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Abstract

The body defined by a finite collection of disks is a subset
of the plane bounded by a tangent continuous curve, which
we call the skin. We give analytic formulas for the area, the
perimeter, the area derivative, and the perimeter derivative of
the body. Given the filtrations of the Delaunay triangulation
and the Voronoi diagram of the disks, all formulas can be
evaluated in time proportional to the number of disks.
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1 Introduction

In this paper, we are concerned with a geometric design
paradigm that uses weighted points to control planar geomet-
ric shapes with tangent continuous boundaries. Specifically,
we give formulas for measuring the area, the perimeter, the
area derivative, and the perimeter derivative of such shapes.

Mativation. The primary motivation for the work in this
paper is the automated design of geometric shapes with vari-
able connectivity. This is the central problem in topology
optimization, which is a field of research within mechani-
cal engineering [1, 2]. The shape is computed by iterative
improvement within a global design cycle. The main ingre-
dients to the methods are

e adata structure representing the geometric shape;

e arepresentation of the spatial domain that contains that
shape;
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e an objective function that drives the iterative improve-
ment of the shape.

The main requirements for the shape data structure are flexi-
bility and measurability. A single iteration of the design cy-
cle determines local changes to the shape, and the data struc-
ture ought to be flexible enough to implement the changes
in shape and its topology. The local changes are computed
through a stability analysis of the shape, which is based on
local and global measurements of size and size derivatives.

A viable data structure for geometric shape is the skin and
body representation introduced in [10]. In three dimensions,
a skin is a tangent continuous surface defined by a finite col-
lections of spheres. Its ability to smoothly deform from one
shape to another has been studied in [7], and an algorithm for
constructing and maintaining a mesh representing the sur-
face has been described in [5]. We are still lacking a fast
algorithm that measures the skin surface and the subset of
space it bounds. This paper describes such an algorithm for
the two-dimensional case, where the skin is a tangent con-
tinuous curve defined by a finite collection of disks [8]. The
problems in two and three dimensions are principally the
same, except that there are more and mathematically more
challenging cases in three dimensions. We thus believe that
the results presented in this paper can be used as a blue-print
for the development of similar measuring algorithms in three
dimensions.

Results. Let D be a finite collection of disks in the plane.
The geometric shape defined by D is a subset of the plane
which we refer to as the body of D. Its boundary is a closed
and tangent continuous but not necessarily connected curve,
which we refer to as the skin of D. The area and the perime-
ter of the body are continuous functions A, P : R3® — R,
where n is the number of disks. The domain has dimension
3n because each disk has three degrees of freedom, two for
its center and one for its radius. In other words, each point,
or state in R3™ uniquely defines a collection of n disks and
thus a body and a skin. The derivatives of A and P at a state
z € R3™ are linear functions DA,,DP, : R3” — R. Being
linear, they can be written as scalar products, DA, (t) = a-t



and DP,(t) = p - t, where t € R3" is the variable vector
and a',p” € R*®" are the gradients of the two functions.

We give analytic formulas for computing the area, the
perimeter, the area derivative, and the perimeter derivative
of a body. These formulas are based on the alpha shape the-
ory and the inclusion-exclusion formulas introduced in [9].
Given the filtrations of the Delaunay triangulation and the
dual Voronoi diagram of the set of disks, these formulas can
be evaluated in time O(n).

Outline.  Section 2 presents geometric background, includ-
ing the filtrations of the Delaunay triangulation and the
Voronoi diagram and the mixed complex, which decomposes
the body and the skin into simple pieces. Section 3 explains
how the two filtrations and the mixed complex can be used
to derive analytic formulas for the area and the perimeter of
a body. Section 4 gives the area and perimeter derivatives by
specifying their gradients. Section 5 concludes the paper.

2 Geometric Background

In this section, we introduce the Voronoi decomposition of a
union of disks, the Delaunay decomposition of the union of
orthogonal disks, and the mixed complex decomposition of
an interpolation of the two unions.

