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Abstract

Given a finite point set in
���

, the surface reconstruction problem asks for a surface
that passes through many but not necessarily all points. We describe an unambigu-
ous definition of such a surface in geometric and topological terms, and sketch a
fast algorithm for constructing it. Our solution overcomes past limitations to special
point distributions and heuristic design decisions.
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1 Introduction

The original version of this paper was written in 1995. To preserve that version,
we have limited modifications to minor stylistic changes and to the addition of a
paragraph that accounts for the new and related work during the years from 1996 to
2001. All citations of work during these five years use letters rather than numbers
in the citation.

Problem and solution. The input to the surface reconstruction problem is a finite
set of points scattered in three-dimensional Euclidean space. The general task is
to find a surface passing through the points. There are of course many possible
such surfaces, and we would want one that in some sense is most reasonable and
best represents the way the input points are distributed. We allow for the case that
some points lie off the surface inside the bounded volume. We propose a solution
that provides structural information in terms of a mesh or complex connecting the

�
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points. Section 2 will be more specific about what exactly we mean by this and what
properties we expect from the mesh.

The first part of our solution consists of a description of the surface in geomet-
ric and topological terms. There are minimum distance functions and ideas from
Morse theory turning these functions into vector fields and cell decompositions. For
generic data sets, this description is unambiguous and completely determines the
surface. The second part of our solution is an efficient algorithm that constructs
the defined surface. The algorithm is based on Delaunay complexes and extracts
a subcomplex through repeated collapsing. All ideas and results generalize to any
arbitrary fixed number of dimensions. For reasons of specificity, the discussion in
this paper is exclusively three-dimensional.

Work prior to 1995. The surface reconstruction problem has a long history. Most
of the previous work assumes some kind of additional structure given along with the
data points. A common assumption is that the points lie on curves defined by slicing
a surface with a collection of parallel planes [9, 13]. The surface reconstruction is
reduced to a sequence of steps, each connecting two curves in contiguous planes.
Another common assumption is differentiability [11]. The surface is constructed
from patches defining diffeomorphisms between

���
and local neighborhoods on the

surface. Fairly dense point distributions are required to allow the reconstruction of
tangents and normals.

We are interested in the general surface reconstruction problem that admits no
assumption other than that the input consists of finitely many points in

� �
. At the

time of writing this paper in 1995, we found only three pieces of work studying
the general problem. In two cases, the surface or shape is obtained from the three-
dimensional Delaunay complex of the input points. This is also the approach fol-
lowed in this paper. Boissonnat [1] compromises the global nature of the approach
by using local rules for removing simplices from the Delaunay complex. The re-
sulting surfaces are somewhat unpredictable and not amenable to rational analysis.
Edelsbrunner and Mücke [6] use distance relationships to identify certain subcom-
plexes of the Delaunay complex as alpha shapes of the given data set. For uneven
densities, these shapes tend to either exhibit a lack of detail in dense regions or
gaps and holes in sparse regions. Rather than subcomplexes of the Delaunay com-
plex, Veltkamp [15] uses two-parameter neighborhood graphs to form surfaces from
points in space. Depending on the choice of the parameters the graphs may exhibit
self-intersections or poor shape representation.

Development after 1995. The algorithm described in this paper has been imple-
mented in 1996 at Raindrop Geomagic, which successfully commercialized it as
geomagic Wrap. It is also described in U. S. Patent No. 6,3777,865, which has
issued on April 23, 2002.

The surface reconstruction problem has enjoyed increasing popularity over the
last few years, both in computer graphics and in computational geometry. A num-
ber of essentially two-dimensional algorithms that rely primarily on density and
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smoothness assumptions of the data have been developed [C, E, F, J]. In parallel,
the use of three-dimensional Delaunay complexes has been refined [A, B, D, I]. The
focus of that work is the detailed study of Delaunay complexes for data sets that sat-
isfy density and smoothness assumptions, and to exploit their special structure for
surface reconstruction. Possibly surprisingly, neither development has come close
to reproducing the ideas presented in this paper.

From a completely different angle, Robin Forman’s development of a discrete
Morse theory for simplicial complexes [H] is related to work in this paper. Accord-
ing to Forman, a discrete Morse function is a map

�
from the collection of simplices

to the real numbers such that for every simplex � the following two conditions hold:

(1) there is at most one face ����� with ���
	�������
	������ and
��� ����� ��� ��� , and

(2) there is at most one coface ����� with ����	�������
	��! �� and
��� �"�#� ��� ��� .

The theory developed in this paper uses relations that correspond to functions vio-
lating these conditions and thus does not seem to fit into Forman’s framework. It
would be interesting to elucidate the connection between the two approaches to a
discrete Morse theory. Another recent development that resonates with the work in
this paper is the introduction of persistent Betti numbers [G]. It relates to the discus-
sion of granularity in Section 9, in which it is suggested to construct coarse-grained
decompositions of the Delaunay complex by merging discrete stable manifolds, pos-
sibly by suppressing some of the less persistent critical points. Maybe the time has
come to integrate all these ideas and to develop a hierarchical approach to surface
reconstruction based on a more extensive use of algebraic structures developed in
topology.

Outline. Section 2 displays sample results obtained with software implemented
at Raindrop Geomagic. Section 3 reviews Delaunay complexes for finite point sets
in
� �

. Section 4 reviews notions from Morse theory and constructs a family of
Morse functions from local distance information. Section 5 derives an ordering
principle for the Delaunay simplices from the Morse functions. Section 6 studies
mechanisms to cluster simplices based on the ordering. Section 7 defines the basic
surface construction as a sequence of collapses. Section 8 discusses generalizations
of the basic construction with and without interactive surface modification. Section
9 mentions possible extensions of the presented results and related open questions.

2 Examples and Properties

We use notation and terminology from combinatorial topology [10] to describe the
surfaces and the algorithm that constructs them. In a nut-shell, that algorithm starts
with the Delaunay complex of the input set and constructs an acyclic partial order
over its simplices. This order is motivated by a continuous flow field in which every
point is attracted by the Voronoi vertex that is nearest in a weighted sense. The
Voronoi vertex at infinity corresponds to a dummy simplex in the relation, and the
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reconstructed surface is obtained by sculpting away all predecessors of that dummy
simplex. We begin by giving a few examples constructed by software implementing
the algorithm.

Sample surfaces. In the simplest and possibly most common case, the surface
constructed from a finite point set in

���
is connected like a sphere, as in Figure

1. With our approach, it is possible to modify the construction and to introduce
tunnels, as illustrated in Figure 2. There are also cases, in which the surface cannot
be naturally closed and remains connected like a disk, as in Figure 3. Finally, if
the points are lined up, it is possible that the surface reconstructed by our algorithm
degenerates to a curve, as in Figure 4.

