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ABSTRACT

We propose sink-insertion as a new technique to improve
the mesh quality of Delaunay triangulations. We compare it
with the conventional circumcenter-insertion technique un-
der three scheduling regimes: incremental, in blocks, and in
parallel. Justification for sink-insertion is given in terms of
mesh quality, numerical robustness, running time, and ease
of parallelization.
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1. INTRODUCTION

This paper uses Delaunay triangulations to mesh geomet-
ric domains and studies the use of sinks in the iterative im-
provement of the mesh quality. As will be explained later,
sinks are circumcenters of special Delaunay simplices. The
main claim of this paper is that adding sinks is more effec-
tive than adding general circumcenters. Although Delaunay
triangulations and sinks can be defined in arbitrary fixed di-
mensions, this paper focuses on the three-dimensional case.

1.1 Motivation

Physical simulation is often based on a decomposition of
the spatial domain into simple elements. The collection of
these elements is referred to as a mesh of the domain, and its
usual purpose is to aid the numerical solution of differential
equations defined over the domain. In most applications the
mesh is assumed to have the face-to-face property, which
means that any two elements are either disjoint or meet
along a common face.
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A special but popular type of mesh is the Delaunay trian-
gulation. Given a set of points or vertices, it consists of all
simplices spanned by the points that have an empty circum-
scribing sphere [3]. For points in general position in R?, the
Delaunay triangulation consists of triangles and their shared
edges and vertices. For points in general position in R?, it
consists of tetrahedra and their shared triangles, edges, and
vertices. The quality of the triangles and tetrahedra is usu-
ally measured in terms of angles and/or aspect-ratios. The
quality depends solely on how the points that define the De-
launay triangulation are distributed. We obtain good qual-
ity either by judiciously choosing the points or by modifying
the point set after constructing the initial Delaunay trian-
gulation. The first approach seems difficult, but there was
considerable success in following the second approach, which
is commonly referred to as Delaunay refinement. Chew [2]
and Ruppert [7] formulated Delaunay refinement algorithms
in R? that add circumcenters of triangles and achieve guar-
anteed lower and upper bounds on the size of angles. Dey
et al. [4] and Shewchuck [8] extend these results to R® by
adding circumcenters of tetrahedra.

1.2 Results

In this paper, we define the concept of sinks, which are
special circumcenters of Delaunay tetrahedra, and we pro-
pose to substitute sinks for general circumcenters in the in-
sertion process. We describe algorithms that improve mesh
quality through sink-insertion, and we present experimental
evidence that sink-insertion has advantages over circumcenter-
insertion in the context of the Delaunay refinement algo-
rithm.

We show that sink-insertion creates about the same mesh
quality as circumcenter-insertion, but it does this in a more
economical manner. One of the reasons is that Delaunay
triangles and tetrahedra with small or large angles tend to
cluster and share sinks. Instead of dealing with a large num-
ber of circumcenters we can therefore work with a small
number of sinks. The sinks tend to be well separated and
thus exhibit fewer dependencies, which is desirable in paral-
lel implementations. Another advantage of sinks is that their
definition in terms of the data is generally well-conditioned,
while the computation of circumcenters sometimes runs into
numerical problems.

1.3 Outline

Section 2 introduces Delaunay triangulations. Section 3
describes a partial order among Delaunay simplices and in-
troduces the concept of sinks. Section 4 studies the com-
binatorial properties of sink-insertion. Section 5 presents



experimental results. Section 6 concludes the paper.

2. DELAUNAY TRIANGULATIONS

This section introduces Delaunay triangulations as duals
of Voronoi diagrams. We begin with some general terminol-
ogy on simplicial complexes, which we borrow from combi-
natorial topology [1].

2.1 Simplicial complexes

A simplez is the convex hull of an affinely independent
collection of points, o = conv S. Its dimension is one less
than the number of points, dimo = card S — 1. In R® the
maximum number of affinely independent points is four, so
we have non-empty simplices of dimensions 0, 1, 2, and 3
referred to as wvertices, edges, triangles, and tetrahedra. For
every subset 7' C S the simplex 7 = convT is a face of o
and we write 7 < o. Symmetrically, o is a coface of 7. The
simplex T is a proper face of o and o is a proper coface of T
if T is a proper subset of S. The interior of o is the set of
points that belong to o but not to any of its proper faces,
inte=0—-7.