Voronoi decomposition. Let D be a collection of disks
D; = (z;,r;), for 0 < 4 < n — 1. The radius r; is ei-
ther a non-negative real or a non-negative multiple of the
imaginary unit, i = +/—1. Equivalently, the square of the
radius is a real number. We call D; imaginary if r? < 0.
Imaginary disks play an important role in our theory, in spite
of the fact that they are ignored when we take the union,
F = D, which is the portion of R? covered by non-
imaginary disks. The power distance of a point z € R? from
D;is m;(x) = ||z — 2> — 2. The point z belongs to D; iff
mi(z) <0, and it belongs to F' iff w;(x) < 0 for at least one
4. The Voronoi polygon of D; is the set of points for which
D; minimizes the power distance,

vi = {ze€R|m(z)<mi(z),Vi}.

Assuming general position, each Voronoi edge is the in-
tersection of two Voronoi polygons, v;; = v; Nv;, and
each Voronoi vertex is the intersection of three, v;;, =
v; Nvj Nvg. The Voronoi diagram is the collection of
Voronoi polygons, edges, and vertices. The Voronoi poly-
gons cover all of R? and they decompose the union of disks
into convex regions of the form v; N F = v; N D;, as il-
lustrated in Figure 1. The dual complex of this decomposi-
tion contains a simplex for each non-empty intersection of
the convex regions. By assumption of general position we
only have vertices o; = z;, edges 0;; = z;z;, and trian-
gles oir = ziz;jz,. An example is shown in Figure 1. We
write o; < 045 < o0y, t0 express that the simplices to the

Figure 1: The Voronoi decomposition of a union of four disks
drawn on top of its dual complex, which consists of four vertices,
six edges, and one (dark shaded) triangle.

left are faces of the ones to their right. We may grow the
disks continuously in a way such that the Voronoi diagram
does not change. To do this, we use a parameter a with
a? € R, define D, , as the disk with center z; and radius
(r? + a2)'/2, let D, be the collection of disks D; ,, and
define F, = |UD,. The a-complex K, of D is the dual
complex of D,,. For sufficiently large negative a2, all disks
are imaginary and the a-complex is empty. For sufficiently
large positive a2, every Voronoi polygon, edge, and vertex
has non-empty intersection with F,, and the a-complex is
the dual of the Voronoi diagram, which is referred to as the
Delaunay triangulation K of D. Similar to the radii, the pa-
rameter « takes on non-negative real values and non-negative
real multiples of the imaginary unit. These values are totally
ordered, and we have a nested sequence of alpha complexes,

szioogKangaggKoozK;

for a2 < a3. Since the Delaunay triangulation is a finite
set, there are only finitely many different alpha complexes.
We refer to the maximal nested sequence of pairwise differ-
ent such complexes as the alpha filtration of the Delaunay
triangulation.

Delaunay decomposition. Using D and its Voronoi dia-
gram, we construct a second collection ¢/ of disks U, =
(., s.). Specifically, for each Voronoi vertex v;;;,, we have
a disk with center y, = v;;;, and square radius s? = m;(y,).
By construction of y,, the square radius is also equal to
m;(y,) and to w4 (y,). With this choice of radius, we have
lly, — zi||> = s> + r2, which is the condition for U, and D;
to be orthogonal. Similarly, U, is orthogonal to D; and to
Dy.. We refer to the collection ¢/ of thus constructed disks as
the orthogonal dual of D.

The definition of orthogonal dual has a subtle but substan-
tial flaw, which we remedy by compactifying the Voronoi di-
agram and the Delaunay triangulation. In doing so, we reveal
a fundamental symmetry between the two. Specifically, we
add a disk D,, with center z,, at infinity and radius r,, = ico
to D. The effect of this addition can be visualized by drawing
the Voronoi diagram and the Delaunay triangulation on the



sphere. As illustrated in Figure 2, the diagrams in R? can be
obtained by stereographic projection from z,,. We get a new

Figure 2: Sketch of the compactified Voronoi diagram with shaded
vertices and the dual Delaunay triangulation with white vertices.

