 illustrates the sequence of � -
complexes by showing four of a much larger number of
nested complexes defined by the nine disks used in Figures
2, 3, and 4.

Decomposed skin and body. Similar to the union of disk,
we can decompose the skin and the body into simple pieces.
The complex that produces the decomposition consists of
two-dimensional Voronoi cells, two-dimensional Delaunay
cells, and rectangles that are Cartesian products of matching
Voronoi and Delaunay edges. All these cells are shrunk so
they fit together to form a decomposition of ��� . To describe
this complex, let e � � � ��� � be arbitrary but fixed. Let F be a
subset of indices with

2 J � 3
��IKJ
" � �4! A�"*� �

5 J � @�AKB_C<�D��� #�E � F*� �/5�#6%D�$

The dimension of 2 J is 7 �!� � ��� �98_� and that of

5 J is 8 �:7 .
The corresponding (two-dimensional) cell in the complex is

; J i � e ] 2 J � � �L� e�� ] 5 J �
where addition and scaling refer to the operations in the vec-
tor space of points in � � . The e -mixed complex, denoted as< qa8 i � , consist of all cells ; J i and all non-empty common
intersections among them. Figure 7 illustrates the mixed
complex along with the skin and the complex for the nine
disks used in earlier figures.

Observe that
< qa8 � �/� 5$#&%D� and

< qa8 � �/�=! A�"*� . For
all other values of e , < qa8 i � contains a shrunken copy of
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Figure 5: Ten snapshots of a deformation with complex and skin displayed. The parameter � for all shapes is
��� 

. The set of disks that
generates the complex and the skin in the fifth snapshot is the same as in Figures 2, 3, and 4.

every Voronoi cell and every Delaunay cell. The shrunken
copy of

" � intersects 6Qt_q1B i � in a collection of arcs that all
belong to a common circle, namely the zero-set of � � i . Sim-
ilarly, the shrunken copy of a Delaunay cell intersects the
skin in a collection of arcs that all belong to a common cir-
cle. We note that the body lies outside that circle. The re-
maining two-dimensional cells in

< q 8 i � are rectangles, and
each rectangle intersects the skin in a collection of arcs that
belong to a common hyperbola. A more detailed description
of the skin decomposition including formulas for all circles
and hyperbolas can be found in [4].

Complementarity. We develop an explicit expression of
the symmetry between shape and complement by introduc-
ing another set of disks. Call two disks � � � ��� � ��� � � and
���' � ��� ' ��� ' � orthogonal if

��� � ��� ' � � � � � � ��� ' � �

and further than orthogonal if the square distance between
the centers exceeds the sum of square radii. In case of
real radii the bounding circles of two orthogonal disks meet
at right angles. We construct a new set of disks, ��� �
����� � �	���� ��
�
�
������	 � , that cover the part of � � outside , � and
overlap the disks in � orthogonally or less. Specifically,
for each vertex � ' of ! A�"*� choose the radius � ' such that
���' � ��� ' ��� ' � is orthogonal to all � � with � ' � " � . By def-
inition of Voronoi complex, � �' is further than orthogonal
from all other disks in � . For completeness, we stipulate a
Voronoi vertex at infinity in the direction of each unbounded
Voronoi edge and define the corresponding disk as a half-
plane. It is not difficult to see that ! A1" � � 5�#6%���� and
5�#6%��d� ! A�"*�
� , and therefore ����� ��� � � . An additional
noteworthy property is the complementarity of the two bod-
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Figure 6: Decomposed disk union and � -complex for four values of � . In the second example, we have � � �
and therefore the same

complex as in Figure 3. In the fourth example, we have � sufficiently large so that the � -complex is the Delaunay complex.

