
Computing Linking Numbers of a Filtration
�

Herbert Edelsbrunner
�

, and Afra Zomorodian
�

Abstract
We develop fast algorithms for computing the linking num-
ber of a simplicial complex within a filtration. We give ex-
perimental results in applying our work toward the detec-
tion of non-trivial tangling in biomolecules, modeled as al-
pha complexes.
Keywords. Computational geometry and topology, knots, linking
number, three-manifolds, filtrations, alpha shapes, algorithms.

1 Introduction
In this paper, we develop fast algorithms for computing the
linking numbers of simplicial complexes. Our work is within
a framework of applying computational topology methods to
the fields of biology and chemistry. Our goal is to develop
useful tools by researchers in computational structural biol-
ogy.

Motivation and Approach. In the 1980’s, it was shown
that the DNA, the molecular structure of the genetic code
of all living organisms, can become knotted during replica-
tion [1]. This finding initiated interest in knot theory among
biologists and chemists for the detection, synthesis, and anal-
ysis of knotted molecules [8]. The impetus for this research
is that molecules with non-trivial topological attributes often
display exotic chemistry. Taylor recently discovered a figure-
of-eight knot in the structure of a plant protein by examining
3,440 proteins using a computer program [19]. Moreover,
chemical self-assembly units have been used to create cate-
nanes, chains of interlocking molecular rings, and rotaxanes,
cyclic molecules threaded by linear molecules. Researchers
are building nano-scale chemical switches and logic gates
with these structures [2, 3]. Eventually, chemical computer
memory systems could be built from these building blocks.

�
Research by both authors is partially supported by ARO under grant

DAAG55-98-1-0177. Research by the first author is also partially supported
by NSF under grant CCR-97-12088, EIA-99-72879, and CCR-00-86013.�

Department of Computer Science, Duke University, Durham, and Rain-
drop Geomagic, Research Triangle Park, NC.�

Department of Computer Science, University of Illinois, Urbana, IL.

Catenanes and rotaxanes are examples of non-trivial struc-
tural tanglings. Our work is on detecting such interlock-
ing structures in molecules through a combinatorial method,
based on algebraic topology. We model biomolecules as a
sequence of alpha complexes [7]. The basic assumption of
this representation is that an alpha-complex sequence cap-
tures the topological features of a molecule. This sequence is
also a filtration of the Delaunay triangulation, a well-studied
combinatorial object, enabling the development of fast algo-
rithms.

The focus of this paper is the linking number. Intuitively,
this invariant detects if components of a complex are linked
and cannot be separated. We hope to eventually incorporate
our algorithm into publicly available software as a tool for
detecting existence of interlocked molecular rings.

Given a filtration, the main contributions of this paper
are:

(i) the extension of the definition of the linking number to
graphs, using a canonical basis,

(ii) an algorithm for enumerating and generating all cycles
and their spanning surfaces within a filtration,

(iii) data structures for efficient enumeration of co-existing
pairs of cycles in different components,

(iv) an algorithm for computing the linking number of a
pair of cycles,

(v) and the implementation of the algorithms and experi-
mentation on real data sets.

Algorithm (iv) is based on spanning surfaces of cycles, giv-
ing us an approximation to the linking number in the case
of non-orientable or self-intersecting surfaces. Such cases
do not arise often in practice, as shown in Section 6. How-
ever, we note in Section 2 that the linking number of a pair
may be also computed by alternate algorithms. Regardless
of the approach taken, pairs of potentially linked cycles must
be first detected and enumerated. We provide the algorithms
and data structures of such enumeration in (i-iii).

Prior work. Important knot problems were shown to be
decidable by Haken in his seminal work on normal surfaces
[10]. This approach, as reformulated by Jaco and others [13],
forms the basis of many current knot detection algorithms.
Haas et al. recently showed that these algorithms take expo-
nential time in the number of crossings in a knot diagram [12].
They also placed both the UNKNOTTING PROBLEM and the
SPLITTING PROBLEM in NP, the latter being the focus of our
paper. Generally, other approaches to knot problems have
unknown complexity bounds, and are assumed to take at
least exponential time. As such, the state of the art in knot
detection only allows for very small data sets. We refer to
Adams [1] background in knot theory.

Three-dimensional alpha shapes and complexes may be
found in Edelsbrunner and Mücke [7]. We modify the persis-
tent homology algorithm to compute cycles and surfaces [6].
We refer to Munkres [15] for background in homology the-
ory that is accessible to non-specialists.

Outline. The remainder of this paper is organized as fol-
lows. We review linking numbers for collections of closed
curves, and extend this notion to graphs in ��� in Section 2.
We describe our model for molecules in Section 3. Extend-
ing the persistence algorithm, we design basic algorithms in
Section 4 and use them to develop an algorithm for comput-
ing linking numbers in Section 5. We show results of some
initial experiments in Section 6, concluding the paper in Sec-
tion 7.