\oronoi polygon whose vertices are all at infinity and can
be interpreted as the endpoints of the formerly unbounded
Voronoi edges. We also get z,, as a new Delaunay vertex,
which is connected to the formerly extreme vertices of K via
new Delaunay edges. Furthermore, each new Voronoi vertex
v;jn is the center of an infinitely large disk U, that is orthog-
onal to D; and D;. This is a half-plane whose bounding line
passes through z; and z;.

We now have complete symmetry between the two collec-
tion of disks. It is not difficult to see that the Voronoi polygon
of the disk U, orthogonal to D;, D;, and Dy, is the Delaunay
triangle o;;1. It follows that the Voronoi diagram of I is
the Delaunay triangulation of D, and symmetrically, the De-
launay triangulation of ¢/ is the Voronoi diagram of D. The
Delaunay triangulation K of D thus decomposes the union
of orthogonal disks, G = |JU, into convex regions. We
find that the dual complex of ¢/ is the collection of Voronoi
vertices, edges, and polygons that correspond to Delaunay
simplices whose intersection with the union is non-empty.
We have vertices v;;i, edges v;;, and polygons v;. We use
a parameter 3 with 32 € R to grow the orthogonal disks to
U.s = (Y., (s2 + B2)1/?). Let Us be the collection of disks
U, g, let Gg = |JUs, and define the S-complex V of U as
the dual complex of Ug. For sufficiently large negative 52,
we get the empty complex, and for sufficiently large positive
52, we get the Voronoi diagram V of D. More generally, we
have

@:‘/ioogvﬁh gVBz CVo =V,

for 82 < 2. The maximal subsequence of pairwise differ-
ent such complexes is referred to as the beta filtration of the
\oronoi diagram. Note that if we start with D, instead of D
then we get orthogonal disks with the same centers but with
different radii. Specifically, we get Uz with 8 = i« as the
orthogonal dual. In other words, the two filtrations relate to
each other via an anti-parallel correspondence in which K,
maps to Vi, and vice versa.

Skin and body. Given D, the skin is a tangent continuous
curve that differs from the boundary of F' in two respects.
First, it shrinks every disk by a factor 1/4/2, and second,
it removes sharp corners by blending between adjacent disk
boundaries. We use the vector space of quadratic functions
to formally describe this curve. Recall that the circle bound-
ing D; is the zero-set of the corresponding power distance
function, 7;*(0). An affine combination of the ; is a func-
tion

m(z) = zn:%m(x) with z":% = 1.
=0 =0

It is the power distance function of a new disk, which we
denote as D = E?:o ~;D; and refer to as an affine com-
bination of the D;. The affine hull of D, aff D, is the set
of all affine combinations. The affine combination D is a
convex combination of the D; if 4; > 0 for all ¢, and the con-
vex hull of D, conv D, is the set of all convex combinations.
The final step in the construction shrinks all disks by a factor
1/+/2 while keeping their centers fixed. We use the super-
script to denote shrinking and define Dz.l/2 = (2i,7i/V?2).
The set of shrunken disks in the convex hulls is denoted as
(convD)'/2 = {D'/? | D € convD}. The body of D is the
union of shrunken convex combinations, and the skin is the
boundary of that union,

bodyD = U(convD)l/2,
skinD = bdbodyD.

Figure 3 illustrates these concepts. Recall that the orthogonal

Figure 3: The skin bounds the (shaded) body, which is the union
of the shrunken convex combinations of the disks in Figure 1. The
portions of the mixed cells that decompose the body are shown to-
gether with the foci of their circles and hyperbolas.

dual ¢ of D is also a collection of disks. We refer to [10] for
a proof that the skins of the two collections are the same and
their bodies are complementary:

body D Nbody!d = skinD = skinlf, Q)
body D Ubodyld = R2. (2)



Since U, is the orthogonal dual of D,, we also have
skin D,, = skinl;, for all a? € R.