Figure 7: The
��� 

-skin of the disk set in Figure 2 is decomposed
into circle and hyperbola arcs by the

��� 
-mixed complex.

ies. Formally,

v A(w(x i � � v A_w x � P i � � � � � �v A(w(x i � 3 v A_w x � P i � � � 6Qt_q1B i �
� 6Qt_q1B � P i � � 


Figure 8 illustrates the relationship between � and � � by
showing three skins of � , for eV� �*
 � � � 
�� � �K
 � . The 0-body
of � is the closed complement of a union of disks, namely
of , � � . The � 
�� -skin shrinks away from the boundaries of
, � and of , �
� and lies between 6ut_qaB

�
�U�T6Qt_q1B � �
� and

6ut4q1B � �d�X6ut_qaB
�
� � .

Deformation and topology change. We return to the de-
formation constructed by interpolating disk sets:

� � � � �L�
 � ] � �  ] z , as explained in Section 2. Letting e � � � ��� �
be fixed and  vary inside � ��� � � , we generate a 1-parameter
family of shapes,  � � v A_w x i � � . We focus on the local pic-
ture of a change in topology as  varies continuously. Each
change occurs at a particular moment in time and a particular
point in the plane. Let this point be � and distinguish three

Figure 8: The boundary of ��� , the boundary of ����� , and the
common

��� 
-skin of � and � � separating the two boundaries.

cases depending on the type of cell in the mixed complex
that contains � .
CASE F-�T� E �4
 The point � lies inside the shrunken Voronoi

cell ; J i . The cell specifies the portion of the circle de-
fined by � � that belongs to the skin. This circle is the
zero-set of � � i . In the non-degenerate case, the radius
of this circle is either imaginary or positive real. The
topology change happens at the transition from the for-
mer to the latter case, or vice versa. This transition ei-
ther creates a new component by growing a disk from �
or it removes a component by shrinking a disk to � .

CASE F-�T� E �y) �4
 The point � lies inside the rectangle ; J i .
The rectangle specifies the portion of the hyperbola de-
fined by � � and � ' that belongs to the skin. The hyper-
bola consists of two branches living in diagonally op-
posite quadrants defined by the two asymptotic lines, as
illustrated in Figure 9. In the non-degenerate case, the
two branches either locally separate or locally sandwich
the body. The topology change happens at the transition
when the hyperbola equals the two asymptotic lines and
flips from one pair of opposite quadrants to the other.
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Figure 9: From left to right the sequence illustrates the creation of a
bridge through flipping a hyperbola. From right to left it illustrates
the removal of that bridge.

The transition either creates a bridge by locally joining
two portions of the body at � , or it removes a bridge by
locally separating two portions at � .

CASE FV� � E �y) �97��4
 The point � lies inside the shrunken De-
launay triangle ; J i . In degenerate configurations F may
contain more than three indices and ; J i may have more
than three sides. The triangle specifies the portion of
the circle defined by � �� orthogonal to ��� , � ' , ��� that be-
longs to the skin. Observe the symmetry to @���"�w&F-� � .
In the non-degenerate case, the radius of the circle is
either positive real or imaginary. The transition either
removes a hole by shrinking a disk to � or it creates a
hole by growing a disk from � .

Note that the points � where a topological change happens
are centers of disks (in � or in ��� ) or apices of hyperbolas.
It is also possible that the center of a circle or the apex of a
hyperbola does not lie inside the corresponding mixed cell.
In this case, that point is not the location of a topological
change.

Asymmetry of deformation. For a fixed  � � ��� � � , � � �
� � �  � ] �:�  ] z is a set of disk and we consider its Voronoi
and Delaunay complexes, as shown in Figure 10. Combi-
natorially, the Delaunay complex changes only twice, from
M� � to  � � ��� � � to M� � . Geometrically, it moves all
the time as the cells gradually change shape. Interestingly,
the situation is different for the Voronoi complex, and this
in spite of the symmetry between the two complexes noted
above. The Voronoi complexes of the

� �
are the same for

all  � � ������� . Specifically, each such Voronoi complex is
the overlay of ! A�" ��� and ! A�" � � , as can be seen in Figure
10. The asymmetry is explained by the asymmetry of the de-
formation. An alternative definition of deformation uses the
shapes defined by the complementary disk sets:

� �� � � �L�  � ] � � �  ] z � 

�
�� is different from

�
�� except at the beginning, at 7� � ,

and at the end, at  � � . To see that the two are indeed
different, in general, note that � � �� � �>� � �

. So when
�
��

changes as  increases, the Voronoi complex changes and the
Delaunay complex is invariant. On the other hand, when

�
��

changes as  increases, the Delaunay complex changes and
the Voronoi complex is invariant.