2 Linking Number
In this section, we define links and discuss two equivalent
definitions of the linking number. While the first definition
provides intuition, the second definition is the basis of our
computational approach.

Links. A knot is an embedding of a circle in three-dimen-
sional Euclidean space, �����	��
�� � . Two knots are equiv-
alent if there is an ambient isotopy that maps the first to the
second. That is, we may deform the first to the second by a
continuous motion that does not cause self-intersections. A
link is a collection of knots with disjoint images. A link
is separable (splitable) if it can be continuously deformed
so that one or more components can be separated from other
components by a plane that itself does not intersect any of
the components. We often visualize a link by a link dia-
gram, which is the projection of a link onto a plane such that
the over- and under-crossings of knots are presented clearly,
We give an example in Figure 1. For a formal definition,
see [12].

Linking number. A knot (link) invariant is a function that
assigns equivalent objects to equivalent knots (links.) Seifert
first defined an integer link invariant, the linking number,

−1 +1

+1−1

Figure 1: A link diagram for the Whitehead link. Vertices
occur at crossings and are labeled according to the conven-
tion in Figure 2.

in 1935 to detect link separability [18]. Given a link dia-
gram for a link , we choose orientations for each knot in .
We then assign integer labels to each crossing between any
pair of knots ������� , following the convention in Figure 2. Let

+1 −1

Figure 2: The crossing label is ��� if the rotation of the
overpass by 90 degrees counter-clockwise aligns its direc-
tion with the underpass, and ��� otherwise.

��� ����� ��� of the pair of knots to be one half the sum of these la-
bels. A standard argument using Reidermeister moves shows
that

�
is an invariant for equivalent pairs of knots up to sign

[1]. The linking number
��� � of a link is

��� ��� � "!# %$'&)("*
��� ����� � � *,+

We note that
��� � is independent of knot orientations. Also,

the linking number does not completely recognize linking.
The Whitehead link in Figure 1, for example, has linking
number zero, but is not separable.

Surfaces. The linking number may be equivalently defined
by other methods, including one based on surfaces [17]. A
spanning surface for a knot � is an embedded surface with
boundary � . An orientable spanning surface is a Seifert sur-
face. Because it is orientable, we may label its two sides as
positive and negative. We show examples of such surfaces
for the Hopf link in Figure 3.

Given a pair of oriented knots ���-�.� , and a Seifert surface/ for � , we label / by using the orientation of � . We then
adjust ��� via a homotopy 0 until it meets / in a finite number
of points. Following along � � according to its orientation, we
add ��� whenever ��� passes from the negative to the positive
side, and ��� whenever �.� passes from the positive to the
negative side. The following lemma asserts that this sum is
independent of our the choice of 0 and / , and it is, in fact,
the linking number.

2

Figure 3: The Hopf link and Seifert surfaces of its two un-
knots. Clearly,

� � � . This link is the 200th complex for
data set � in Section 6.

SEIFERT SURFACE LEMMA.
��� ���-��� � is the sum of the signed

intersections between ��� and any Seifert surface for � .

The proof is by a standard Seifert surface construction [17].
If the spanning surface is non-orientable, we can still count
how many times we pass through the surface, giving us the
following weaker result.

SPANNING SURFACE LEMMA.
��� ���-� � � ��������� � is the par-

ity of the number of times �.� passes through any span-
ning surface for � .

Graphs. We need to extend the linking number to graphs,
in order to use the above lemma for computing linking num-
bers for simplicial complexes. Let 	 � ��
 �� � �������� ���
be a simple undirected graph in � � with � components 	�� .
Let � � � + + + ����� be a fixed basis for the cycles in 	 , where� � * � * � *

* ��� . We then define the linking number be-

tween two components of 	 to be
��� 	 � �	! � � *

��� �#" ��%$ � *for all cycles �&" ��%$ in 	�� �	 , respectively. The linking num-
ber of 	 is then defined by combining the total interaction
between pairs of components:

��� 	 ��� � � !#
��� 	 � ��	 � +

The linking number is computed only between pairs of com-
ponents following Seifert’s original definition. Linked cycles
within the same component may be easily unlinked by a ho-
motopy. Figure 4 shows that the linking number for graphs
is dependent on the chosen basis. While it may seem that
we want

��� 	 � � � in the figure, there is no clear answer in
general. We will define a canonical basis in Section 4 us-
ing the persistent homology algorithm to compute

��� 	 � for
simplicial complexes.