Mixed complex decomposition. If D contains only one
disk D;, thenits skin is obviously a circle, namely the bound-

ary S; of B; = D}/2. Elementary algebraic calculations
show that the envelope of the shrunken affine hull of two
disks D; and D; is a hyperbola whose asymptotes form a
right angle. We denote the hyperbola by S;; and the region
bounded by the hyperbola by B;; = U(aff {D;, D,;})!/2.
We use Property (1) to determine the skin of three disks D,
Dj, and Dy, that form a hole, like the one in Figure 1. The
three disks define a single non-imaginary orthogonal disk U,
and the skin locally around the hole is the circle obtained by
shrinking U,. We denote this circle by S;;5 and the closed
complement of the disk it bounds by B;;,. We will see
shortly that the entire skin and body can be decomposed into
instances of these three cases.

Let v, be a Voronoi polygon, edge, or vertex and let o,
be the dual Delaunay vertex, edge, or triangle. Their dimen-
sions are supplementary, dim v, + dim o, = 2. The corre-
sponding mixed cell is the Minkowski sum of scaled copies,
px = 3V« + 30y, Which is a convex polygon. The mixed
complex M of D consists of all mixed cells together with
their edges and vertices. Any two mixed cells are either dis-
joint or intersect in a common edge or vertex, and together
they cover R2. As explained in [8, 10], the mixed cells de-
compose the skin into circle and hyperbola pieces. We have
three types of mixed cells, distinguished by the number of
indices, which is one more than the dimension of the corre-
sponding Delaunay simplex, p = dimo,. Instances of all
three cases can be seen in Figure 3.

Case p=0. The mixed cell u; = %(u,- + 0;) is the trans-
late of a scaled Voronoi polygon. Within the window
provided by p;, the skin is a circle.

Case p=1. The mixed cell u;; = L(vy; + oy;) is the
scaled Minkowski sum of a Voronoi edge and its dual
Delaunay edge, which is a rectangle. Within the rectan-
gular window, the skin is a hyperbola.

Case p=2. Themixed cell ujr = 3 (ijk + 04ji) is the
translate of a scaled Delaunay triangle. Within the win-
dow provided by g1, the skin is a circle.

In general, the skin within a mixed cell is p, NskinD =
i« N Sy, and the body is g, N body D = pu. N B,. Recall
that B, is the union of a family obtained by shrinking the
disks in the affine hull of one, two, or three disks. The small-
est disk in this family is significant in describing S, and B,.
We call the center and the square radius of that disk the focus
z, and the age g, of S, and B,. In Case p = 0, the focus is
the center of D; and the age is g; = r?/2. InCase p = 1,
the focus is the apex z;; of the hyperbola, and a formula for
the age will be given in Section 4. In Case p = 2, the focus
is zijr, = y, and the age is g;jx = —s2/2.

3 Size

In this section, we study relations between the skin and the
alpha and beta filtrations, and we use these relations to derive
formulas for measuring the sizes of the skin, the body, and
their decompositions by the mixed complex.

Results. We begin by stating the results. We consider four
measures and express each by a sum over all mixed cells.
For each u., we consider the area of the body within ., the
length of the skin within u.., the length of its boundary within
the body, and the number of intersections of its boundary
with the skin:

area(u« N By),

= length(u. N Sy),
length(bd p. N B,),
card(bd g, N Sy).

e
!

The area and perimeter are important measures in their own
right, and the length and cardinality of the decompositions
are used in the formulas of the area and perimeter derivatives
given in Section 4.