A simplicial compler K is a finite set of simplices that is
closed under taking faces and has no improper intersections
between its simplices. More formally, 0 € K and 7 < o
implies 7 € K, and 0,0’ € K implies 0 N o’ < 0,0'. The
second condition allows for the case in which o and ¢’ are
disjoint because the empty set is considered to be the unique
(—1)-dimensional simplex that is a face of every simplex. A
subcomplez of K is a subset that is also a simplicial complex.
The underlying space of a set of simplices L C K is the union
of interiors, | L| = U, int 0. | L] is a topologically closed
set iff L is a simplicial complex. The closure of L is the
smallest simplicial complex that contains L, C1L = {r <
o | o € L}. The star of a vertex p € K is the collection
of cofaces, Stp = {c € K | p < o}. The link of p is the
collection of faces of simplices in the star that do not belong
to the star, Lkp = CIStp — Stp. The closed star and the
link are simplicial complexes while the star is usually not
closed.

2.2 \Voronoi polyhedra

Let S be a finite set of points in R®. The Voronoi region of
a point a € S is the set of points no further from a than from
any other point in S, Vo = {z € R® | ||z —a| < ||z — b||,b €
S}. Here closeness is measured using the Euclidean dis-
tance. The Voronoi region of a is thus a three-dimensional
convex polyhedron, which may or may not reach to infinity.
Voronoi regions have disjoint interiors but may overlap along
common portions of the boundary. A Voronoi polyhedron is
the common intersection of Voronoi regions, Va =, 4 Va-
It is a convex polyhedron of dimension three or less. An-
other Voronoi polyhedron Vg is a face of V4 if Ve C Va,
and it is a proper face if furthermore Vs # Va. The inte-
rior of a Voronoi polyhedron is the set of points that be-
long to the polyhedron but not to any of its proper faces,
intVa = Va — JVs. The Voronoi diagram is the set of
Voronoi polyhedra, Vor S = {Va | A C S}. It is convenient
but not necessary to assume non-degeneracy, which means
that

(1) no four points lie in a common plane,

(2) no five points lie on a common sphere, and

no three points lie on a great-circle of a sphere tha
3 th ints li great-circle of here that
passes through four points.

This assumption can be justified computationally using sim-
ulated perturbation as described in [5]. Assumption (1) im-
plies that as long as there are at least four points, each
Voronoi polyhedron has at least one vertex. Assumption (2)
implies that if V4 # 0 then Vg # V4 for every proper super-
set B of A. Assumption (3) has more subtle consequences
related to the concept of sinks as discussed in Section 3.

2.3 Delaunay simplices

The Delaunay triangulation of S is the set of simplices
dual to Voronoi polyhedra. It is well-defined if S satisfies
assumption (2). In this case, every Voronoi polyhedron V4
has dimension dim V4 = 4—card A. The dual Delaunay sim-
plex is 7 = conv A whose dimension is dim7 =card A—1 =
3 —dimVy4. In words, (three-dimensional) Voronoi poly-
hedra correspond to Delaunay vertices, Voronoi polygons
correspond to Delaunay edges, Voronoi edges correspond to
Delaunay triangles, and Voronoi vertices correspond to De-
launay tetrahedra. The face relationship in the Delaunay
triangulation is the precise reverse of that in the Voronoi
diagram, namely V3 is a face of V4 iff 7 = conv A is a face
of o = conv B.

Let B be a set of four points in S. Because of assumptions
(1) and (2) there is a unique sphere that passes through the
four points, and every other point lies either inside or outside
but not on the sphere. We call the sphere empty if no point
of S lies inside. If o = conv B is a Delaunay tetrahedron
then the circumscribing sphere is centered at the Voronoi
vertex £ = Vp and it is empty because ||z — al| = ||z — || <
||z —c|| for all a,b € B and ¢ € S — B. The reverse is also
true. This implies that 7 is a Delaunay simplex iff there is
an empty sphere that passes through the vertices of 7 and
contains no other points of S. We call the circumsphere of
a Delaunay tetrahedron a Delaunay sphere and the closed
ball bounded by that sphere a Delaunay ball.