Figure 1: An engine block surface homeomorphic to a sphere.

In technical terms, the constructed surface is a simplicial complex of dimension
2 with the topology of a possibly pinched sphere. If forced by the distribution of
the data points, the complex can be one- or zero-dimensional. We first introduce the
relevant terminology and then describe the reconstructed surface in more detail.

Spaces and maps. All topological spaces in this paper are subsets of Euclidean
space of some dimension � , denoted by

���
. Without exception, we use the topology

induced by the Euclidean metric in
� �

. The Euclidean distance between points �
and � is denoted by ��� ����� , and the norm of � is the distance from the origin,
which is �	�
� ���	� ���� . Other than for Euclidean � -dimensional space, we need
short notation for the � -dimensional sphere and the � -dimensional ball,

� � � ����� � ������� ���
� � ������ � � ����� � � � ���
� � �����
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Figure 2: The engine block surface in Figure 1 after pushing open a tunnel.

We refer to
� �

as the � -sphere and to
� �

as the � -ball. For example, the 1-sphere is
a circle, the 0-sphere is a pair of points, and the

� � � � -sphere is the empty set. The
2-sphere is what we ordinarily call a sphere. The 2-ball is a closed disk, the 1-ball
is a closed interval, and the 0-ball is a point.

Topological spaces are compared via continuous functions referred to as maps.
A homeomorphism, ��������� , is a continuous bijection with continuous inverse.
The inverse of a homeomorphism is again a homeomorphism. � and � are homeo-
morphic or topologically equivalent, denoted �
	�� , if there is a homeomorphism
between them. An embedding is an injective map �������� whose restriction to
the image, � � � � , is a homeomorphism.

A homotopy between two maps ����������� is a continuous function ���
����� � � ������� with � � � � � � ��� � � � and � � ��� � � � � � � � for all � ��� . � and
� are homotopy equivalent, denoted by �"!#� , if there are maps

� ������� and$ ���%�&� and homotopies between $(' � and the identity for � and between� ')$ and the identity for � . Two spaces have the same homotopy type if they
are homotopy equivalent. A space is contractible if it is homotopy equivalent to a
point. Homotopy equivalence is weaker than topological equivalence, in the sense
that �*	�� implies �*!+� .

Simplicial complexes. We use combinatorial structures to represent topological
spaces in the computer. We begin by introducing the geometric elements that make
up these structures. The convex hull of a finite collection of points , is denoted as-/.1032 , . A � -simplex, � , is the convex hull of �  �� affinely independent points. The
dimension of � is ����	���� � . At most four points can be affinely independent in

� �

and we have four types of simplices: vertices or 0-simplices, edges or 1-simplices,
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Figure 3: Points on a saddle surface triangulated to form a patch homeomorphic to a disk.

Figure 4: Points on the moment curve connected to form a curve homeomorphic to an inter-
val.

triangles or 2-simplices, and tetrahedra or 3-simplices. A simplex � � -/.1032�� is a
face of another simplex ��� -/.1032 , , and � is a coface of � , if ��� , . We denote
this relationship by � � � . The boundary of � , � � � , is the union of all proper
faces, and the interior is � 0�� � � � ��� � � . For example, the boundary of an edge
consists of its two endpoints and the interior is the open edge, without endpoints.
The boundary of a vertex is empty and the interior is the vertex itself.

A simplicial complex, � , is a finite collection of simplices such that � ��� and
� � � implies � ��� , and � � �
	 ��� implies that �� �
	 is either empty or a face
of both. The dimension of � is the maximum dimension of any of its simplices.
A principal simplex has no proper coface in � . For example, if ����	�� ��� then
every tetrahedron in � is a principal simplex. A subcomplex is a simplicial complex� � � . The vertex set of � is ����� � � � � � ��� � ���
	�� � � � . � is connected if
for every non-trivial partition ����� � � ��� ���� � � there is a simplex � ��� that has
vertices in � � and in � � . The underlying space is

�� � �� �������! � . The interiors of
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simplices partition the underlying space. In other words, for every � � �� � �� there is
a unique � � � with � � � 0�� � .

Special subsets and subcomplexes. The star of a simplex � in a simplicial com-
plex � is the set of cofaces, the closure of a subset

� � � is the smallest subcomplex
that contains

�
, and the link of a simplex � �� is the set of simplices in the closed

star that are disjoint from � :

� � � � � � � � � �����
� ���� � � � � �� � � ��� � � ������ � � � � � ���	� � � � � � � ��
 ���
In other words, the link consists of all simplices in the closed star of � that do
not belong to the (open) star of any face of � . Links can be used to introduce
combinatorial notions of interior and boundary. They are defined relative to the
space that contains the complex, which in this paper is

� �
. The interior of � is

the set of simplices, � , whose links are homeomorphic to spheres of appropriate
dimension, and the boundary consists of all other simplices:

� 0�� � � � � �� � �� ��� � �� 	 � ������ � � � �� � � � � � � 0�� � �
In
� �

, the boundary of a simplicial complex consists of all simplices of dimension
2 or less that are not completely surrounded by tetrahedra.

Surface properties. Let � � ��� be finite. The solution to the surface reconstruc-
tion problem proposed in this paper is a simplicial complex, � . Its underlying space
is what we call a pinched � -sphere, that is,

�� � ��
is the image of a map � � � � � � �

and every neighborhood of � contains an embedding of
� �

in
� �

. Another way
to express the latter condition is that for every real ��� � there is an embedding
� � � � � � �

with ��� � � ��� � � � ������� for every � � � � . As we will see in Section
6 — which contains the formal definition of � — not every topological type of
a pinched 2-sphere can be realized by � . Here we just list a few not necessarily
independent properties of � :

(P1) ��� � � � � � .

(P2) � is connected.

(P3)
� � � �� � ��

consists of �  ��� � open components exactly one of which is
unbounded.

Let � be the unbounded component, and let  "!#� be a complex triangulating the
complement of � , that is,

��  �� � ��� �$� . Our algorithm implicitly constructs such a
complex  that satisfies the following again not necessarily independent properties:

(P4) ��� � �  �%� .
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(P5) If � � � then  �%� .

(P6)
��  ��

is contractible.

(P7) � � � �  .

(P8)  may have principal simplices of dimension less than 3.

We also consider variants of the basic construction yielding complexes � that vio-
late property (P2) and complexes  that violate (P4) and (P6).