3 Alpha Complexes
Our approach to analyzing a topological space is to assume
a filtration for such a space. A filtration may be viewed as a
history of a growing space that is undergoing geometric and
topological changes. While filtrations may be obtained by
various methods, only meaningful filtrations give meaning-
ful linking numbers. As such, we use alpha complex filtra-
tions to model molecules. The alpha complex captures the

λ = 2

G

G G

2

1

λ = 1

G

1

G

G
2

1

2

Figure 4: We get different
��� 	 � for graph 	 (top) depending

on our choice of basis for 	 � : two small cycles (left) or one
large and one small cycle (right.)

connectivity of a molecule that is represented by a union of
spheres. This model may be viewed as the dual of the space
filling model for molecules [14].

Dual complex. A spherical ball '(� � (�*) � �,+ � �.- � is
defined by its center (and square radius) � . If) ��/10 , the
radius is imaginary and so is the ball. The weighted distance
of a point 2 from a ball '(is 3,45 � 2 � �76 2 � (6 � �8) � . Note
that a point 2 + � � belongs to the ball iff 3 45 � 2 �.9 0

, and
it belongs to the bounding sphere iff 3 45 � 2 � � 0

. Let : be a
finite set of balls. The Voronoi region of '(+ : is the set of
points for which '(minimizes the weighted distance,
 45 � ; 2 + � � * 3 45 � 2 �,9 3 4< � 2 � ��=>'? + :>@ +
The Voronoi regions decompose the union of balls into con-
vex cells of the form '(BA
 45 , as illustrated in Figure 5. Any

Figure 5: Union of nine disks, convex decomposition using
Voronoi regions, and dual complex.

two regions are either disjoint or they overlap along a shared
portion of their boundary. We assume general position, where
at most four Voronoi regions can have a non-empty common
intersection. Let CD�E: have the property that its Voronoi
regions have a non-empty common intersection, and con-
sider the convex hull of the corresponding centers, FHG �I �KJML ; (* '(+ C�@ . General position implies that FNG is a O -
dimensional simplex, where O � I#PRQ � C � � . The dual com-
plex of : is the collection of simplices constructed in this
manner, S

� ; FTG * CU�V:	�XW45 & G � '(YA
 45 �!Z�\[@ +
3

Any two simplices in

S
are either disjoint or they intersect

in a common face which is a simplex of smaller dimension.
Furthermore, if F +

S
, then all faces of F are simplices in

S
. A set of simplices with these two properties is a simpli-

cial complex [15]. A subcomplex is a subset � �
S

that is
itself a simplicial complex.

Alpha complex. A filtration ordering is an ordering of a
set of simplices such that each prefix of the ordering is a sub-
complex. The sequence of subcomplexes defined by taking
successively larger prefixes is the corresponding filtration.
For dual complexes of a collection of balls, we generate an
ordering and a filtration by literally growing the balls. For
every real number � � + � , we increase the square radius of
a ball '(by � � , giving us '(� � � � � (�*) � ��� � � . We denote
the collection of expanded balls '(� � � as : � � � . If) � � 0

,
then � is the radius of '(� � � . If � � / 0

, then � is imagi-
nary, and so is the ball '(� � � . The � -complex

S
� � � of : is

the dual complex of : � � � [7]. For example,

S
� ��� ��� [,S

� 0 � �
S

, and

S
� � � ��� is the dual of the Voronoi di-

agram, also known as the Delaunay triangulation of : . For
each simplex F +�� , there is a unique birth time � � � F � de-
fined such that F +

S
� � � iff � �	� � � � F � . We order the

simplices such that � � � F � / � � ��
 � implies F precedes

in
the ordering. More than one simplex may be born at a time
and such cases may arise even if : is in general position. In
the case of a tie, it is convenient to order lower-dimensional
simplices before higher-dimensional ones, breaking remain-
ing ties arbitrarily. We call the resulting sequence the age
ordering of the Delaunay triangulation.

Modeling molecules. To model molecules by alpha com-
plexes, we use representations of molecules as unions of
balls. Each ball is an atom, as defined by its position in
space and its van der Waals radius. These atoms become the
spherical balls we need to define our complexes. Our rep-
resentation gives us a filtration of alpha complexes for each
molecule, as shown in Figure 6. We compute a linking num-

Figure 6: Six complexes in the filtration of 42,787 complexes
for data set � in Section 6.

ber for each complex in a filtration of � complexes. Let ���
denote the set ; � � � � + + + � � @ . Then, the linking number may
be viewed as a signature function

� �� ���
�� that maps
each index � + ��� to an integer

��� � � + � . For other signa-
ture functions for filtrations of alpha complexes, see [5, 7].

4 Basis and Surfaces
To compute the linking numbers for an alpha complex, we
need to recognize cycles, establish a basis for the set of cy-
cles, and find spanning surfaces for the basis cycles. We do
so by extending an algorithm we developed for computing
persistent homology [6]. We dispense with defining persis-
tence and concentrate on the algorithm and its extension.