SizE THEOREM. The area and perimeter of the body of a
finite collection of disks, the total length of the decom-
position of the body, and the total number of points in
the decomposition of the skin are

A = ZAi+ZAij+ZAijk,
i ij

ijk

ZPHLZPU +ZPijk,
i ij ijk
L = Y Ly,
ij
ZNU.
ij

The sums for A and P range over all vertices o;, over all
edges o;;, and over all triangles o, of the Delaunay trian-
gulation. Each line segment and each point in the decompo-
sitions of the body and the skin belong to exactly two mixed
cells. Exactly one of any such pair is a double-index mixed
cell, which explains why the sums for L and N range only
over this one type. In the remainder of this section, we ex-
press all terms in the sums by formulas involving the the
centers and radii of the given and the orthogonal disks. For-
mulas for the A, are given in Equations (3), (5), and (9),
formulas for the P, are given in Equations (4), (6), and (10),
and formulas for the L;; and V;; are given in Equations (7)
and (8).

P

N

Disks. A single-index mixed cell p; is obtained by shrink-
ing the Voronoi polygon »; by a factor 1/2 towards the cen-
ter z; of the corresponding disk D;. Its intersection with the



body is u; N B;, and we recall that B; is obtained by shrink-
ing D; by a factor 1/+/2 towards the same point z;. We get
the same by first growing D; to D; ,., = (2, V2r;), then in-
tersecting v; with D; .., and finally shrinking the intersection
by a factor 1/2. This is illustrated in Figure 4. Recall that

Figure 4: The light shaded intersection of the Voronoi polygon
with the grown disk is similar to the dark shaded intersection of
the mixed cell with the shrunken disk.

A; and P; are the area of the body and the length of the skin,
both clipped to within w;. There is more than one way to
compute the two, and we choose to use inclusion-exclusion,
as described in [9]. To explain this, we introduce the star of
z; in K., which contains all simplices that contain z;, and
the link, which contains all faces of simplices in the star that
do not contain z;,

Str,zi = {T € K,, |Zi < T},
Lk, z; = {0’ € K,, | ziko<TE St”zi}.

We note that the (—1)-dimensional simplex, @, is necessarily
an element of the link. For each simplex ¢ € Lk, 2;, con-
sider the piece of the circle C; ,, = bd D; , in the influence
regions of the disks D; ., that span o,

Cir. = {z€Cip |mj(z) <mi(2),V2; <o}
For example, 02” = Cj,r;,and Cz{ff} is the arc on the other
side of the line separating v; and v;. Similarly, let DY . be
the piece of the disk D, ,, in the influence regions of the
D;j.;, with z; < ¢. Analytic formulas for the length and
area of these pieces are not difficult to compute. The por-
tions inside v; can be written as alternating sums of these
pieces, and we get the area and the perimeter inside y; after
appropriate scaling:

1 dim o+1 o
A, = Zg(_l) area(D7,..), 3

1 .
P o= 3 ;(—1)&m “+length(CY,.,). 4)
Both sums range over all simplices ¢ in the link of z; in K., .
We get the first terms in the expression for A and P in the
Size Theorem by summing the A; and P; over all single-
index mixed cells p;.

Hyperbolas. A double-index mixed cell p;; is obtained
by shrinking the Minkowski sum of the two correspond-
ing Voronoi and Delaunay edges by a factor 1/2 towards
the focus z;; of the corresponding hyperbola. This focus is
also the intersection point of the lines spanned by the edges,
zij = aff o;; N aff v;;. The points on the line of the Delau-
nay edge are centers of disks in the shrunken affine hull of D;
and D;. We translate and rotate the configuration such that
o;; lies on the (horizontal) z-axis and v;; lies on the (ver-
tical) z»-axis of our Cartesian system, as drawn in Figure 5.
In this normalized form, z;; lies at the origin and the equa-

Ojj x Vij 4l

»Hij eWﬁ/
I
|

Figure 5: The hyperbola within the mixed cell is the envelope of
the shrunken disks in the affine hull of I3 and D;.