3 Delaunay Complexes

The complexes � and  of Section 2 are both constructed as subcomplexes of the
Delaunay complex of the data set. This section introduces Delaunay complexes and
mentions properties relevant to the discussions in this paper.

Voronoi cells and Delaunay simplices. Let � be a finite set in
� �

. The Voronoi
cell of � � � is

��� � ����� � � � ��� � � ��� ��� ��� � for all � � � � �
Let ��� � � � � � � � � � for every ��� � . Any two Voronoi cells have disjoint in-
teriors and the collection of all Voronoi cells, �	� , covers the entire

� �
. Throughout

this paper, we assume the generic case, in which no four points lie on a common
plane and no five points lie on a common sphere. The algorithmic justification of
this assumption is a simulated perturbation, as described in [5]. In the generic case,
two Voronoi cells are either disjoint or they meet along a common two-dimensional
face. Three cells either have no points in common or they meet along a common
line segment or half-line. Four cells either have no points in common or they meet
in a common point. Five or more cells have no points in common.

The intersection pattern among the Voronoi cells can be recorded using a simpli-
cial complex. More specifically, the Delaunay complex of � , defined as


 � � � � � -�. 032 � ��� � ��� 
 ���
is such a record. The non-degeneracy assumption implies that


 � � � is a simplicial
complex in

� �
. Its underlying space is

�� 
 � � � �� � -�.1032 � , and its vertex set is
����� � 
 � � � � � . Whether or not a simplex belongs to


 � � � can be decided by a
local geometric test. Call a sphere in

���
empty if all points of � lie on or outside

the sphere.

FACT 1. � � -�.1032�� � 
 � � � iff there is an empty sphere that passes through all
points of � .

If � is a tetrahedron then -�� � � � ��� and there is a unique sphere ����� � �"� passing
through the four points. We call � the orthosphere of � or � .


 � � � contains exactly
all tetrahedra whose orthospheres are empty. The triangles, edges, and vertices in
 � � � are the faces of these tetrahedra.
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Weighted points. In some circumstances, it is useful to assign real weights to the
points in � . With the proper generalization of definitions, all results extend from
the unweighted to the more general weighted case, in which � is a finite subset
of
� � � � . It is convenient to be ambiguous about the meaning of a point � in

� : it can either be the weighted point � � ��� � � or its projection to
���

. In
either case, the weight is denoted by � � � �

. The weighted square distance of
a point � � � �

from the weighted point � is ��� � � � � ��� � � � � ��� � . Voronoi
cells and Delaunay simplices can be defined as before, substituting weighted square
distance for Euclidean distance. We still have

�� 
 � � � �� � -/.1032 � . It is possible that
����� � 
 � � � is not equal to but rather a proper subset of � . Specifically, � � � is not
a vertex of


 � � � iff its Voronoi cell is empty.
To extend the local criterion expressed by Fact 1, we need to generalize the no-

tion of orthosphere. A sphere with center � � � �
and radius � is orthogonal to

a weighted point � if � � ��� � � ��� �  �� � , and it is further than orthogonal if
� � ��� � � exceeds � �  	� � . Here, � � � � and it is convenient to choose � from the
set of non-negative multiples of the real and the imaginary units, 1 and


 � � . We
call a sphere empty if it is orthogonal to or further than orthogonal from all weighted
points in � .

FACT 2. � � -/.1032�� � 
 � � � iff there is an empty sphere orthogonal to all
weighted points in � .

Again we assume non-degeneracy. In the weighted case, this means that every four
weighted points have a unique sphere orthogonal to all of them, and no five points
have such a sphere. The orthosphere of a tetrahedron � � -�. 0 2�� is the sphere
orthogonal to the four weighted points in � .


 � � � contains exactly all tetrahedra
with empty orthosphere. The triangles, edges, and vertices in


 � � � are the faces of
these tetrahedra.

Relative position. Call the non-empty intersection of �  � Voronoi cells an � -
cell, for ��� � � � and � � � � � . An intersection of Voronoi cells ���� � � is
an � -cell iff � � -�.1032�� is a � -simplex in


 � � � . We are interested in the position
of � and � relative to each other in space. Their affine hulls are orthogonal flats of
complementary dimension, �  � � � , that intersect at a point � . In the assumed
generic case, � is either contained in the interior of � or it lies outside � . Similarly, �
is either contained in � 0 � � or � ��� . We distinguish four mutually exclusive cases:

(R1) � 0�� � ��� 0�� � � 
 ,
(R2) � 0�� � ��� 0�� ��� 
 and � 0 � � � ��� � ��
 ,
(R3) � 0�� � ��� 0�� ��� 
 and ��� � ��� 0�� � ��
 ,
(R4) � 0�� � � ��� ��� ��� � ��� 0�� ����
 .
Figure 5 illustrates all cases for all values of � . For � � � , only Cases (R1) and
(R3) and for � � � only Cases (R1) and (R2) are possible. The � -cell � is the set
of points � � � � for which the sphere with center � and radius ��� � � � , with � � � ,
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Figure 5: From left to right: Cases (R1), (R2), (R3), and (R4), and from top to bottom: ����� ,
1, 2, and 3. In each case, the center of the smallest empty sphere orthogonal to all ���	� is 

and the intersection of the two affine hulls is � .

is empty and orthogonal to all points in � . The smallest such sphere is centered at
the point � ��� closest to the point ��� ��� � � ��� � . This implies that for � � � ,
the Cases (R2) and (R4) cannot occur unless the points are weighted. For � �%� , all
four cases are possible even in the unweighted case.

4 Morse Functions

The complex  of Section 2 is a subcomplex of

 � � � constructed by collapsing

Delaunay simplices from the outside in. To decide which simplices to collapse and
which not, we construct an acyclic relation among the Delaunay simplices, which is
motivated by a particular family of Morse functions. This section constructs these
functions after reviewing relevant concepts from Morse theory. The reader inter-
ested in a more complete account of that theory is referred to Milnor [14] or Wallace
[16].