Homology. We use homology to define cycles in a com-
plex. Homology partitions cycles into equivalence classes
using the boundary class of bounding cycles as the null el-
ement of a quotient group in each dimension. We use � �
homology, so the group operation, which we call addition,
is symmetric difference. Addition allows us to combine sets
of simplices in a way that eliminates shared boundaries, as
shown in Figure 7. Intuitively, non-bounding 1-cycles cor-

+

Figure 7: Symmetric difference in dimensions one and two.
We add two 1-cycles to get a new 1-cycle. We add the sur-
faces the cycles bound to get a spanning surface for the new
1-cycle.

respond to the graph notion of a cycle. We need to define a
basis for the first homology group of the complex which con-
tains all 1-cycles, and choose representatives for each homol-
ogy class. We use these representatives to compute linking
numbers for the complex.

A simplex of dimension O in a filtration either creates a O -
cycle or destroys a

� O���� � -cycle by turning it into a boundary.
We mark simplices as positive or negative, according to this
action [5]. In particular, edges in a filtration which connect
components are marked as negative. The set of all negative
edges gives us a spanning tree of the complex, as shown in
Figure 8. We use this spanning tree to define our canonical
basis. Every time a positive edge F � is added to the com-
plex, it creates a new cycle. We choose the unique cycle that
contains F � and no other positive edge as a new basis cycle.
We call this cycle a canonical cycle, and the collection of
canonical cycles, the canonical basis. We use this basis for
computation.

Persistence. The persistence algorithm matches positive and
negative simplices to find life-times of homological cycles in

4

σi

Figure 8: Solid negative edges combine to form a spanning
tree. The dashed positive edge F � creates a canonical cycle.

a filtration. The algorithm does so by following a represen-
tative cycle � for each class. Initially, � is the boundary of
a negative simplex F , as � must lie in the homology classF destroys. The algorithm then successively adds class-
preserving boundary cycles to � until it finds the matching
positive simplex F � , as shown in Figure 9. We call the half-

i

σj

σ

Figure 9: Starting from the boundary of the negative triangleF , the persistence algorithm finds a matching positive edgeF � by finding the dashed 1-cycle. We modify this 1-cycle
further to find the solid canonical 1-cycle and a spanning sur-
face.

open interval �-��� � the persistence interval of both the ho-
mology class and its canonical representative. During this
interval, the homology class exists as a class of homologous
non-boundings cycles in the filtration. As such, the class may
only affect the linking numbers of complexes

S
� � + + + �

S
 �� �

in the filtration. We use this insight in the next section to
design an algorithm for computing linking numbers.

Computing canonical cycles. The persistence algorithm
halts when it finds the matching positive simplex F � for a
negative simplex F , often generating a cycle � with mul-
tiple positive edges and multiple components. We need to
convert � into a canonical cycle by eliminating all positive
edges in � except for F � . We call this process canonization.
To canonize a cycle, we add cycles associated with unnec-
essary positive edges to � successively, until � is composed
of F � and negative edges, as shown in Figure 9. Canoniza-
tion amounts to replacing one homology basis element with
a linear combination of other elements in order to reach the
unique canonical basis we defined earlier. A cycle undergo-
ing canonization changes homology classes, but the rank of

the basis never changes.

Computing spanning surfaces. For each canonical cycle,
we need a spanning surface in order to compute linking num-
bers. We may compute these by maintaining surfaces while
computing the cycles. Recall that initially, a cycle represen-
tative is the boundary of a negative simplex F . We use F
as the initial spanning surface for � . Every time we add a
cycle � to � in the persistence algorithm, we also add the
surface � bounds to the � ’s surface. We continue this process
through canonization to produce both canonical cycles and
their spanning surfaces. Here, we are using a crucial prop-
erty of our filtrations: the final complex is always the De-
launay complex of the set of weighted points and does not
contain any 1-cycles. Therefore, all 1-cycles are eventually
turned to boundaries and have spanning surfaces.

If the generated spanning surface is Seifert, we may ap-
ply the SEIFERT SURFACE LEMMA to compute the linking
numbers. In some cases, however, the spanning surface is not
Seifert, as in Figure 10. In these cases, we may either com-
pute the linking number modulus 2 by applying the SPAN-
NING SURFACE LEMMA, or compute the linking number by
alternative methods.

Figure 10: The spanning surface produced for the cycle
which is the boundary of a Möbius strip is non-orientable.

5 Algorithm
In this section, we use the basis and spanning surfaces com-
puted for 1-cycles to find linking numbers for all complexes
in a filtration. Since we focus on 1-cycles only, we will refer
to them simply as cycles.