tion of the hyperbola S;; is —z% + 23 = g;;. We compute
the length and the area it bounds inside y;; by integration.
Assuming z;; € pq;, we consider the upper right quadrant,
which is a rectangle [0, w] x [0, k], with w = ||z;; — 2;]|/2
and h = ||zi; — zij1||/2. Assuming g;; > 0, we get
zs = (22 + gi;)"/? as a real valued function over the en-
tire interval 0 < z; < w. Assuming h? > w? + g;;, the area
of B;; inside the upper right quadrant is

z1:0
1 w
= [Sﬂl\/$%+gz’j+gijln (5614—\/3:%4—91']')]
0

3
1 w+H)

= ~(wH+g;m——), 5
2( S/ ©

where H = (w? + g;;)'/? is the value of z, for z; = w.
The length of the hyperbola within the upper right quadrant

of Hij is
w d.'L'Q
2 - / A1+ ()2 dxy
ZJ 21:0 dwl
/w 2m2% + gij dzy
zy=0 \ T1 1 gij

w/VE 92 41
- v [, e

dt, (6)



where we define ¢t = ml/\/gTj to get the last line. The result
is an example of an elliptic integral, which is analytically
not soluble [3], but for which fast numerical routines have
been developed and are available as part of public numerical
software packages.

In the configuration drawn in Figure 5, the total area A;;
and perimeter P;; can be obtained by adding the portions in
the four quadrants. Within each quadrant, the computations
are symmetric, except for a small modification necessary in
the lower right quadrant, in which the hyperbola does not
reach the right side of the rectangle. We now give an analysis
of all generic cases and show that A;; and P;; are generally
sums of four terms each, although some of the terms can be
negative. We distinguish configurations by considering the
age of the hyperbola and the signed distances of the focus
from the four sides. For positive age, B;; is connected and
sandwiched between the upper and lower branches of the hy-
perbola, as in Figure 5, while for negative age, B;; consists
of two regions separated by the left and right branches of the
hyperbola. After a rigid motion that moves the focus to the
origin and the Delaunay edge onto the horizontal coordinate
axis, the mixed cell is a rectangle [—w;;, wj;] x [—hij, hyi).
The lines spanned by the four sides decompose the plane into
nine regions, and we distinguish configurations depending
on which of these regions contains the origin. In each case,
we compute the area and perimeter by summing the portions
inside four axis-aligned rectangular boxes, each one defined
by the origin and one of the four corners of u;;. To get the
correct result, we take the measurements inside a box posi-
tive or negative depending on whether the two corresponding
w- and h-values have the same or different signs. When we
compute the area and perimeter inside a box, we distinguish
between the case in which the defining corner belongs to the
body, and the complementary case in which it does not. Fi-
nally, we get the A;; and P;; by summing the results for the
four quadrants. We get the second terms in the expressions
for A and P in the Size Theorem by summing the A4;; and
P;; over all double-index mixed cells ;5.

Boundary of mixed cells. The computations of L;; and
N;; are similar. Consider the intersection of the four sides
of p;; with the body, or equivalently with B;;, as illustrated
in Figure 6. Each side intersects B;; in a line segment or
the complement of a line segment, and we use W;;, Wj;,
H;;, and Hj; to denote their lengths. Each intersection has
zero, one, or two endpoints in the interior of the correspond-
ing side of u;;, and we let E;;, Ej;, F;; and Fj; be these
numbers. With this notation, we have

Lij = Wi+ Wy + Hij + Hjy, ()
Nij = Eij+ Ej + Fij + Fj;. 8
We compute L;; and N;; using the filtrations of the Delaunay
triangulation and the Voronoi diagram. By the reasoning il-

lustrated in Figure 4, H;; is half the length of the intersection
between the Voronoi edge v;; and the disk D; ,,. The length

Figure 6: Notation for the length of rectangle sides clipped within
the body and for the distances of the focus from the four sides.

of this intersection can be computed by inclusion-exclusion
based on whether or not o;; and the two triangles o;;; and
o5 that share it belong to K,.,. Recall that F;; is the number
of endpoints of that intersection in the interior of v;;. This is
also 2 minus the number of triangles that share o;; and be-
longto K. Similarly, we get H;; and F};; by switching i and
Jj. Furthermore, we get W;;, Wj;, E;;, and Ej; the same way
from the beta filtration, keeping in mind that it presents the
complement, so we perform complementary measurements.
Finally, we get L and N in the Size Theorem by summing
the L;; and N;; over all double-index mixed cells p;;.