3. FLOW AND RELATION

This section introduces sinks as the circumcenters of tetra-
hedra without successors in a relation motivated by the con-
struction of a continuous vector field. We begin by defining
two square distance functions.

3.1 Square distances

For a point a € R? consider the square distance function
that maps every point € R® to ma(z) = ||z — a||>. Given a
finite set § C R?, let 75 : R> — R be the pointwise minimum
of the square distance functions,

ws(z) = min{m.(z)|a € S}.

The function m = 7s is piecewise quadratic, and the pieces
decompose R? into the Voronoi regions of S.

Consider now a sphere (z,7) with center z € R® and radius
r € R. The weighted square distance of a point y € R?
from (z,7) is ¢.(y) = ||y — z||> — 72 For zero radius the
weighted square distance is equal to the square distance from
the center. Given S, let Z be the collection of Delaunay
spheres and ¢s : R® — R the pointwise minimum of the
weighted square distances to all Delaunay spheres,

es(y) = min{p.(y) | (2,r) € Z}.



The function ¢ = g is piecewise quadratic and it decom-
poses the convex hull of S into the Delaunay tetrahedra.
Level sets of the functions 7 and ¢ defined for points in
R? are shown in Figure 1. The shading gets progressively
lighter as the values of 7w and ¢ increase. Notice that 7(x)
is nowhere negative, and ¢(y) is never positive inside the
convex hull. Both w(z) and ¢(y) are zero when z,y € S.

Figure 1: To the left, the level sets of 7 are overlaid
with the Voronoi diagram. To the right, the level
sets of ¢ are overlaid with the Delaunay triangula-
tion.

3.2 Minima and maxima

The minima of 7 are the points of S, and the maxima
are the Voronoi vertices that are contained inside their dual
Delaunay tetrahedra. Symmetrically, the maxima of ¢ are
the points in S, and the minima are the circumcenters of
Delaunay tetrahedra that are contained in their tetrahedra.
We see that m and ¢ have the same set of local extremes,
only that the minima and maxima are exchanged.

We define a sink as a local maximum of m, or equiva-
lently a local minimum of ¢. In three dimensions, a sink
is therefore a circumcenter that is contained in the interior
of its tetrahedron. Such a tetrahedron is also called a sink
tetrahedron. Assuming the non-degeneracy condition (3), no
circumcircle lies on the boundary of its tetrahedron. Figure
2 visualizes sinks in two dimensions. Figure 3 visualizes
the corresponding function ¢. The graph of ¢ consists of
paraboloid patches, one for each Delaunay triangle.

Figure 2: Triangles that contain their own circum-
centers are shown in grey; their circumcenters are
the sinks. The bold edges bound ancestor sets of
the sink triangles.

Figure 3: Visualization of ¢ with function values
decreasing from bottom to top.

3.3 Partial order

We can make the function ¢ everywhere smooth in such
a way that the set of maxima and minima are preserved.
Using the smoothness assumption we can define the negative
gradient of ¢, which maps every point z € R?® to the vector
—V(z) of the three partial derivatives. We think of —V¢
as a vector or flow field and, following the example of [6],
we use it as the guiding intuition in the construction of a
partial order over the Delaunay tetrahedra. Specifically, we
define 7 < o if the negative gradient leads from the interior
of 7 through the common triangle into the interior of o.
Equivalently, 7 < o if the two tetrahedra share a common
triangle and the circumcenter of 7 lies beyond the plane
spanned by that triangle. An example in two dimensions is
shown in Figure 4. We introduce a dummy element w that
represents the space outside the convex hull of S and define
7 < w for every Delaunay tetrahedron 7 that has a triangle
on the convex hull boundary and its circumcenter beyond
the plane of that triangle.

Figure 4: We have 7 < ¢ because 7 and ¢ share a
common edge and the circumcenter of 7 lies on o’s
side of the line that passes through that edge.

Note that 7 < o implies that the circumradius of 7 is less
than that of o. This is also true for pairs 7 < w if we stip-
ulate that the circumradius of w is infinity. It follows that
the relation is acyclic and its transitive closure is therefore
a partial order. The tetrahedra without successor in the
relation are exactly the ones that contain their own circum-
centers. These tetrahedra and their circumcenters are the
sink tetrahedra and sinks as defined above.