Overview. We assume a filtration

S
� �
S
� � + + + �

S
� as in-

put, which we alternately view as a single complex under-
going growth. As simplices are added, the complex under-
goes topological changes which affect the linking number:
new components are created and merged together, and new
non-bounding cycles are created and eventually destroyed.
We use a basic insight from the last section: a basis cycle� with persistence interval �-��� � may only affect the linking
numbers of complexes

S
� �
S
����� � + + + �

S
 �� � in the filtration,

Consequently, we only need to consider basis cycles ��� that
exist during some subinterval (� ? � � �-��� � in a different

5

component than � ’s. We call the pair � �� � a potentially-
linked (p-linked) pair of basis cycles, and the interval (� ? �
the p-linking interval.

Focusing on p-linked pairs, we get an algorithm with
three phases. In the first phase, we compute all p-linked
pairs of cycles. In the second phase, as shown in Figure 11,
we compute the linking numbers of such pairs. In the third
and final phase, we aggregate these contributions to find the
linking number signature for the filtration.

�����
each p-linked pair �&" ��%$ with interval (� ? ��� �

Compute
� � *

��� � " ��� $ � * �Output
�'� � (� ? � ��
	 � ���
� .

Figure 11: Linking number algorithm.

Two cycles � " �� $ with persistence intervals � " ��� ""� , � $ ��� $ �
co-exist during � � / � � � " ��� " � A � $ � � $ � . We need to know
if these cycles also belong to different components during
some sub-interval (� ? � � � � / � . Let ��"� $ be the minimum
index in the filtration when �&" and �%$ are in the same compo-
nent. Then, (� ? � � � � / � A 0 ��� "� $ � . If (� ? �!Z� [, �#" ��%$ are
p-linked during that interval. In the remainder of this section,
we will first develop a data structure for computing � "� $ for
any pair of cycles � " �� $. Then, we use this data structure to
efficiently enumerate all pairs of p-linked cycles. Finally, we
give an algorithm for computing

��� � " �� $ � for a p-linked pair
of cycles � " �� $.
Component history. To compute � "� $, we need to have a
history of the changes to the set of components in a filtra-
tion. There are two types of simplices that can change this
set. Vertices create components and are therefore all posi-
tive. Negative edges connect components. We construct a
binary tree called component tree recording these changes
using a union-find data structure [4]. The leaves of the com-
ponent tree are the vertices of the filtration. When a negative
edge connects two components, we create an internal node
and connect it to the nodes representing these components,
as shown in Figure 12. The component tree has size � ��� � for

1

2 4

5 21 54

3

6

7

6

7

3

Figure 12: The union-find data structure (left) has vertices
as nodes and negative edges as edges. The component tree
(right) has vertices as leaves and negative edges as internal
nodes.
�

vertices, and we construct it in time � ����� � � ��� � � , where

� � � ��� � is the inverse of the Ackermann’s function which ex-
hibits insanely slow growth. Having constructed the compo-
nent tree, we find the time two vertices � � 2 are in the same
component by finding their lowest common ancestor (lca)
in this tree. We utilize Harel and Tarjan’s optimal method
to find lca’s with � ��� � preprocessing time and � � � � query
time [11]. Their method uses bit operations. If such opera-
tions are not allowed, we may use van Leeuwen’s method
with the same preprocessing time and � ��� ����� �
��� � query
time [20].

Enumeration. Having constructed the component tree, we
use a modified union-find data structure to enumerate all
pairs of p-linked cycles. We augment the data structure to al-
low for quick listing of all existing canonical cycles in each
component in

S
� . Our augmentation takes two forms: we

put the roots of the disjoint trees, representing components,
into a circular doubly-linked list. We also store all existing
cycles in each component in a doubly-linked list at the root
node of the component, as shown in Figure 13. When com-

Figure 13: The augmented union-find data structure places
root nodes in the shaded circular doubly-linked list. Each
root node stores all active canonical cycles in that component
in a doubly-linked list, as shown for the darker component.

ponents merge, the root 2 � of one component becomes the
parent of the root 2 � of the other component. We concatenate
the lists stored at the 2 � �2 � , store the resulting list at 2 � , and
eliminate 2 � from the circular list in � � � � time. When cycle� " is created at time � , we first find � " ’s component in time
� ��� � � ��� � � . Then, we store � " at the root of the component
and keep a pointer to �&" with simplex F , which destroys �&" .
This implies that we may delete ��" from the data structure at
time � with constant cost.

Our algorithm to enumerate p-linked cycles is incremen-
tal. We add and delete cycles using the above operations
from the union-find forest, as the cycles are created and deleted
in the filtration. When a cycle � " is created at time � , we out-
put all p-linked pairs in which � " participates. We start at the
root which now stores ��" and walk around the circular list
of roots. At each root 2 , we query the component tree we
constructed in the last subsection to find the time � when the
component of 2 merges with that of ��" . Note that � � � "� $
for all cycles � $ stored at 2 . Consequently, we can compute
the p-linking interval for each pair ��" ��%$ to determine if the
pair is p-linked. If the filtration contains � p-linked pairs,

6

our algorithm takes time � � � � � � ��� � � � � , as there are at
most � cycles in the filtration.