Vector fields and flow curves. We are interested in smooth functions
� � � � � �

that satisfy a few genericity assumptions. Smoothness means that
�

is continuous
and infinitely often differentiable, but we will see later that this can be weakened to
twice differentiable or even only once differentiable and almost everywhere twice
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differentiable. The gradient of
�

is a vector field � � � � � � � �
defined by

� ��� � � �
��� �� � � � � �	� � �� � � � � ��� � �� � � � � ��� �

It is smooth because
�

is smooth. A point � � � � is critical if � ��� ��� � � � � � � � � .
The Hessian at � is the three-by-three matrix of partial second derivatives. A critical
point is non-degenerate if the Hessian at that point has full rank. Non-degenerate
critical points are necessarily isolated. A Morse function is a smooth function,

�
,

whose critical points are non-degenerate. The fundamental Morse lemma asserts
that for every critical point � there are local coordinates originating from � so that

��� � � � ��� ����� � � � � � �� � � ��
for all � in a neighborhood of � . The number of minus signs is the index of � . For
example, critical points of index 0 are local minima, and critical points of index
3 are local maxima. Critical points of index 1 and 2 are different types of saddle
points.

The gradient of
�

defines a first-order differential equation. A solution is a max-
imal embedding � � � � � �

whose tangent vectors agree with the gradient of
�

.
For each non-critical point � � ��� , there is a unique solution or flow curve �	� that
contains � , that is, � ���
� ��� � for some

� � �
. It follows that two flow curves are

either the same or disjoint. The orientation of
�

from �� to  � imposes an ori-
entation on the flow curve. It is convenient to compactify

� �
to
� �

by stipulating a
critical point � at infinity. Then every flow curve starts at a critical point and ends
at a critical point. In this paper, � will only be an endpoint of flow curves and we
define its index to be 3. Let � � � � be the collection of critical points, including � .
The stable manifold of � ��� � � � is��� � ���� � � ��� � � � ��� ��� � � � as

� �� � �

If the index of � is � , then the stable manifold consists of � and a
� � � � � -dimensional

sphere of flow curves. For all � ��� ,
���

is the image of an injective map from
���

to
� �

. If
���

fails to be homeomorphic to
� �

that is only because it is possible
that flow curves ending at � share the same starting point.

���
is the image of an

injective map from
��� � � � � , the punctured three-dimensional space, to

� �
. The

stable manifolds are mutually disjoint open sets that cover the entire
� �

. We call
this the complex of stable manifolds and write

� 	 � � � ��� � � ��� � � � ���
The � -cells of

� 	 � are the stable manifolds of critical points of index � .

Distance from empty spheres. Given a finite set � of weighted or unweighted
points in

� �
, we construct a real-valued function by considering empty spheres.

Think of a sphere � � � � � � � as a weighted point
� � � � � � � � � � � . With this
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interpretation, the weighted square distance of a point � � � �
from � is well-

defined as ��� � � � � �	� ��� � � ��� � . Consider the function that maps every point
� � � �

to the minimum weighted square distance from any empty sphere. For a
point inside the convex hull of � , the minimum weighted square distance is defined
by the orthosphere of a Delaunay tetrahedron. For a point outside the convex hull,
the minimum weighted square distance is defined by an infinitely large sphere or
hyperplane that supports the convex hull in a triangle. This sphere can be interpreted
as the orthosphere of an infinitely large tetrahedron spanned by the triangle and a
point at infinity.

The exact shape of this infinitely large tetrahedron can be obtained by construct-
ing the Voronoi cells for the set of orthospheres, including the ones of infinite size.
To eliminate the remaining ambiguity, we approximate each infinitely large sphere
by a sphere of radius

�� that is orthogonal to the same three weighted points. As
�

goes to zero, some of the Voronoi cells do not change, some grow and eventually be-
come unbounded, and some cells disappear to infinity. The first kind are the original
Delaunay tetrahedra, and the second kind are the infinitely large tetrahedra defined
by convex hull triangles. Together, the two types of tetrahedra cover the entire

� �
.

Let � � be the set of tetrahedra of both types. We construct $ � � � � �
by defining$ � � � � 	 ��� � � � ��� ��	 � � � � � �
� � � . For a point � , the relevant orthosphere is

defined by the tetrahedron that contains the point � .

FACT 3. If ����� ��� � then $ � � � � � � ��� ��	 � � � .
Note that $ � � � �  � if � � -�.1032 � . This is a slight inconvenience in the sub-
sequent discussion. All difficulties can be finessed by again approximating each
infinitely large sphere by a sphere of radius

�� . To simplify the discussion, we do not
explicate this approximation, but we do pretend that $ is a continuous map from

� �

to
�

.

Smoothing. The function $ is continuous but does not quite qualify as a Morse
function because it is not everywhere smooth. Smooth functions can be derived
from $ using appropriate cut-off functions blending between adjacent Delaunay
tetrahedra. Figure 6 illustrates the effect of smoothing on Delaunay edges in

� �
.

We construct an infinite family of smooth functions
��

approximating $ . Consider
the graph of $ � � � � �

, which is � � � � � � $ � � � � � � � � � � � ���
. It is a

three-dimensional manifold that consists of finitely many smooth patches, which
fit together in a continuous but non-differentiable manner. Let ��� � be real, let
� � � ��� � ��� � ��� � � � � , and consider �  
� � � � �  �� � � ��� ��� �
� � � .
For sufficiently small positive � , the lower boundary of �  �� � is the graph of a
differentiable function

��� � � � � 	 � 0 � � � � ��� � � ���� � � � �
The

���
are not smooth in the sense of being infinitely often differentiable. Still, they

are everywhere differentiable and almost everywhere twice differentiable, which
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Figure 6: From top to bottom: the gradient of ��� on the left and its limit, ��� , on the right for
a centered, a confident, an equivocal edge in ��� . The centered and confident edges repel a
flow curve unless it lies exactly on the edge. The equivocal edge is crossed by an interval of
bending flow curves.

suffices for the purposes of this paper. Most importantly, the notions of gradient,
critical point, and flow curve are defined. For example, outside the convex hull of
� , $ and therefore the

���
are approximately infinitely steep and the flow curves go

quickly to infinity. By assumption of non-degeneracy, the
��

are twice differentiable
at all critical points, and we can define indices and stable manifolds as before.

Limit construction. We use limit considerations to construct a vector field for $ .
For every point ��� ��� , define � $ � � � � � ��	 �
	�� � � � � � � . � $ is a vector field albeit
not continuous because $ is not differentiable, as seen in Figure 6. Observe that
the

� �
have identical critical points. In other words, � � � � � � � � � � � for any two

sufficiently small � �%� � � . The following relation between $ and the
� �

is fairly
straightforward to prove.