Disk complements. A triple-index mixed cell ;s is ob-
tained by shrinking the Delaunay triangle o;;;, by a fac-
tor 1/2 towards the center z;;;, = y, of the correspond-
ing orthogonal disk U,. Its intersection with the body is
Hijk = Bijr, and we recall that B;;;, is obtained by shrink-
ing U, by a factor 1/\/5 towards the same point z;;, and
taking the complement. Similar to the single-index case, we
get the same by first growing U, to U, s, = (y,,v/2s,), then
intersecting o5 with U, ,,, and finally shrinking the inter-
section by a factor 1/2. This is illustrated in Figure 7. We

Figure 7: The light shaded intersection of the Delaunay triangle
with the complement of the grown orthogonal disk is similar to the
dark shaded intersection of the mixed cell with the complement of
the shrunken orthogonal disk.

use again inclusion-exclusion to compute the length P;;;, of
the skin and the area A;;;, of the body within p;;;,. Consider



the star and the link of y, = ;s

y, < v},
y, L v <wv € Sts,y, }

Note again that the empty Voronoi polygon, @, is necessar-
ily an element of the link. For each Voronoi vertex, edge,
and polygon v € Lks, y,, let C}, be the piece of the circle
C,,s, = bdU,,, in the influence regions of the disks Uy s,
whose centers span v. Similarly, let U}, be the piece of
the disk U, s, in the influence regions of the disks U, ,, with
Y. < v. The portions inside o5, can be written as alternat-
ing sums of these pieces, and we get the area and the perime-
ter inside p;;, after scaling and taking the complement:

Sts,y, = {veVs
LksLyL = {VeVsL

Aijr = area(fuji)
1 .
-1 (—l)d‘m"ﬂarea(UZsL), 9)
1 .

Pji = 5Z(—l)d‘m"“length(czst). (10)

Both sums range over all Voronoi vertices and edges v in the
link of y, in V. We note that these sums can be simplified
by replacing paths in the link by single edges. Specifically,
each Voronoi polygon v; in the star contributes an open path
of edges and vertices to the link of y,, and this path may be
replaced by a single edge connecting the two ends. This re-
placement is akin to triangulating »; in such a way that none
of the diagonals ends at y,. The replacement does not change
the result of the sum because all vertices on the path define
bisectors that pass through the corner z; of the Delaunay tri-
angle. Finally, we get the third terms in the expressions for
Aand P in the Size Theorem by summing the A;;; and P,
over all triple-index mixed cells g .

4 Derivatives

In this section, we give a complete description of the area
and perimeter derivatives of a body.

Results. We begin by stating the results. Since the com-
plete statements are unwieldy, we present a generic formula-
tion of the derivatives that can be developed using substitu-
tions given subsequently in this section.

DERIVATIVE THEOREM. Let X be the area or perimeter
function of the body defined by a collection of n disks
with state z € R3". Its derivative is DX, (t) = x - t,

where
T
X3i41 dX; dX;; dXij
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forall0 <i<n.