Let A, be the set of ancestors of ¢ under the relation,
which includes o itself. A, is maximal iff & has no suc-



cessor. Since one tetrahedron 7 can have more than one
descendent, it can also belong to more than one ancestor
set. We therefore define the set of sinks of 7 as the collec-
tion of circumcenters of tetrahedra that have no successors
and whose ancestor sets contain 7.

In two dimensions, the maximal ancestor sets are dis-
joint. Figure 2 illustrates the concept. Each ancestor set
consists of several white triangles surrounding the sink tri-
angle shown in grey. The bold edges bound ancestor sets.
Intuitively, each ancestor set is the watershed of its sink.

4. SINK-INSERTION

Given a Delaunay triangulation, we improve its mesh qual-
ity by adding sinks to the vertex set. This section studies
the combinatorics of that operation.

4.1 Prestars and flowers

Let © € S be a point in the interior of the convex hull of S,
and assume for convenience that S U {z} is non-degenerate.
Let D be the Delaunay triangulation of S and D, the De-
launay triangulation of S U {z}. We need a name for the set
of simplices in D that cover the same portion of space as the
star of x in D,. This is the prestar of x formally defined as
Ptz = Cl1I—-Cl E, where [ is the set of Delaunay tetrahedra
whose circumspheres enclose = and E is the set of remaining
tetrahedra. We can obtain D, from D by substituting the
star for the prestar,

D, = (D-Ptz)UStz.

This is essentially Watson’s algorithm [9] for constructing
Delaunay triangulations.

The flower of a subset L C D is the union of Delaunay
balls of tetrahedra in L, denoted as F1 L. We are only inter-
ested in the flowers of the prestar and the star of a vertex
z, FIPtx and F1Stz. Figure 5 illustrates the concept by
showing the two flowers for a point z in a two-dimensional
Delaunay triangulation.

Figure 5: The bold edges bound triangles in the star
of z. The light shading indicates the flower of the
prestar, and the dark shading shows the difference
between the flowers of the star and of the prestar.

4.2 Flowers expand

A plane decomposes a ball into two segments. Each trian-
gle of a tetrahedron 7 spans a plane that decomposes the ball
bounded by the circumsphere into two segments. Of these
the one disjoint from 7 is referred to as the ezterior segment
of the triangle. Let L be a set of tetrahedra in Del S. It is
not hard to see that the flower of L is equal to the union of
tetrahedra and exterior segments of boundary triangles in
Cl L i.e. triangles that belong to only one tetrahedron in L.

As before, assume that x ¢ S is a point in the interior of
the convex hull of S. Equivalently, z is an interior vertex of
D,. The boundary triangles in the star of = are the same
as those of the prestar. However, the presence of x pushes
the circumspheres of the incident tetrahedra outwards. As
a consequence, the flower of the star is strictly bigger than
that of the prestar. This is illustrated in Figure 5.

FLOWER LEMMA. FIPtx C F1Stx.

4.3 Point insertion

The purpose of inserting points into a Delaunay triangu-
lation is to locally improve the mesh quality. We use the
ratio r/f to measure the quality of a triangle or tetrahe-
dron, where r is the radius of the circumsphere and /£ is
the length of the shortest edge. For tetrahedra, the small-
est ratio is obtained by the regular tetrahedron for which
r/l = 4/3/8 = 0.612.... The Delaunay refinement algo-
rithms published in the literature are designed to create
triangulations where the maximum ratio is bounded from
above by a constant.

The basic idea of our algorithms is to eliminate tetrahedra
with high ratio by adding their sinks as new vertices to the
Delaunay triangulation. We call one such addition a sink-
insertion. Figure 6 illustrates the idea for the USA data set.
We compare the performance of the algorithm to the tra-

Figure 6: USA data set before adding any sinks and
after incrementally adding 4, 12, and 15 sinks.

ditional approach of using circumcenter-insertions. In the
experimental study we consider three scheduling regimes:
adding points incrementally, in blocks, and in parallel. We
use the constant go as the threshold above which we attempt
to remove triangles or tetrahedra. We need go > 1.0 in order
to prove our algorithms halt after a finite amount of time.
Before explaining the three regimes, we discuss geometric
and combinatorial concepts needed to avoid infinite loops.