Orientation. In the previous section, we showed how one
may compute spanning surfaces / "�� / $ for cycles �#" ��%$, re-
spectively. To compute the linking number using our lemma,
we need to orient either the pair / "���� $ or �#" � / $. Orienting a
cycle is trivial: we orient one edge and walk around to orient
the cycle. If either surface has no self-intersections, we may
easily attempt to orient it by choosing an orientation for an
arbitrary triangle on the surface, and spreading that orienta-
tion throughout. The procedure either orients the surface or
classifies it as non-orientable. We currently do not have an
algorithm for orienting surfaces with self-intersections. The
main difficulty is distinguishing between two cases for a self-
intersection: a surface touching itself and passing through
itself, as shown in Figure 14.

or=

Figure 14: A surface self-intersection viewed from its side.
We cannot resolve it as the surface touching or passing
through itself.

Computing
�

. We now show how to compute
��� ��"���%$ � for

a pair of p-linked cycles �&" ��%$, completing the description of
our algorithm in Figure 11. We assume that we have oriented/ " ���%$ for the remainder of this subsection.

Let the star of a vertex (���� (be the set of simplices
containing (as a vertex. We subdivide the complex via a
barycentric subdivision by connecting the centroid of each
triangle to its vertices and midpoints of its edges, subdivid-
ing the simplices accordingly. This subdivision guarantees
that no edge (? will have both ends on a Seifert surface un-
less it is entirely contained in that surface. We note that this
approach mimics the construction of regular neighborhoods
for complexes [9].

For a vertex (+ / " , the edge property guaranteed by
subdivision enables us to mark each edge (? + ��� (� ? Z+/ " as positive or negative, depending on the location of ?
with respect to / " . We show an example of this marking in
Figure 15. After marking edges, we walk once around � $,
starting at a vertex not on / " . If such a vertex does not exist,
then

��� �#"���%$ � � 0
. Otherwise, we create a string :N"� $ of� and � characters by noting the marking of edges during

our walk. : "� $ has even length as we start and end our walk
on a vertex not on / " , and each intersection of � $ with / "
produces a pair of characters, as shown in Figure 16. If : "� $
is the empty string, � $ never intersects / " and

��� � " �� $ � �0
. Otherwise, � $ passes through / " for pairs ��� and � � ,

corresponding to � $ piercing the positive or negative side of

u

+ + +

− − −

+
ps

Figure 15: Edges (? + ��� (� (+ / " � ? Z+ / " are marked �
or � depending on where they end relative to the oriented
Seifert surface / " .

+ −

− −

+ ++ +

qzsp
+

v

Figure 16: Starting at ? , we walk on � $ according to its ori-
entation. Segments of � $ that intersect / " are shown, along
with their contribution to :N"� $ ��� � � � � � � � � ”. We
get

��� �#"���%$ � � ��� .
/ " , respectively. Scanning : "� $ from left to right in pairs, we
add ��� for each occurrence of � � , ��� for each ��� , and0

, for each ��� or ��� . Applying the SEIFERT SURFACE

LEMMA in Section 2, we see that this sum is
��� � " �� $ � .

Computing
��	�
���

. If neither of the spanning surfaces/ " � / $ of the two cycles � � ��� � is Seifert, we may still com-
pute

��� � � �� � � �����.� by a modified algorithm, provided one
surface, say / " , has no self-intersections. We choose an ori-
entation on / " locally, and extend it until all the stars of the
original vertices are oriented. are oriented. This orientation
will not be consistent globally, resulting in pair of adjacent
vertices in / " with opposite orientations. We call the implicit
boundary between vertices with opposite orientations a flip
curve, as shown in bold in Figure 17. When a cycle segment
crosses the flip curve, orientation changes. Therefore, in ad-
dition to noting marked edges, we add a � to the string : "� $
every time we cross a flip line. To compute

��� � " �� $ � �����.� ,
we only count � ’s in : "� $ and take the parity as our answer.

If / " is orientable, there are no flip curves on it. The
contribution of cycle segments to the string is the same as
before: ��� or � � for segments that pass through / " , and��� and ��� for segments that do not. By counting � ’s, only
segments that pass through / " change the parity of the sum
for

�
. Therefore, the algorithm computes

�������.�
correctly

7

− + −

− −

+ + − −

q

sp
−

z
sp

+

v

Figure 17: The bold flip curve is the border of / �" and / �" , the
portions of / " that are oriented differently. :H"� $ � � � � �� ��� ��� � ”, so counting all � ’s, we get

��� ��" ���%$ � ������� �� ������� � � .
for orientable surfaces. For the orientable surface on the
right in Figure 16, for instance, we get

��� ��"���%$ � ����� � �� ������� � � , which is equivalent to the parity of the answer
computed by the previous algorithm.

