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1 Introduction

A finite collection of disks covers a portion of the plane, namely their union. Its size
can be expressed by the area or the perimeter, which is the length of the boundary. We
are interested in how the two measurements change as the disks vary. Specifically, we
consider smooth variations of the centers and the radii and study the derivatives of the
measurements.

We have two applications that motivate this study. One is topology optimization,
which is an area in mechanical engineering [1, 2]. Recently, we began to work towards
developing a computational representation of skin curves and surfaces [7] that could
be used as changing shapes within a topology optimizing design cycle. Part of this
work is the computation of derivatives. The results in this paper solve a subproblem
of these computations in the two-dimensional case. The other motivating problem is
the simulation of molecular motion in molecule dynamics [9]. The setting is in three-
dimensional space, and the goal is to simulate the natural motion of biomolecules with
the computer. The standard approach uses a force field and predicts changes in tiny
steps based on Newton’s second law of motion. The surface area and its derivative are
important for incorporating hydrophobic effects into the calculation [4].

The main results of this paper are inclusion-exclusion formulas for the area and
the perimeter derivatives of a finite set of disks. As it turns out, the area derivative is
simpler to compute but the perimeter derivative is more interesting. The major differ-
ence between the two is that a rotational motion of one disk about another may have a
non-zero contribution to the perimeter derivative while it has no contribution to the area
derivative.

Outline. Section 2 introduces our approach to computing derivatives and states the
results. Section 3 proves the result on the derivative of the perimeter. Section 4 proves
the result on the derivative of the area. Section 5 concludes the paper.
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2 Approach and Results

In this section, we explain how we approach the problem of computing the derivatives
of the area and the perimeter of a union of finitely many disks in the plane.

Derivatives. We need some notation and terminology from vector calculus to talk about
derivatives. We refer to the booklet by Spivak [10] for an introduction to that topic. For
a differentiable map

���������	�
, the derivative at a point 
�� ���

is a linear map
 �������������
. The geometric interpretation is as follows. The graph of


 ���
is an � -

dimensional linear subspace of
�������

. The translation that moves the origin to the point� 
�� � � 
���� on the graph of
�

moves the subspace to the tangent hyperplane at that point.
Being linear,


 � �
can be written as the scalar product of the variable vector !"� ���

with a fixed vector # � � ���
known as the gradient of

�
at 
 :


 �$� � !%�'&)(*# � ��!�+ . The
derivative


 �
maps each 
,� ���

to

 ���

, or equivalently to the gradient # � of
�

at 
 .
In this paper, we call points in

���
states and use them to represent finite sets of

disks in
��-

. For �.&0/�1 , the state 
 represents the set of disks 2435& �76 38��9:3;� , for<>=�?'= 1A@CB , where D 
�E 3 �F� �8
�E 3 �G-IHKJ & 6 3 is the center and 
�E 3 � EL&M9 3 is the radius
of 2 3 . The perimeter and area of the union of disks are maps NO�8P �Q� E8R �S�

. Their
derivatives at a state 
"� � E8R are linear maps


 N � � 
 P � �T� EUR �V�
, and the goal of

this paper is to give a complete description of these derivatives.

Voronoi decomposition. A basic tool in our study of derivatives is the Voronoi dia-
gram, which decomposes the union of disks into convex cells. To describe it, we define
the power distance of a point WX� ��-

from 2Y3 as ZQ3 � WQ�[&]\^W,@ 6 3U\ - @�9 -3 . The disk
thus contains all points with non-positive power distance, and the bounding circle con-
sists of all points with zero power distance from 2_3 . The bisector of two disks is the
line of points with equal power distance to both. Given a finite collection of disks, the
(weighted) Voronoi cell of 2_3 in this collection is the set of points W for which 243 min-
imizes the power distance,

` 3 &ba:WA� � Edc Z 3 � WQ� = Zfe � WQ�^�Fg�h�i�j
Each Voronoi cell is the intersection of finitely many closed half-spaces and thus a
convex polygon. The cells cover the entire plane and have pairwise disjoint interiors.
The (weighted) Voronoi diagram consists of all Voronoi cells, their edges and their
vertices. If we restrict the diagram to within the union of disks, we get a decomposition
into convex cells. Figure 1 shows such a decomposition overlayed with the same after
a small motion of the four disks. For the purpose of this paper, we may assume the
disks are in general position, which implies that each Voronoi vertex belongs to exactly
three Voronoi cells. The Delaunay triangulation is dual to the Voronoi diagram. It is
obtained by taking the disk centers as vertices and drawing an edge and triangle between
two and three vertices whose corresponding Voronoi cells have a non-empty common
intersection. The dual complex k of the disks is defined by the same rule, except that the
non-empty common intersections are demanded of the Voronoi cells clipped to within
their corresponding disks. For an example see Figure 1, which shows the dual complex
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Fig. 1: Two snapshots of a decomposed union of four disks to the left and the dual complex to the
right.