4.4 Minimum separation

Let § > 0 be the minimum distance between any two
points in S. For each scheduling regime, we make sure that
all new vertices are placed within the underlying space of
the original triangulation and not closer than é to any of the
other vertices. A straightforward packing argument then im-
plies that the total number of vertices cannot exceed 6/74>
times the volume of the underlying space expanded by 4/2
in every direction.



The circumcenter z of a tetrahedron with ratio r/¢ > go >
1.0 has distance r > £ from the four vertices. The empty
sphere criterion for Delaunay tetrahedra implies that the
distance between z and any original or previously added
vertex exceeds £ > §. Call two spheres (y,q) and (z,7)
orthogonal if ||y — z||* = ¢* + 72 and further than orthogonal
if ||y — z||* > ¢°+r?. If two spheres are orthogonal or further
than orthogonal then the distance between their two centers
is at least as large as the larger of the two radii. We will use
circumspheres of Delaunay tetrahedra with ratios exceeding
0o > 1.0. Hence g, > § and the orthogonality constraint
on the two spheres implies ||y — 2|| > 4.

We also use combinatorial conditions to guarantee the
minimum separation bound. Let x # y be two points not
in S but in the interior of the underlying space. We say
that = and y are independent if the closures of their prestars
are disjoint. Equivalently, the closed stars of z and y in the
Delaunay triangulation of S U {z,y} are disjoint. The fol-
lowing implications of independence will be useful. We state
them using D, D,, Dy, and Dy to denote the Delaunay tri-
angulations of S, S U {z}, SU {y}, and S U {z, y}.

INDEPENDENCE LEMMA. Statement I implies II, IT implies
II1, and III implies IV.

I. Points x and y are independent.
IT. The edge xy does not belong to Dyy.
ITII. The point x does not lie in the interior of the
flower F1Sty in D,.
IV. The point z does not lie in the interior of the
flower F1Pty in D.

ProoOF. I = II. The independence of z and y implies
the disjointness of the stars of z and y in Dyy. Hence zy ¢
Dyy.

II = IIL. If z belongs to int FISty in D, then there is
an empty sphere that passes through = and y. Then zy is
an edge in Dy, which contradicts II.

III = IV. By the Flower Lemma, the flower of the
prestar of y in D is contained in the flower of the star of
yin D,. O

4.5 Scheduling

Incremental insertion is the simplest form of scheduling.
We pick an arbitrary triangle or tetrahedron with ratio r /£ >
0o and insert its sinks or its circumcenter. After insertion,
we use local flip operations to restore the Delaunay trian-
gulation. The minimum separation of § between vertices is
maintained because go > 1.0 and therefore r > £ > 4.

Currently most implementations of three-dimensional De-
launay triangulations are offline. By this we mean that the
set of vertices has to be known in advance and cannot be
changed without recomputing the entire triangulation. In
such a software environment, we cannot afford to retriangu-
late for every new vertex. We thus insert points in blocks,
where a block is a maximal set of sinks or circumcenters of
tetrahedra with r/¢ > go, and all points in the blocks are
centers of Delaunay spheres that are mutually orthogonal
or further than orthogonal. The condition on r/¢ guaran-
tees the minimum separation of § between vertices in the
block and previously added vertices. Orthogonality implies
the same minimum separation between vertices in the block.
The schedule is therefore finite.

For parallel insertion we find the sinks or circumcenters
of all tetrahedra whose ratios exceed go. For each point we
search the simplices in the closure of the prestar and we se-
lect a maximal subset with pairwise disjoint closed prestars.
By definition, the points in this subset are pairwise indepen-
dent. We can therefore add the points in parallel even within
the fairly restrictive exclusive read/exclusive write (EREW)
model of the parallel random access machine (PRAM). As
proved in the Independence Lemma, the points in the max-
imal subset are on or outside each others circumspheres.
This implies that the minimum separation of § between the
vertices is maintained and the schedule is finite.

5. EXPERIMENTS

This section presents the experimental results we obtained
by applying the sink- and circumcenter-insertion algorithms
to improve the mesh quality of two- and three-dimensional
Delaunay triangulations. We begin by describing the as-
sumptions and the measured parameters and continue by
discussing the five data sets included in our experimental
study. The results for each data set are summarized by
displaying the triangulations, tabulating crucial complex-
ity and quality parameters, and plotting the evolution of
size and quality parameters during the iteration of sink-
insertions.