FACT 4. � � � � is a critical point of
���

iff � $ � ��� � � � � � � � � , and the index of � is� iff the Delaunay simplex � that contains � in its interior has dimension � .
The vector field � $ does not enjoy some of the nice properties of the � �� . In
particular, � $ is not continuous. We finesse some of the resulting difficulties with
limit considerations. As an example, consider a non-critical point � � � �

. For
each sufficiently small �$� � , there is a unique flow curve �	�� � of � � � that contains
� . Define the limit curve for � as � � � � �
	 �
	�� ���� � . The curve � � is a continuous
though generally not a smooth embedding of

�
in
� �

. Indeed, � � is piecewise linear,
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and for each simplex � , � � � � 0�� � is either empty, a point, or a line segment. While
two flow curves are either disjoint or the same, two limit curves can partially overlap.
However, once they separate they stay apart. In other words, if � � � � � ��� then
the portions of � � and ��� preceding � are the same. The reason for this is the
repulsion of nearby flow curves by centered and confident simplices. Only equivocal
simplices attract nearby flow curves, but these curves pass right through the simplex,
without ambiguity or merging of curves.

Based on the definition of the � � , we can consider limits of stable manifolds and
the complex they form. These limits provide the guiding principle motivating our
surface construction method. At his moment, we recall that � refers to the surface
and  refers to a triangulation of the portion of

� �
bounded by � .

INTUITION. In the limit,  triangulates the complement of the stable manifold of� and � is the boundary of  .

We will take small liberties in translating this intuition into an unambiguous con-
struction, which will be given in Section 6.

5 Ordering Simplices

The flow and limit curves motivate the construction of an acyclic relation over the set
of Delaunay simplices. The complexes � and  of Section 2 are then constructed
by collapsing simplices from back to front in the relation.

Flow relation. Introduce a dummy simplex, � , that represents the outside, or com-
plement of

�� 
 � � � �� . It replaces the collection of infinitely large tetrahedra intro-
duced in Section 4. All tetrahedra in this collection have the same flow behavior
and can be treated uniformly. We deliberately choose the same name, � , for the
dummy simplex and the dummy critical point, and this will not cause any confu-
sion. By definition, the faces of � are the convex hull faces, which are the simplices
in
� � 
 � � � . Let � � 
 � � � � � � � . The flow relation, � � ��� � , is constructed

to mimic the behavior of the limit curves. Specifically, � � � � � if � is a proper
face of � and of � and there is a point � � � 0�� � with � � passing from � 0�� � through
� to � 0 � � . We pronounce this as � precedes � and � precedes � . The condition im-
plies that every neighborhood of � contains a non-empty subset of � � � � 0�� � and a
non-empty subset of � � ��� 0 � � . We call � a predecessor and � a successor of � .
The sets of descendents and ancestors are


 ����� � � � � �	�

�� �


 ��� � �
 0�- � � � � � � �

� ��

 0 - � �

It is convenient to study the flow relation by distinguishing three types of Delaunay
simplices: centered, confident, and equivocal. These are related to the classification
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of Delaunay simplices introduced in Section 3 and illustrated in Figure 5. The
three types are mutually exclusive and exhaust all possible Delaunay simplices. For
each type, we specify predecessors and successors in terms of their local geometric
properties.

Centered simplices. A simplex � � � is centered if, for every � � � 0�� � , the
portion of � � succeeding � is contained in � 0�� � . Illustrations of a centered edge
and a centered triangle can be seen in Figures 6 and 7. In words, limit curves enter
but do not exit � 0 � � . In the case of ��� � , the limit curves diverge, and in the case

Figure 7: From left to right: a centered, a confident, an equivocal triangle in ��� . We re-
member this terminology by thinking of a triangle that contains its own flow as confident. If
on top of its own flow it also contains the limit point, we think of it as overly confident or
(self-)centered. We think of a triangle that is too weak to contain its flow as equivocal.

of � � 
 � � � , they converge towards a critical point � in the interior of ��� -�. 0 2 � .
This point is also contained in the interior of the corresponding � -cell ���  ��� . It
follows that � and � fall into Case (R1), which is illustrated by the leftmost column
in Figure 5. The index of � is the dimension of � .

FACT 5. A Delaunay simplex � � 
 � � � with dual Voronoi cell � is centered iff
� 0�� � ��� 0�� � � 
 . The intersection is a point � � ��� , � is critical for all

� �
,

and the index of � is ���
	�� .

Since the limit curves do not exit its interior, � has no successors in the flow relation.
All predecessors are faces, but in general not all faces are predecessors of � .

Confident simplices. A simplex � � � is confident if it is not centered and for
every � � � 0 � � there is a sufficiently small neighborhood

�
of � with � � � � �

� 0�� � . Illustrations of a confident edge and a confident triangle can be seen in Figures
6 and 7. Confident simplices are quite similar to centered ones, in the sense that they
would be centered if they covered a large enough part of their affine hull. In other
words, the affine hull of ��� -/.1032�� intersects the interior of the corresponding � -
cell � �  ��� . Thus, � and � fall into Case (R2), which is illustrated by the second
column from the left in Figure 5. All tetrahedra that are not centered are confident.

FACT 6. A Delaunay simplex � � 
 � � � with dual Voronoi cell � is confident iff
� 0�� � ��� 0�� � �%
 and � 0�� � � ��� � �%
 .
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All predecessors and successors of a confident � are faces of � . To determine which
faces are successors, consider the center of the smallest orthosphere of � . This is the
point � � � 0�� � � ��� � , which lies outside � 0�� � . Let ��� ���
	 � and consider each� � ��� � -dimensional face � of � . By assumption of general position, the affine hull
of � does not contain � . Either ��� � separates � and � 0 � � within ��� � or � and � 0�� �
lie on the same side of ��� � . A proper face � of � is a successor iff the affine hulls
of all

� � � � � -dimensional faces � of � that contain � separate � and � 0�� � . Observe
that there is a unique lowest-dimensional successor � . It has the property that the
successors of � are precisely the proper faces of � that are cofaces of � . Every other
proper face of � is either a predecessor of � or neither a successor nor a predecessor.

Equivocal simplices. A simplex � � � is equivocal if � � ��� 0�� � � � for every
point ����� 0�� � . Illustrations of an equivocal edge and an equivocal triangle can be
seen in Figures 6 and 7. The center � of the smallest empty sphere orthogonal to
all � � � , with � � -/.1032 � , lies outside the affine hull of � . In other words, the
affine hull of � misses the interior of the corresponding � -cell, ��� �� � . Thus �
and � fall into Cases (R3) or (R4), which are illustrated by the right two columns of
Figure 5.

FACT 7. A Delaunay simplex � � 
 � � � with dual Voronoi cell � is equivocal iff
� 0�� � � ��� � �%
 .