of four disks. The notion of neighborhood is formalized by defining the link of a vertex6 3��"k as the set of vertices and edge connected to
6 3 by edges and triangles,

��� 6 3 &ba 6 e$� 6 e 6�� c 6 3 6 e$� 6 3 6 e 6�� �"k i�j
Similarly, the link of an edge

6 3 6 e is the set of vertices connected to the edge by trian-
gles,

��� 6 3 6 e &ba 6 � c 6 3 6 e 6 � �>k i . Since k is embedded in the plane, an edge belongs
to at most two triangles which implies that the link contains at most two vertices.

Measuring. We use fractions to express the size of various geometric entities in the
Voronoi decomposition. For example, � 3 is the fraction of 2 3 contained in its Voronoi
cell and � 3 is the fraction of the circle bounding 2 3 that belongs to the boundary of the
union. The area and perimeter of the union are therefore

P & Z�� 9 -3 �T3 and N & 	$Z
� 9%3��T3�j
We refer to the intersection points between circles as corners. The corner to the left of
the directed line from

6 3 to
6 e is W 3 e and the one to the right is �W e 3 . Note that W�e 3 &
�W 3 e .

We use � 3 e �Ca < �IB$i to indicate whether or not W 3 e exists and lies on the boundary of
the union. The total number of corners on the boundary is therefore ��� 3 e . Finally, we
define �Q3 e as the fraction of the chord W 3 e W e 3 that belongs to the corresponding Voronoi
edge.

Given the dual complex k of the disks, it is fairly straightforward to compute the�T3 , �T3 , �Q3 e , and �T3 e . For example, �T3 e & B iff
6 3 6 e is an edge in k and if

6 3 6 e 6 � is
a triangle in k then

6 �
lies to the right of the directed line from

6 3 to
6 e . We sketch

inclusion-exclusion formulas for the remaining quantities. Proofs can be found in [6].
Define 2 e3 & a:W � ��- c Z e � WQ� = ZT3 � W � = < i , which is the portion of 2Y3 of 2 e ’s side
of the bisector. Define P e 3 &
������� � 2 e3 � and P e

�
3 &�������� � 2 e3�� 2

�
3 � . Similarly, let N e3



and N e �3 be the lengths of the circle arcs in the boundaries of 2 e3 and 2 e3 � 2
�
3 . Then

�Q3F&MB @
��
� e P e 3 @ � e�� � P e

�
3����� Z 9 -3 �

�T3�&MB @
��
� e N e3 @ � e	� � N e �3
�� � 	$Z 9:3��

where in both equations the first sum ranges over all vertices
6 e � ��� 6 3 and the second

ranges over all
6 e 6�� � ��� 6 3 in k . Finally, let � 3 e_& W 3 e%Wfe 3 be the chord defined by 2 3

and 2 e and define � �3 e & a:W"� ��- c Z �f� W � = Z 3 � WQ� & Zfe � WQ� = < i , which is the portion
of � 3 e on 2 � ’s side of the bisectors. Define 9�3 e &
� �������	� � � 3 e � � 	 and � �3 e &�� �������	� � � �3 e � .
Then

� 3 eY&MB @�� � � � �3 e�� � 	$9 3 e��
where the sum ranges are over all

6 � � � � 6 3 6 e in k . The analytic formulas still re-
quired to compute the various areas and lengths can be found in [8], which also explains
how the inclusion-exclusion formulas are implemented in the Alpha Shape software.

Motion. When we talk about a motion, we allow all /�1 describing parameters to vary:
each center can move in

��-
and each radius can grow or shrink. When this happens, the

union changes and so does the Voronoi diagram, as shown in Figure 1. In our approach
to studying derivatives, we consider individual disks and look at how their Voronoi cells
change. In other words, we keep a disk 243 fixed and study how the motion affects the
portion of 2Y3 that forms the cell in the clipped Voronoi diagram. This idea is illustrated
in Figure 2. This approach suggests we understand the entire change as an accumulation

0 1 32z zzz

Fig. 2: Two snapshots of each disk clipped to within its Voronoi cell. The clipped disks are the
same as in Figure 1, except that they are superimposed with fixed center.

of changes that happen to individual clipped disks, and we understand the change of
an individual clipped disk as the accumulation of changes caused by neighbors in the
Voronoi diagram. A central step in proving our results will therefore be the detailed
analysis of the derivative in the interaction of two disks.