Remark. We are currently examining the question of ori-
enting surfaces with self-intersections. Using our current
methods, we may obtain a lower bound signature for

�
by

computing a mixed sum: we compute
�

and
� � ���.�

when-
ever we can to obtain the approximation. We may also de-
velop other methods, including those based on the projection
definition of the linking number in Section 2.

6 Experiments
In this section, we present some experimental timing results
and statistics which we used to guide our algorithm devel-
opment. We also provide visualizations of basis cycles in
a filtration. All timings were done on a Micron PC with a
266 MHz Pentium II processor and 128 MB RAM running
Solaris 8.

Implementation. We have implemented all the algorithms
in the paper, except for the algorithm for computing

� ������
. Our implementation differs from our exposition in three

ways. The implemented component tree is a standard union-
find data structure with the union by rank heuristic, but no
path compression [4]. Although this structure has a � ��� � ����� �
construction time and a � ��� ����� � query time, it is simple
to implement and extremely fast in practice. We also use
a heuristic to reduce the number of p-linked cycles. We store
bounding boxes at the roots of the augmented union-find data
structure. Before enumerating p-linked cycles, we check to
see if the bounding box of the new cycle intersects with that
of the stored cycles. If not, the cycles cannot be linked, so
we obviate their enumeration. Finally, we only simulate the
barycentric subdivision.

Data. We have experimented with a variety of data sets
and show the results for six representative sets in this sec-
tion. The first data set contains points regularly sampled
along two linked circles. The resulting filtration contains a
complex which is a Hopf link, as shown in Figure 3. The
other data sets represent molecular structures with weighted
points. In each case, we first compute the weighted Delaunay
triangulation and the age ordering of that triangulation. The
data points become vertices or 0-simplices. Table 1 gives the
sizes of the data sets, their Delaunay triangulations, and age
orderings. We show renderings of specific complexes in the
filtration for data set � in Figure 18.

simplices of dimension O
0 1 2 3

total

� 100 1,752 3,240 1,587 6,679�
318 2,322 3,978 1,973 8,591�

1,001 7,537 13,018 6,481 28,037
� 1,296 11,401 20,098 9,992 42,787
� 2,370 17,976 31,135 15,528 67,009�

7,774 60,675 105,710 52,808 226,967

Table 1: � defines a Hopf link.
�

is Gramicidin A, a small
protein.

�
is a protein monomer. � is a portion of a periodic

zeolite structure. � is a human cyclin-dependent kinase.
�

is a DNA tile.

Basis. Table 2 summarizes the basis generation process.
We distinguish the two steps of our algorithm: initial basis
generation and canonization. We give the number of basis
cycles for the entire filtration, which is equal to the number
of positive edges. We show the effect of canonization on

time in seconds
generate canonize total

cycles

�
0.08 0.04 0.12 1,653�
0.08 0.03 0.11 2,005	
0.28 0.20 0.48 6,537

0.46 0.46 0.92 10,106�
0.72 1.01 1.73 15,607�
2.63 2.94 5.57 52,902

Table 2: Time to generate and canonize basis cycles, as well
as their number.

the size of the cycles and their spanning surfaces in Table 3.
Note that canonization increases the size of cycles by one or
two orders of magnitude. This is partially the reason we try
to avoid performing the link detection if possible.

Links. In Table 4, we show that our component tree and
augmented trees are very fast in practice to generate p-linked

8

Figure 18: Complex

S
� � ��� of � has two components and seventeen cycles. The spanning surfaces are rendered transparently.

avg cycle length avg surface size
before after before after

�
3.06 51.03 1.06 63.04�
3.26 13.02 1.38 52.28	
3.29 34.18 1.33 71.18

4.71 25.33 3.26 117.81�
3.48 67.87 1.62 166.70�
3.46 39.94 1.81 158.99

Table 3: Average number of edges per cycle and number of
triangles per spanning surface, before and after canonization.

pairs. We also show that our bounding box heuristic for re-
ducing the number of p-linked pairs increases the computa-
tion time negligibly. The heuristic is quite successful, more-

tree alg heur links
�

0.01 0.00 0.00 0.01�
0.00 0.01 0.02 0.02	
0.03 0.06 0.06 0.23

0.04 0.07 0.07 0.13�
0.06 0.13 0.16 0.36�
0.27 0.56 0.82 8.22

Table 4: Time in seconds to construct the component tree,
and enumerate p-linked pairs (alg), p-linked pairs with inter-
secting bounding boxes (heur), and links.

over, in reducing the number of pairs we have to check for
linkage It eliminates

���

+
���

of the candidates for dataset � ,
for example, as shown in Table 5. The differences in total
time of computation reflect the basic structure of the datasets.
Dataset

�
has a large computation time, for instance, as the

average size of the p-linked surfaces is approximately 264.16
triangles, compared to about 1.88 triangles for dataset � , and
about 1.73 triangles for dataset

�
.

alg heur links
�

1 1 1�
112 0 0	

16,503 14,968 0

169,594 308 0�
12,454 11,365 0�
98,522 4,448 0

Table 5: Number of p-linked pairs (alg), p-linked pairs with
intersecting bounding boxes (heur), and links.