All predecessors and successors are cofaces of � . For example, an equivocal triangle
has exactly one predecessor, a tetrahedral coface, and exactly one successor, the
other tetrahedral coface. The second coface can also be � . All predecessors and
successors of an equivocal simplex are confident or centered. Symmetrically, all
predecessors and successors of confident and centered simplices are equivocal. An
equivocal edge or vertex can have an arbitrary number of successors, but there is
always only one predecessor. This fact is important and deserves a proof.

CLAIM 8. Every equivocal simplex has exactly one predecessor.

PROOF. Let � be equivocal and � � � 0�� � . Consider the collection of limit curves
� � that pass through � . As mentioned earlier, all � � approach � from the same
direction although they possibly leave � in different directions. Since before � all
� � are the same, we consider only � � and in particular a sufficiently small portion of
� � immediately preceding � . This portion is a line segment contained in the interior
of a simplex � � -/.1032 , . We have � � � and � is confident. Every limit curve that
intersects � 0�� � does so in a portion that lies on a line passing through the center �
of the smallest empty sphere orthogonal to all � � , . It follows that for every point
� � � 0�� � , a sufficiently small portion of � � immediately preceding � lies in the
affine hull of � and � and therefore in � 0�� � . In other words, each � identifies the
same simplex � , which implies that � is the only predecessor of � .

The unique predecessor � of the equivocal � can be determined through local
geometric considerations. Recall the definitions of � and � � ��� � � ��� � . By Fact
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7, we have � � � , and since � � � is closest to � , it lies on the boundary. Let , � �
be maximal with � �  ��� . We have � � , and � � , because � � � � � . The
predecessor of � is � � -�. 032 , .

6 Clustering Simplices

A sink is a simplex � � � without successor in the flow relation. By construction,
the sinks are exactly the centered simplices together with � . We use � to define
for each sink � a set of simplices gravitating towards � . Think of � analogous to a
critical point and of this set analogous to a stable manifold.

Acyclicity. We show that the flow relation is acyclic. This is plausible since the
value of the function $ strictly increases along limit curves. A cycle is a sequence of
simplices � � � � � � ����� � ��� , with � � � and � � � ��� . The algorithm in Section 8
relies on the absence of cycles in the flow relation.

CLAIM 9. The relation � is acyclic.

PROOF. Let ��� � -/.1032 � � 
 � � � , and let ��� � � ��� � �	� � be the smallest empty
sphere orthogonal to all � � � . Consider �
� � � � and note that ��� cannot be centered
since otherwise it has no successor. If �
� is confident then � � is equivocal and we
have � � � � � and ���
	�� � � ����	�� � . If � � is equivocal then � � is centered or
confident. Hence, � � ��� � and by assumption of non-degeneracy we have � �� � � �� .
To prove a cycle cannot exist, we assign to each � � the pair

� � �� � � ���
	�� � � . The pairs
increase lexicographically along a chain, which implies the chain cannot come back
to where it started.

Ancestor sets. The analogy between stable manifolds and ancestor sets of cen-
tered simplices is generally correct but troubled by inconsistencies in the details.
The source of the trouble are simplices with more than one successor. Their ex-
istence implies the possibility of non-disjoint ancestor sets. This is in contrast to
stable manifolds of a smooth Morse function, which are pairwise disjoint, but not
unlike the closures of stable manifolds, which can overlap. There are two types of
simplices which may have more than one successor:

(S1) equivocal edges and vertices,

(S2) confident tetrahedra and triangles.

Type (S1) simplices relate to the pinching or flattening of stable manifolds that oc-
curs in the limit. Type (S2) simplices are a result of the non-continuous dependence
of the stable manifolds from the input points. There are no type (S2) simplices in the
two-dimensional unweighted case, where the limit of the complex of stable mani-
folds is the Gabriel graph [12]. Nonetheless, type (S2) simplices appear already in
the two-dimensional weighted and the three-dimensional unweighted cases.
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Despite the possibility of type (S1) and (S2) simplices, ancestor sets retain the
containment relation of the closures of stable manifolds. Let � and � be critical
points of a differentiable map

���
, for a sufficiently small � � � , and recall that

���
and

���
denote their stable manifolds, as defined in Section 4. Let � and � be the

centered simplices with ��� � 0�� � and � � � 0 � � , and recall that
 0�- � and

 0 - �
are their ancestor sets.

CLAIM 10.
��� ��- � ��� implies

 0 - � � ���  0�- � .

PROOF. Assume first that there are no type (S2) simplices. Then the dimensions
of the confident simplices along a chain of the flow relation cannot decrease. If
follows that ����	�� is the maximum dimension of any simplex in the ancestor set of
� , ���
	 ���  0�- ��� ����	�� . The dimension of � is also the index of � . The claimed
subset relation follows because limit curves are approximated by the flow curves as
� goes to 0.

If � contains type (S2) simplices, the dimension of
���  0 - � may exceed the

dimension of � . The claimed subset relation still holds because the simplices � � 0 - � with ���
	 � ������	�� have descendents outside
 0 - � and in particular � is a

descendent of � .

The face-coface relation over the set of stable manifolds is transitive and induces
a partial order over the collection of centered simplices. This relation will be used
in Section 8.

Definition of  and � . Ancestor sets seem slightly too large to faithfully rep-
resent stable manifolds. We introduce a more conservative notion that admits
only simplices whose cofaces have descendent sets contained in ancestor sets. Let� � � be the set of sinks, including � . For a subset

� � � , define its ances-
tor set as the union of ancestor sets of its members,

 0 - � � �������  0 - � . The
conservative ancestor set of

�
is

� 0 - � � � 0�� � � ��� � 
 � ��� �  0 - � �
� � � ��� � 
 � ��� �  0 - � for all ��� � � � � �

Observe that the sets
� 0 - ��� � 0 - � �
� , � � � , do not necessarily cover � . Indeed,

a simplex is not covered by any set
� 0 - � if it belongs to more than one set

 0 - � .
On the other hand,

� 0 - � � � which shows that
� 0 - � is generally not equal to

the union of conservative ancestor sets of its members. In this paper, we are only
interested in

� � � 0 - �
� � 0�� � � ��� � 
 � ��� �  0 - � �
� � � ��� �  0 - �
� � � � ���  0 - � �
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where the union is taken over all sinks � � � . The wrapping surface, � , is the
boundary of

 � � � �
� � ���  0 - � �

where the union is again taken over all sinks � � � . We have � � � 0�� � , by
definition, and therefore  � ���  . In words,  is a simplicial complex. We will
see shortly that

��  ��
is contractible. In summary, � and  have the topological

properties suggested by the analogy between � and the stable manifold of � .