4 Deformation Design

The control panel of the software tool contains the VCR but-
tons that drive the deformation through the selection and al-
teration of time and size. The explicit representation of the
two-dimensional shape space permits the rational design of
deformations.

Shape space. Fix a value of e � � ��� � � and let � and z
be the two disk sets that define the initial and the final shape
of a deformation problem. We have an intermediate shape
defined for each value  � � � ����� of the time parameter and
each value � � � � of the size parameter. Specifically, each
such intermediate shape is defined by the set of disks

� � � � � ,
where

� � � � �r�  � ] � �� ] z . We use �  � � � � as a coordinate
pair to specify shapes in

� � � � ����� � � �

which we refer to as shape or state space.
�

is a two-
dimensional strip that can be decomposed into regions within
which the shape variation is insignificant. As an example
consider the decomposition into shapes whose complexes are
the same:  � � v A(w(x � � . � � � � and  � � v A_w x ��� 0 � � � � are
similar if 576Q8+* . � � . � 5<6Q8+* 0 ��� 0 .

Since the moments in time the two shapes exist are in gen-
eral different this needs some clarification. Although the De-
launay complex moves with time, its combinatorial structure
is the same during the entire open time interval. We there-
fore have an unambiguous notion of sameness for Delaunay
cells over time and it makes sense to refer to a Delaunay cell5 J without specifying the time, which can be anywhere in
� � ��� � . Two complexes at different moments in time are the
same if they contain the same cells. Similarity among shapes
is therefore well defined and it is an equivalent relation.

Curve arrangement. We gain insight into the decompo-
sition of

�
by considering a single Delaunay cell,

5 J . For
each time  � � � ����� , we define ��J �  � such that

5 J �  � belongs
to 57698+* � � iff � � c � J �  � . For each two-dimensional

5 J the
discriminating function is linear:

��J �  � � �(� ]  �)� � 

For Delaunay edges and vertices the description of � J is
made complicated by the somewhat technical distinction be-
tween attached and unattached cells, which is explained in
some detail in [6]. A cell

5 J is attached at time  if for every
� � � � the presence of

5 J �  � in 5<6Q8 * � � implies the pres-
ence of a higher-dimensional cell,

5	�
, that contains

5 J as a
face. Since

5
�
cannot be in the complex without its faces

this implies ��J �  �s��� � �  � for this value of  . The interest-
ing case is when

5 J �  � is unattached. For example if
5 J is

two-dimensional then it is unattached during the entire open
time interval. In general,

5 J is unattached during a single
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Figure 10: The Voronoi and Delaunay complexes at times � � ��� ���
��� �	������ ��
��� �	�� �	� � during the deformation.

and possibly empty time interval. In that time interval, the
discriminating function is at most quadratic:

� J �  �j� � � ]  � � � �O]  � � � �
with � � % � . We picture

�
and its decomposition by draw-

ing time from left to right and size from bottom to top. The
graphs of the discriminating functions are lines that pass
through the strip from left to right and upside-down parabo-
las that begin and end on the strip boundary or on graphs of
other discriminating functions, as shown in Figure 11. The

t = 0 t = 1

Figure 11: The decomposition of � into regions of similar shapes.
All curves are pieces of lines and parabolas.

graphs decompose
�

into regions of similar shapes. It can
however happen that two similar shapes correspond to points
in different regions. In this case there is no deformation rep-
resentable in

�
that transforms one shape to the other and

uses only similar shapes.