Theorems. The first result of this paper is a complete description of the derivative of the
perimeter of a union of disks. Let �I3 e & \ 6 3 @ 6 e \ be the distance between two centers.
We write � 3 e & �������	�
 �������	� 
 for the unit vector between the same centers and ��3 e for �Q3 e
rotated through an angle of 90 degrees. Note that � e 3F&M@�� 3 e and � e 3�& @��$3 e .
PERIMETER DERIVATIVE THEOREM. The derivative of the perimeter of a union of 1

disks with state 
 � � EUR is

 N � � !�� & (�
���!%+ , where� 
 E 3 ���
 E 3 � -�� & � e��� 3���� 3 e �T3 e�� � e 3	 ��� 3 e � � 3 e @ �fe 3 ��� �


 E 3 � E & 	$Z�� 3 � � e��� 3 9:3 e � 3 e � �fe 3	 �

� 3 e'& 9%3 � 9 e
9:3 e �FB @

� 9:3 @ 9 e � -� -3 e ��� � 3 e��
� 3 e & 9 e @ 9 3�^3 e � �$3 e �
9 3 eY& B

9%3 e �
� 9:3 @ 9 e � -�^3 e @ � 3 e!� j

If
6 3 6 e is not an edge in k then �T3 e & � e 3 & <

. We can therefore limit the sums in the
Perimeter Derivative Theorem to all

6 e in the link of
6 3 . If the link of

6 3 in k is a full
circle then the perimeter and its derivative vanish. This is clear also from the formula
because �T3F& <

and "#�$� � "%�&�- & � 3 e @ � e 3�& <
for all h .

The second result is a complete description of the derivative of the area of a disk
union.

AREA DERIVATIVE THEOREM. The derivative of the area of a union of 1 disks with
state 
 is


 P � � !�� & ((' ��!�+ , where� ' E 3 ���' E 3 � - � & � e��� 3*) 3 e � 3 e��'�E 3 � E'& 	$Z 9 3 � 3 �
) 3 eY& 	$9 3 e � � 3 e�j

We can again limit the sum to all
6 e in the link of

6 3 . If the link of
6 3 in k is a full circle

then the area derivative vanishes. Indeed, ' E 3 � E & <
because �T3�& <

and � ) 3 e �Q3 e & <
because of the Minkowski theorem for convex polygons.

3 Perimeter Derivative

In this section, we prove the Perimeter Derivative Theorem stated in Section 2. We
begin by introducing some notation, continue by analyzing the cases of two and of 1
disks, and conclude by investigating when the derivative is not continuous.



Notation. For the case of two disks, we use the notation shown in Figure 3. The two
disks are 2��,& �76 ���89�� � and 2 � & �76 � �89 � � . We assume that the two bounding circles
intersect in two corners, W and �W . Let 9�� � be half the distance between the two corners.
Then � � & � 9 -� @ 9 -� � is the distance between

6 � and the bisector, and similarly, � �
is the distance between

6 � and the bisector. If
6 � and

6 � lie on different sides of the
bisector then �X& � � � � � is the distance between the centers. We have 9 -� @ 9 -� &� -� @ � -� & � � � � @ � � � and therefore

�^3F& B	 � � � 9 -3 @ 9 -� � 3� � � (1)

for
? & < �IB . If the two centers lie on the same side of the bisector, then �"& � � @ � �

is the distance between the centers. We have 9 -� @ 9 -� & � -� @ � -� & � � � � � � � � and
again Equation (1) for � � and � � . Let � � be the angle � 6 � 6 � W at

6 � , and similarly define

z
1

r

0

x

v

θ

θθ

z
0 1θ

u

ζ
0

1

1

0+

0 1

x

ζ

ψr
r01

Fig. 3: Two disks bounded by intersecting circles and the various lengths and angles they define.

� � &�� 6 � 6 � �W &�� W 6 � 6 � . Then

��3�& ���	�
����
 � 39 3 � (2)

for
? & < �:B , and we note that � � � � � is the angle formed at the two corners. The

contributions of each disk to the perimeter and the area of 2 ��� 2 � are

N�3F& 	 � Z>@���3;� 9%38� (3)

P 3 & � Z>@�� 3 � 9 -3 � 9 3 e�� 3 � (4)

for
? & < �IB . The perimeter of the union is N &CN�� � N � , and the area is P & P�� � P � .