7 Collapsing Simplices

In this section, we show how to construct the complex  by collapsing simplices of
the Delaunay complex. We refer to this algorithm as the basic construction.

Collapses. Consider a simplicial complex � , and let � be a simplex with exactly
one proper coface � � � . In this case, ���
	 � � ����	�� � � and � is a principal
simplex in � . The operation that removes � and � from � is called an elementary
collapse, and we write ��� � � , where � � � � � � � � � � . An elementary collapse
maintains the homotopy type of the complex.

FACT 11.
�� � � �� is homotopy equivalent to

�� � �� .
The homotopy equivalence can be established by constructing a deformation retrac-
tion of

�� � ��
to
�� � � �� . This is a homotopy ��� �� � �� � � � � ����� �� � �� between the identity

map on
�� � ��

and a map from
�� � ��

to
�� � � �� that keeps all points � � �� � � �� fixed for all� � � � � ��� . Such a homotopy is indicated in Figure 8.

a
b

c

Figure 8: The elementary collapse removes the edge ��� together with the triangle ����� . The
corresponding deformation retraction moves all points of ����� parallel to the direction from
the barycenter of ��� to � .

An � -simplex � is free if there is a � � � and a � -simplex � � � such that all
cofaces of � are faces of � . It follows that all cofaces of a free � are free, except for
� , which is a principal simplex in � . The operation that removes all cofaces of the
free � is called a

� � � � � -collapse. The number of simplices removed is �	� � � �  � ,
and the

� � � � � -collapse can be written as a composition of � elementary collapses:

�
� � � � � � � ������� �� �
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In
� �

, the
� � � � � -collapses satisfy � � � � � ��� , and there are six different cases all

illustrated in Figure 9. We use collapses to shrink a subcomplex � of the Delaunay

Figure 9: From left to right, top to bottom: collapsing a tetrahedron from a triangle, an edge,
a vertex, collapsing a triangle from an edge, a vertex, and collapsing an edge from a vertex.
In each case, the collapse removes the tetrahedron, the shaded triangles, the dashed edges,
and the hollow vertices, if any.

complex. Call a pair ��� � collapsible if

(i) �
� � ��� , � is free, � is equivocal, and

(ii) � � � , � is the highest-dimensional coface of � in � , � is the lowest-
dimensional successor of � .

Observe that � � � ��� because � is free. Its coface � may have several successors,
all of which are free because they contain � , which is free.

Correctness. A constructive retraction is an algorithm � that starts with the De-
launay complex and removes simplices by collapsing as long as there are collapsible
pairs. Let ��� be the remaining subcomplex. We claim that every constructive re-
traction correctly constructs  , no matter what sequence of collapses it chooses.

THEOREM. ��� �% for every constructive retraction � .

PROOF. We prove  � � ��� � by induction in the order of increasing descendent
sets. Let � � � ��� . To show � � � �% , recall that � � � � � �% iff
 ���	� �  0 - � for all cofaces � of � . Let ����� be the pair whose collapse removes
� from


 � � � , and note that ��� ��� � . We begin by proving

 � � � �  0 - � . If

� � � then � is equivocal and all successors � are cofaces that have already been
removed. Then


 ��� � �  0 - � by induction and

 ��� � �  0 - � follows. If

� � � then all successors � are proper faces of � and cofaces of � . We just proved
 ����� �  0 - � for all such � and

 � � � �  0 - � again follows. Finally observe

that every coface � of � has either already been removed or � �
� � � . In both
cases we have


 ����� �  0 - � and therefore � � � 0 - � ��� �  .
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We prove � �  by contradiction. Assume � �% � 
 . For each simplex
��� -�. 0 2�� , consider the pair

� � � � � ��� , where � � ���
	�� and � is the radius of
the smallest empty sphere orthogonal to all � � � . By assumption of genericity,
all pairs are different and, as shown in the proof of Claim 9, they lexicographically
increase along chains in the flow relation. Let � be the simplex in � �% with
lexicographically largest pair. Since � �%� , each successor � of � belongs to � .
Furthermore, the pair of � is lexicographically larger than that of � . It follows
that � has no successor in � and is therefore either a tetrahedron or equivocal. To
contradict the first possibility, observe that for every tetrahedron � with


 ����� � 0 - � , there is an alternating sequence of tetrahedra and triangles,

� � � � � � � � � � � ����� � � � � � �
connecting � to � . So � � � implies � � � � , contradicting the choice of � . Second,
consider the case in which � is an equivocal simplex. Let � be the predecessor of � ,
which is unique and confident. The predecessor � and its faces are the only cofaces
of � in � , since all others have larger � � value than � . It follows that � is free and
����� is collapsible, which contradicts � ��� .

The construction of  starts with

 � � � , which is a contractible simplicial com-

plex. The collapses maintain the homotopy type, which implies that
��  ��

is indeed
contractible, as claimed at the end of Section 6.

8 Deleting Simplices

A strength of the basic construction in Section 7 is that the wrapping surface is
unique and its computation is fully automatic. A complementary weakness is the
lack of variability in the result. This section generalizes the basic construction so the
shape of the surface is influenced by the choice of additional parameters. The sur-
face may wrap tighter around input points or develop holes and change its topology.
We first describe a simplex removing operation that changes the homotopy type and
then use this operation to modify the surface.

Discriminating by size. The idea is to collapse simplices not only from � but
more generally from all significant sinks. Recall that each sink, or centered simplex
��� -/.1032�� , with � � � , corresponds to a critical point � ��� 0�� � . Call

� � � � $ � ���
the size of � , where $ is the same as in Section 4. By definition of $ , the sphere
� � � ��

� � � � � is empty and the smallest sphere orthogonal to all � � � . It is
intuitively plausible that large size is indicative of space through which the wrapping
surface may want to be pushed.

The non-degeneracy assumption on the input points implies that all sizes are dif-
ferent. Sort the sinks in order of decreasing size

� � � � � � � � � � ����� � � � � � , where
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� � � � and
� � � �  � . For each index � � � � � , define

 � � � � � 0 - � �
�

��
��� � ��� ���  0 - ��� �

where
� � � � � � � � � �������	� � � � and

� 0�- � � is the conservative ancestor set, as de-
fined in Section 6. Define � � � � �  � . The  � form a nested sequence of sub-
complexes:

 �  � !  � ! ����� !  � � 
 �
Correspondingly, the � � form a nested sequence of wrapping surfaces.