Discussion. Our initial experiments demonstrate the feasi-
bility of the algorithms for fast computation of linking. The
experiments fail to detect any links in the protein data, how-
ever. This is to be expected, as a protein consists of a single
component, the primary structure of a protein being a single
polypeptide chain of amino acids. Links, on the other hand,
exist in different components by definition. We may relax
this definition easily, however, to allow for links occuring
in the same component. We have implementations of algo-
rithms corresponding to this relaxed definition. Our future
plans include looking for links in proteins from the Protein
Data Bank [16]. Such links could occur naturally as a result
of disulphide bonds between different residues in a protein.

7 Conclusion
In this paper, we develop algorithms for finding the link-
ing numbers of a filtration. We give algorithms for comput-
ing bases of 1-cycles and their spanning surfaces in simpli-
cial complexes, and enumerating co-existing cycles in dif-
ferent components. In addition, we present an algorithm
for computing the linking number of a pair of cycles using
the surface formulation. Our implementations show that the
algorithms are fast and feasible in practice. By modeling
molecules as filtrations of alpha complexes, we can detect
potential non-trivial tangling within molecules. Our work
is within a framework for applying topological methods for

9

understanding molecular structures.

Acknowledgments. We thank David Letscher for discus-
sions during the early stages of this work. We also thank
Daniel Huson for the zeolite dataset � , and Thomas La Bean
for the DNA tile data set

�
.

References
[1] ADAMS, C. C. The Knot Book: An Elementary Introduction

to the Mathematical Theory of Knots. W. H. Freeman and
Company, New York, NY, 1994.

[2] BISSELL, R. A., CÓRDOVA, E., KAIFER, A. E., AND

STODDART, J. F. A checmically and electrochemically
switchable molecular shuttle. Nature 369 (1994), 133–137.

[3] COLLIER, C. P., WONG, E. W., BELOHRADSKÝ, RAYMO,
F. M., STODDART, J. F., KUEKES, P. J., WILLIAMS, R. S.,
AND HEATH, J. R. Electronically configurable moleculear-
based logic gates. Science 285 (1999), 391–394.

[4] CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L.
Introduction to Algorithms. The MIT Press, Cambridge, MA,
1994.

[5] DELFINADO, C. J. A., AND EDELSBRUNNER, H. An incre-
mental algorithm for Betti numbers of simplicial complexes
on the 3-sphere. Comput. Aided Geom. Design 12 (1995),
771–784.

[6] EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN,
A. Topological persistence and simplification. In Proc. 41st
Ann. IEEE Sympos. Found. Comput. Sci. (2000), pp. 454–463.

[7] EDELSBRUNNER, H., AND MÜCKE, E. P. Three-dimen-
sional alpha shapes. ACM Trans. Graphics 13 (1994), 43–72.

[8] FLAPAN, E. When Topology Meets Chemistry : A Topological
Look at Molecular Chirality. Cambridge University Press,
New York, NY, 2000.

[9] GIBLIN, P. J. Graphs, Surfaces, and Homology, second ed.
Chapman and Hall, New York, NY, 1981.

[10] HAKEN, W. Theorie der Normalfl ächen. Acta Math. 105
(1961), 245–375.

[11] HAREL, D., AND TARJAN, R. E. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput. 13 (1984), 338–
355.

[12] HASS, J., LAGARIAS, J. C., AND PIPPENGER, N. The com-
putational complexity of knot and link problems. J. ACM 46
(1999), 185–211.

[13] JACO, W., AND TOLLEFSON, J. L. Algorithms for the com-
plete decomposition of a closed � -manifold. Illinois J. Math.
39 (1995), 358–406.

[14] LEACH, A. R. Molecular Modeling, Principles and Applica-
tions. Pearson Education Limited, Harlow, England, 1996.

[15] MUNKRES, J. R. Elements of Algebraic Topology. Addison-
Wesley, Redwood City, California, 1984.

[16] RCSB. Protein data bank. http://www.rcsb.org/pdb/.

[17] ROLFSEN, D. Knots and Links. Publish or Perish, Inc., Hous-
ton, Texas, 1990.

[18] SEIFERT, H. Über das Geschlecht von Knoten. Math. An-
nalen 110 (1935), 571–592.

[19] TAYLOR, W. R. A deeply knotted protein structure and how
it might fold. Nature 406 (2000), 916–919.

[20] VAN LEEUWEN, J. Finding lowest common ancestors in less
than logarithmic time. Unpublished report.

10