5.1 Assumptions and parameters

Each triangulation in this experiment is a stable subcom-
plez of a Delaunay triangulation, which by definition is a
subcomplex whose circumcenters all lie in the interior of its
underlying space. We are thus able to triangulate rather
general and not just convex domains without having to rep-
resent the domain boundary in a separate data structure.
‘We maintain the boundary and the stability of the subcom-
plex by disallowing the insertion of circumcenters that lie
within the diametral sphere of a boundary triangle. This is
the unique sphere that passes through the three vertices and
whose center lies on the plane of the triangle. (Correspond-
ingly in R? we disallow the insertion of circumcenters inside
diametral circles of boundary edges.) Our algorithms thus
include a boundary test that rejects a point if the closure
of its prestar contains a boundary triangle that contains the
point inside its diametral sphere. Recall that we add sinks
or circumcenters for tetrahedra with ratio /£ > go and we
use go > 1.0 in all cases. For ease of reference we say that
a triangle or tetrahedron with ratio larger than go has low
quality.

We have performed the three scheduling regimes on each
data set, and the results show that the different schedul-
ing regimes do not have a significant effect on the size and
quality of the final triangulation. We therefore report the
results of incremental and block scheduling only for the first
data set and restrict ourselves to parallel scheduling for the
rest. The experiments are done on a Pentium II 450MHz
processor with 128 MB of memory. The parallel scheduling
is meant to be used on parallel computers, but our imple-
mentation is on a serial machine. Important issues in par-
allelization, such as how to distribute data structure across
the processors are not addressed. Nevertheless, the reported
running times should give a valid comparison between sink-
and circumcenter-insertion.

5.2 USA data



Figure 2 shows the USA data set with the maximal stable
subcomplex of its Delaunay triangulation. Figure 7 show
the output triangulations after block scheduled sink- and
circumcenter-insertion with ratio threshold g0 = 1.0. The
table below the graphics show that the quality of the two
displayed triangulations and the ones obtained by incremen-
tal scheduling is about the same. The two graphs below
the table plot the evolution of various parameters during
the block iteration of sink-insertions. The first graph shows
the number of low quality triangles, the number of their
sinks, the number of sinks passing the boundary test, and
the number of sinks per block. The second graph shows the
maximum, average, and minimum ratios of the triangles.
Initially, many low quality triangles share the same sinks
and the triangles with lowest quality (highest ratios) tend
to be eliminated first. After the eleventh iteration, when the
average ratio is about 0.8, most low quality triangles contain
their own sinks. Many of them fail the boundary test, which
is why there is no significant improvement after that stage.

5.3 Cuboctahedron data

The graphics in Figure 8 shows the centrally symmetric
input surface of the Cuboctahedron data set. It is a triangu-
lated surface with 7,496 triangles. The minimum, average,
and maximum ratios of these triangles are 0.58, 0.70, and
1.05. The table in Figure 8 shows the quality of the initial
triangulation and the triangulations after sink- and after
circumcenter-insertion.

Although the quality of the input triangles is good, the
quality of initial triangulation is rather poor with r/¢ as
high as 22.80. This makes sense because the absence of
any interior vertices forces skinny tetrahedra. We improve
the quality by parallel scheduling with ratio threshold go =
2.0. The final triangulations after sink- and circumcenter-
insertion have about the same quality, but the running time
for circumcenter-insertion is considerably larger. The graphs
in Figure 8 illustrate the reason. The first graph shows the
evolution of the total number and the number of low qual-
ity tetrahedra. At the beginning nearly all tetrahedra have
low quality. The first ten iterations reduce the total num-
ber of tetrahedra from 14,670 to 9,840 while increasing the
number of vertices by 105. The second graph plots the evo-
lution of the number of sinks of low quality tetrahedra and
the size of their independent subsets. We observe that low
quality tetrahedra tend to share sinks. They do not share
circumcenters, and as a consequence sink-insertion spends
significantly less time on boundary and independence tests.
The third graph shows the evolution of the maximum ra-
tio r/¢. Similar to the two-dimensional case, the tetrahedra
with the lowest quality (highest ratios) tend to be eliminated
first.