An operation that removes a principal simplex � from a complex � is called
a deletion. In contrast to a collapse, a deletion alters the homotopy type of

�� � �� .
A particular  � is constructed from � by a succession of deletions and collapses.
Each deletion is followed by collapses until no collapsible pairs remain. We refer
to such an exhaustive sequence of collapses as a retraction. For example the basic
construction computes  �  � from � by first deleting � and then performing a
retraction. The complex  � is computed by repeating these two operations �  �
times, once each for � � � � � ��������� � � .
Local modifications. There is no reason other than convenience that requires a
total order of the retractions. Indeed, it is possibly to perform retractions in any order
consistent with the face-coface relation of stable manifolds. Recall that � � � is
the set of sinks, including � . Let � and � be centered simplices and � ��� 0�� � and
� ��� 0�� � the corresponding critical points. The pair � � � is in the sink relation
� � � ��� if

��� � - � ��� , as discussed in Claim 10. We call � a cosink of
� and write

� . ��� for the set of cosinks, including � . The relation is acyclic and
transitive and therefore a partial order. It can be used to locally change or refine
the wrapping surface. To describe how this may work, let

�
and

� 	 be disjoint
sets of centered simplices with  � � � � 0 - � and

� 	 � � � � �  . We
call the set of simplices in the conservative ancestor set of

� � � 	 that belong to
� a front: � � � � � 0�- � � � � 	 � . Locality is understood in terms of � , that
is, changes to the surface are triggered only from simplices in � . We exemplify
this idea by setting a size threshold

�
and removing simplices that have descendents

� with size exceeding
�
. It suffices to consider sinks and we restrict attention to

simplices � in � � � � � � � � � � � � � � � � . To remove a simplex � , we remove
the entire conservative ancestor set of its cosinks. This is repeated for every � � � � .
The local modification of  is completely specified by � and

�
and creates  	 �

� � � 0 - � � � � . � � � � . It is possible that  	 contains a simplex � � � even though
all centered descendents of � and their cosinks have been removed. This is the case
if � has a coface � with at least one centered descendent remaining in  	 . The
construction of  	 is again reduced to a sequence of deletions and retractions: for
each ��� � � , we find all � � � . ��� and repeatedly delete the � without remaining
cosinks. Each deletion is followed by a retraction. Similar to the basic construction,
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the sequence in which the � � � � are removed is irrelevant, since any one results in
the same  	 .

An interesting variant of the above described local deformation expands � � to
include sinks � that become part of � during the process. Only sinks � with size� � � � � are considered. This recursive construction amounts to replacing � � by � � ,
which is the maximal set of sinks � �� with

� � � � �
so that every component of� 0 - � � contains a simplex in � � .

9 Discussion

The solution to the surface reconstruction problem presented in this paper is based
on discrete methods inspired by concepts in continuous mathematics. In particular,
we construct subcomplexes of the Delaunay complex of a finite point set by col-
lapsing and occasionally deleting simplices. Continuous mathematics enters in the
form of Morse functions and their gradient fields, which constitute the rationale for
the rules that decide when to collapse and when not. The remainder of this section
briefly discusses possible extensions of the ideas in this paper and formulates open
questions.

Adjusting granularity. The discrete version of the complex of stable manifolds
can be interpreted as a coarse-grained view of the finer Delaunay complex. Each
stable manifold is represented by a cluster of Delaunay simplices glued together
by the flow relation. We can imagine an extension to a 1-parameter family of flow
relations. The granularity parameter � � � controls the coarseness of the cluster-
ing. We aim at a parametrization with � � �� , � , and  � corresponding to the
Delaunay complex, the complex of stable manifolds, and � � � � . If � � ��� � , then
the clustering for � � should be a refinement of the clustering for � � . The present
discussion conveniently ignores that ancestor sets representing stable manifolds can
overlap and do not exactly partition the set of Delaunay simplices. Eventually, this
set-theoretic inconvenience will have to be dealt with, possibly with concepts simi-
lar to conservative ancestor sets.

A mathematical formulation of granularity will have to be based on size and the
comparison of sizes. Consider for example a centered triangle � shared by tetrahedra
� � and � � . Then

� � � � � � � � and
� � � � � � � � , and we suppose

� � � � � � � � � . It
is plausible to stipulate that for � � � � � � � � � � , the triangle ought to change its
behavior and act like an equivocal triangle with flow from smaller to larger size:
� � ��� � ��� � � . The intuition for this stipulation is to permit a limited amount of
downward flow, namely from � � to � . The permitted amount is bounded from above
by � . The idea of limited downward flow can be generalized to simplices of all
dimensions. For � � � , we cannot expect that the resulting cells are necessarily
contractible. For negative � , we get fewer pairs than in � � � � and therefore a
finer partition of � than for � � � . Variants substituting

� � � � � � � for
� � � � � � � or

cosinks for cofaces � are conceivable.
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Final remarks and open questions. An interesting variant of the basic construc-
tion maintains the wrapping surface � � 
 � � � while adding one point at a time
to � . The Delaunay complex can be constructed in randomized time between con-
stant and logarithmic per simplex [3, 7]. Is it possible to maintain � in about the
same or possibly less time? More generally, we ask for an algorithm that main-
tains � through a sequence of point insertions, point deletions, point motions, and
weight changes. An efficient such algorithm would be useful in conjunction with
a fast algorithm for maintaining the Delaunay complex under such operations. The
implementation of such an algorithm for three-dimensional Delaunay complexes is
described in [8].

Given a viewing point ��� ��� , a depth-ordering of the simplices in � is a linear
extension of the in front-behind relation defined for � . Every Delaunay complex
has a depth-ordering for every viewpoint in space [4], and since � � 
 � � � , this is
also true for � . The depth-ordering opens up the possibility to use hidden-surface
algorithms other than � -buffering to generate pleasing graphical representations.

The ideas presented in this paper can be extended to
� �

and higher dimensions. It
might be worthwhile to develop and implement such an extension, which could then
be used in the analysis of point data beyond three dimensions. Such data is common
in studies of time series, dynamical systems, and other areas of science and applied
mathematics. The independence of the algorithm from assumptions about the data
makes it an attractive approach to discovering structure in point data. The examples
in Section 2 show that the algorithm has the ability to adapt to the dimension of the
data, which is a useful feature in data exploration [2].

We conclude this paper with a question about the stability of the complex of
stable manifolds. Small motion in the input data can cause critical points to appear
or disappear. This causes non-continuous changes in the complex and possibly in
the wrapping surface. It would be interesting to understand how exactly this lack of
stability is related to the phenomenon of overlapping ancestor sets, or more precisely
to the existence of type (S2) simplices, which are discussed in Section 6.
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