Motion. We study the derivative of N under motion by fixing
6 � and moving the other

center along a smooth curve � ��� � , with � � < �d& 6 � . At
6 � the velocity vector of the

motion is ��&�������
� < � . Let �X& ��� � �	�
 � � � � � 
 and � be the unit vector obtained by rotating� through an angle of 90 degrees. We decompose the motion into a slope preserving

and a distance preserving component, ��&M( �^��� +�� � ( �^���f+�� . We compute the two partial



derivatives with respect to the distance � and an angular motion. We use Equations (1),
(2), and (3) for

? & <
to compute the derivative of N � with respect to the center distance,

� N �� � &
� N �� ��� � � ���� � � � � � �� �

& � @ 	 9 � � � � @ B
9
� 
�� � ��� � � � B	 @ 9 -� @ 9 -�	 � - �

& 9 �
9
� � � B @ 9 -� @ 9 -�� - � j

By symmetry, ��� ���� &�� �� � �
� B�@ �

	
� � � 	��
	 � . The derivative of N is the sum of the two deriva-

tives, and therefore
� N� � & 9 � � 9 �

9�� � � B @
� 9 � @ 9 � � -� - � j (5)

To preserve distance we rotate
6 � around

6 � and let 
 denote the angle defined by the
vector � . During the rotation the perimeter does of course not change. The reason is
that we loose or gain the same amount of length at the leading corner, �W , as we gain or
loose at the trailing corner, W . Since we have to deal with situations where one corner
is exposed and the other is covered by other disks, we are interested in the derivative of
the contribution near W , which we denote by N�� � 
�� . We have a gain on the boundary of
2 � minus a loss on the boundary of 2 � , namely

� N
�� 
 & 9 � @ 9
�� j (6)

As mentioned above, the changes at the two corners cancel each other, or equivalently,
������ & �������� � ��������� & � � � � �� � � � � � �� & <

.

Growth. We grow or shrink the disk 2 � by changing its radius, 9 � . Using Equations
(1), (2), and (3) for

? & <
as before, we get

� N �� 9 � &
� N �� � � � � ���� � � � � � �� 9 �

& � 	 � Z @�� � �
� � �� ���

�
9�� @ 	 9 � � � � ���� � � � 9
��

& 	 � Z @�� � � � 	 � 9 -� @ � � ���
9�� � �

because ��� ���� � & @ ���� � � � �
	
� � ��� �����

and
���� � � � &�� �� � � . The computation of the derivative of

N � is more straightforward because 9 � and � both remain constant as 9
� changes. Using
Equations (1), (2), and (3) for

? & B , we get
� N �� 9 � &

� N �� � � � � � �� � � � � � �� 9 � & � @ 	 9 � � � � @ B
9 � 
�� � � � � � � @ 9��� � & @ 	 9
�I9 �

9 � � � j



Note that
- � 	� � - � � � �� @ � � is equal to � � � � � � � 	� @ � . The derivative of the perimeter, which

is the sum of the two derivatives, is therefore
� N� 9�� & 	 � Z @�� � � � B

9�� � �
� 9 � @ 9 � � -� @ � � j (7)

The first term on the right in Equation (7) is the rate of growth if we scale the entire
disk union. The second term accounts for the angle at which the two circles intersect.
It is not difficult to show that this term is equal to @ 	 ��� 
 � � � � � � ��@ -��� � � � � � � � � , which
is geometrically the obvious dependence of the derivative on the angle between the two
circles, as can be seen in Figure 3.

Assembly of relations. Let N be the perimeter of the union of disks 243 , for
< = ?[=

1L@ B . By linearity, we can decompose the derivative along a curve with velocity vector
!5� � E8R into components. The

?
-th triplet of coordinates describes the change for 2 3 .

The first two of the three coordinates give the velocity vector � 3 of the center
6 3 . For

each other disk 2 e , we decompose that vector into a slope and a distance preserving
component, � 3 &M( � 3 � � 3 e%+�� 3 e � ( � 3 ��� 3 e�+�� 3 e .