Designing in shape space. The initial shape corresponds
to the point � � � � � � � � in

�
and the final shape corresponds

to � � � � � � � � . Every continuous deformation between the
two shapes that can be represented in our framework cor-
responds to a path ��� � � ������� �

with � � � � �	� � and
� � � �L�
� � . For example the basic deformation described in
Section 2 corresponds to the straight line segment connect-
ing � � with � � , which is the image of the path � ��� �N� ��� � � � .
It may be that more complicated paths give better deforma-
tions and we describe how the decomposition of

�
can be

used to find such paths.

An important first step in the rational design of deforma-
tions is the computation of signatures that are functions from�

to � . An example is the area signature that maps each
�  � � ��� to the area of the corresponding body. Strictly speak-
ing that area also depends on the value of the parameter e
and we have a signature for each �M%Xes% � . Another exam-
ple is the connectivity of shapes captured by two signatures,� � �
� � � � � � , counting components and holes. � � and � �
are independent of e and can be computed directly from the
complex, which is homotopy equivalent to the body of the
shape [4].

Let  be the dual graph of the decomposition of
�

cre-
ated by the arrangement of lines and parabolas described
above. Let � � � 2 � be the number of components and � � � 2 �
be the number of holes of any one shape represented by
the region or node 2 in  . Let ; � and ; � be the nodes
whose regions contain � � and � � in their boundaries. A
non-degenerate path, ��� � ��� � ��� �

, traces out a se-
quence of regions and thus translates into a discrete path in
 : ; � � 2 � � 2 � ��
�
�
�� 2 � � ; � . Suppose we are interested in a
deformation that goes through as few topological changes as
possible. The number of such changes that occur along the
path � is a sum of absolute differences:

�`
�a0^�
# � � � 2 � �Y� � � � 2 � P � � # � # �k� � 2 � �Y� �k� � 2 � P � � # 


Think of the term inside the sum as the length of the arc con-
necting nodes 2 � P � and 2 � . The problem of finding a path
in
�

with minimum number of topological changes thus re-
duces to finding a shortest path in  , which can be solved by
standard graph algorithms. An improvement of this approach
based on the monotonicity of minimizing paths is described
in [9].

5 Discussion

This paper describes a method for the automatic deformation
of shapes in � � and a software tool that implements it. The
exposition is primarily descriptive and proofs (of more gen-
eral claims) can be found in the companion paper [3] and in
[4].
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Algorithms. The primary algorithmic problem that arises
as part of the deformation method is the construction of
the 1-parameter family of Delaunay complexes 5�#6% � � , for
 � � � ����� . As explained in [3], this problem reduces to com-
puting a 4-dimensional convex hull, or equivalently a three-
dimensional (weighted) Delaunay complex. In the latter in-
terpretation, the third coordinate is time and 5�#6% � � is the
cross-section at ��� �  . 576Q8 ��� is a subcomplex of 5$#&% ���
and the body and skin of the shape are computed from that
subcomplex. Our software tool uses the three-dimensional
Delaunay complex algorithm mentioned in [6] and selects
subcomplexes as explained in the same reference.

A second interesting algorithmic problem is the construc-
tion of the line and parabola arrangement that decomposes
the shape space. We implemented the incremental algorithm
of [5]. The decomposition is typically too fine to be of much
use within the user interface. A coarsened version of that
decomposition, obtained for example by snap-rounding as
described in [8], might be more useful than the actual ar-
rangement.

Extensions. There are means to impose structure on the
shape space other than the arrangement of lines and parabo-
las described in Section 4. Take for example the area sig-
nature, � � � � � , say for eG� � 
�� . It is continuous and
increases with growing � � . Each level set, ��P � � � � , is there-
fore a monotone path connecting a point on the left with a
point on the right boundary of

�
. If � � and � � are these two

points then � P � � � � describes an area preserving deformation
between the two corresponding shapes.

Applications in data compression and databases for shapes
will find the restriction to two base shapes unreasonably lim-
iting. As explained in [3], the mathematical framework for
deformation readily extends to any fixed number of base
shapes. However, all algorithmic problems get significantly
harder as the dimension of the shape space increases.
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