5.4 Paraboloid data

The graphics in Figure 9 shows the input surface of the
Paraboloid data set. It is a triangulated surface with 6,272
triangles. The minimum, average, maximum ratios of these
triangles are 0.58, 0.80, 1.31. As in the previous exam-
ple, the quality of the surface triangles is good but that
of the initial tetrahedra is poor. We improve the quality
by parallel scheduling with go = 2.0. The quality of the
tetrahedra in the initial triangulation and in the triangula-
tions after sink-insertion and after circumcenter-insertion is
shown in the table in Figure 9. The latter two triangula-

tions have about the same quality but the running time for
circumcenter-insertion is again significantly larger than that
for sink-insertion. The evolution of size and quality param-
eters shown in the three graphs of Figure 9 is similar to that
observed for the Cuboctahedron data set.

5.5 Star data

The graphics in Figure 10 shows the input surface of the
Star data set. It models a cavity inside the forward seg-
ment of the Reusable Solid Rocket Motor for NASA’s Space
Transportation System. The cavity is where the combustion
starts. It has the shape of a star with eleven fins and is four
meters long. The central cylinder has a radius of 0.5 me-
ter. Each fin is 1.2 meters wide and 0.14 meters thick. The
input surface is triangulated with 53,508 triangles. Their
minimum, average, maximum ratios are 0.578, 1.315, 1.601.
The quality of the surface triangles is good, but the ini-
tial triangulation contains tetrahedra with ratios as high as
14.09. We improve the quality by parallel scheduling with
ratio threshold go = 2.0. The table in Figure 10 shows the
quality of the initial triangulation and of the triangulations
after sink-insertion and after circumcenter-insertion. Both
algorithms give about the same quality, but sink-insertion is
again faster, by a factor of about five. The graphs in Figure
10 show the evolution of size and quality parameters during
the iteration. The graphs are different from the previous two
examples, most likely because of the different shape charac-
teristics. The Star model is relatively thin, which causes
less clustering of low quality tetrahedra and therefore a dif-
ferent ratio between the number of such tetrahedra and the
number of their sinks.

5.6 Head data

The graphics in Figure 11 shows the input surface of the
Head data set. It models a solid propellant inside the for-
ward segment of the Reusable Solid Rocket Motor. Geo-
metrically it is a four meter long cylinder with the star of
the previous example removed. The input surface is tri-
angulated with 67,940 triangles. The surface triangulation
around the star cavity is the same as that in the data set
Star. The minimum, average, maximum ratios of the sur-
face triangles are 0.577, 1.206 and 1.601. The quality of the
surface triangles is good, but the initial triangulation has
again tetrahedra of poor quality. We improve the triangu-
lation by parallel scheduling with ratio threshold go = 2.0.
After improvement, the number of tetrahedra nearly dou-
bles, which should be compared to less than 50% increase
in the previous three examples. Sink-insertion is about four
times faster than circumcenter-insertion. The difference in
speed is less than in the previous examples, most likely be-
cause the initial triangulation has better quality than before.

5.7 General results

Sink-insertion gives about the same mesh quality as cir-
cumcenter-insertion, but it does this in less time. For exam-
ple, it parallel scheduling most of the running time is spent
on computing prestars and finding independent sets. The
cost for this effort is roughly proportional to the number of
candidate points considered. While there are as many can-
didate circumcenters as there are low quality tetrahedra, our
experiments suggest that even if there are many low qual-
ity tetrahedra there are only few but heavily shared sinks.
Finding maximal independent sets of sinks is therefore sig-



nificantly faster than finding such sets of circumcenters.
Another advantage of sink-insertion is numerical in na-
ture and has to do with ill-conditioned matrices which arise
when we compute circumcenters of rather flat tetrahedra.
We occasionally experienced numerical errors of this kind.
No such troubling sink tetrahedra have been encountered.

6. CONCLUSIONS

This paper studies the effect of using sinks instead of cir-
cumcenters in the Delaunay refinement algorithm for im-
proving the mesh quality of three-dimensional Delaunay tri-
angulations. While the restriction to sinks implies a dra-
matic improvement of running time, it has surprisingly lit-
tle effect on the mesh quality. Mechanisms for refining the
boundary and for removing slivers are not included in this
paper as they shed no light on the primary subject of the
study. Notwithstanding we plan to enhance the Delaunay
refinement algorithm with such capabilities in order to reach
the full potential of the Delaunay refinement method.
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