The derivative of the perimeter along the slope preserving direction is given by
Equation (5). The length of the corresponding vector � 3 e in the theorem is this deriva-
tive times the fractional number of boundary corners defined by 2[3 and 2 e , which is" � � � " �&�- . The derivative along the distance preserving direction is given by Equation
(6). The length of the corresponding vector � 3 e in the theorem is that derivative times� 3 e @ � e 3 , since we gain perimeter at the corner W 3 e and loose at W e 3 (or vice versa, if
( � 38���$3 e +�� <

). The derivative with respect to the radius is given in Equation (7). The
first term of that equation is the angle of 243 ’s contribution to the perimeter, which in the
case of 1 disks is 	 Z��T3 . The second term accounts for the angles at the two corners. It
contributes to the derivative only for corners that belong to the boundary of the union.
We thus multiply the corresponding term 9 3 e in the theorem by the fractional number of
boundary corners. This completes the proof of the Perimeter Derivative Theorem.

4 Area Derivative

In this section, we prove the Area Derivative Theorem stated in Section 2. We use the
same notation as in Section 3, which is illustrated in Figure 3.

Motion. As before we consider two disks 2 � & �76 � ��9 � � and 2 � & �*6 � ��9 � � , we keep
6 �

fixed, and we move
6 � along a curve with velocity vector � at

6 � . The unit vectors � and� are defined as before, and the motion is again decomposed into a slope and a distance
preserving component, ��&�( �^��� +�� � ( �^���f+	� . The distance preserving component does
not change the area and has zero contribution to the area derivative. To compute the
derivative with respect to the slope preserving motion, we use Equations (2) and (4) for? & <

to get the derivative of P�� with respect to � � ,
� P �� � � & @ 9 -�

� � �� � � � � 9 � �� � � � � � 9
� � & 9 -�
9�� � @ � -�9
� � � 9
� � & 	 9�� � j



Symmetrically, we get �
�

���� � & 	$9�� � . The derivative of the area with respect to the dis-

tance between the centers is �
�

���� � � ��� ���� � �
�

���� � � ��� ���� , which is

� P� � & 	 9
� � � (8)

because
� � � � � � � & � � . This result is obvious geometrically, because to the first order

the area gained is the rectangle with width
� � and height 	 9 � � obtained by thickening

the portion of the separating Voronoi edge.

Growth. Using Equation (4) for
? & <

and B , we get
� P� 9�� &

� P �� 9�� � � P �
� 9��

& 	 � Z @ � � � 9 � @ � 9 -�
� ���� 9
� � 9 -�

� � �� 9
� �� � 9 � �� 9��
� � � � � � � � 9�� � �

� � �� 9
� � � � �� 9
� � j
The right hand side consists of four terms of which the fourth vanishes because

� � � �� � � & <
. The third term equals � �� � � � � � � . The second term is 9 -� � � � � � � 	�� � � �

	
�
� � �� � 9 -� � �� � � � .

The second and third terms cancel each other because 9 -� @ 9 -� � � � �O@ � � � & <
. Hence,

� P� 9�� & 	 � Z>@�� � � 9 � j (9)

This equation is again obvious geometrically because to the first order the gained area
is the fraction of the annulus of width

� 9�� and length N �d&�	 � Z @ ��� � 9
� obtained by
thickening the boundary arc contributed by 2 � .

Assembly of relations. Let P be the area of the union of disks 243 , for
< =X?�= 1'@dB . We

decompose the derivative into terms, as before. The derivative along the slope preserv-
ing direction is given by Equation (8). The length of the corresponding vector ) 3 e in the
theorem is this derivative times the fractional chord length, which is � 3 e . The derivative
with respect to the radius is given by Equation (9). It is equal to the contribution of 2 3
to the perimeter, which in the case of 1 disks is 	 Z 9 3 � 3 . This completes the proof of the
Area Derivative Theorem.

5 Discussion

Consider a finite collection of disks in the plane. We call a motion that does not change
radii and that at no time decreases the distance between any two centers a continu-
ous expansion. The Area Derivative Theorem implies that the derivative along a con-
tinuous expansion is always non-negative. The area is therefore monotonously non-
decreasing. This is not new and has been proved for general dimensions in 1998 by



Csikós [5]. The more restricted version of this result for unit-disks in the plane has
been known since 1968. Bollobás’ proof uses the fact that for unit disks the perimeter is
also monotonously non-decreasing along continuous expansions [3]. Perhaps surpris-
ingly, this is not true if the disks in the collection have different radii. The critical term
that spoils the monotonicity is contributed by the rotational motion of one disk about
another. That contribution can be non-zero if exactly one of the two corners defined
by the two circles belongs to the boundary of the union. Continuous expansions that
decrease the perimeter are therefore possible, and one is shown in Figure 4.

Fig. 4: Moving the small disk vertically downward does not decrease any distances but does
decrease the perimeter.
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