We write a for x if X = A is the area function, and p for x
if X = P is the perimeter function. In both cases, the sums
in the theorem range over all vertices o; and all edges o, in
the link of ¢; in the Delaunay triangulation of D. Some of
the terms might be zero, and an efficient way to determine the
non-zero ones uses the alpha and beta filtrations, as described
in Section 2. For each single, double, and triple index *, we
get the derivatives by separating the contributions of sliding
and aging,

dX, _ dX, dz, dX,dg.
dz; dz dz; | dge dz’
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The derivatives with respect to z; are given in Equations (14)
to (19), and the ones with respect to 7 are given in Equations
(20) to (25). The derivatives of A, are given in Equations
(26) to (31), and the derivatives of P, are given in Equa-
tions (32) to (37). As illustrated in Figure 8, the terms in the
above equations are matrices. In computing the formulas, we
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Figure 8: The matrices are labeled by the equations that can be
substituted to give the derivatives of the area and the perimeter with
respect to z; in the first and with respect to +2 in the second row.

exploit the linearity of the derivative and consider each disk
separately. We also distinguish between the motion of a disk,
which is caused by varying its center, and its growth, which
is caused by increasing or decreasing its radius. As can be
seen from the statement of the Derivative Theorem, we look
at each mixed cell separately, and we determine how mo-
tion and growth affect the mixed cells and the skin and body
within the cells. The change of the skin and body is the accu-
mulation of the changes that happen within individual mixed
cells. We begin with a detailed look at how a hyperbola de-
pends on the two disks that define it.

Focus and age of a hyperbola. We express the focus and
age of a hyperbola in terms of the centers and radii of the two
defining disks, D; and D;. See Figure 9 for the notation used
for the computations. We let 2r;; be the distance between the
intersection points of the two circles, which is imaginary if
the disks are disjoint. The square distances of the centers
to the bisector are 4w}; = rj —ry; and 4w3; = i —r;.
We take w;; and wy; as positive or negative such that ¢;; =
2w;; + 2wj; is the Euclidean distance between z; and z;. We



Figure 9: Two disks define various lengths and angles.

have ri —r? = dw}; — dw}; = (;j(2wi; — 2w;;). From this,
we get equations for the distance between z; and the bisector,
for the focus of the hyperbola, which is z; plus 2w;; times
the unit vector from 2; to z;, and for the age, which is rfj /2:

1 /r2 — r2.
wi; = 5 (Cij + C—J> ; (11)
j
2

—r2
((zi +zj) — %(zi - Zj)) , (12)

N | =

Zij =
j

| =
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Let ¢;; = arccos 2’:—1 be the angle at z;, as shown in Figure
9. This is also the angle between the bisector and the tangent
at the point where the bisector intersects the circle. It follows
that ;; + ;; is the angle between the two circles at each
intersection point.

Propagation of motion. As illustrated in Figure 10, the
motion of a disk D; affects the body within all mixed cells
whose indices include 7. No other foci and ages change, al-
though the boundary between the first and second layers of
mixed cells around y; slide. We may ignore the sliding of
any edge in the mixed complex because, to a first order of
approximation, the gain and loss on its two sides cancel each
other. However, we cannot neglect the sliding and aging of
the circles and hyperbolas within the mixed cells. We con-
sider the three types of mixed cells in turn.

Case p = 0. The circle within y; slides the same way the
disk D; moves, and the age of the circle remains constant.
Hence

dgi _
5 = L00] (15)

Case p = 1. The hyperbola within y;; both slides and
ages. We compute the rates of these changes in the orthonor-
mal coordinate frame spanned by w;; = (2; — 2;)/||zi — #;]|

,:J//// .

Figure 10: The solid lines bound and decompose the initial body.
The dashed lines indicate how the body and its decomposition
change as a reaction to the motion of D;.

and Vij = (zi]‘k —zijl)/”zi]-k — Zijl“a which is shown in Fig-
ure 6. Assuming z; is the origin, we have z; = ((;;,0) and
zij = (2wj;,0) in this frame. The derivative of the focus
with respect to the moving center is

dzij _ |:de,', de,':| . |: u§ ] ’ (16)
dz; dg; " dny; Vjj
where
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are obtained from Equation (11), after switching ¢ and j. The
matrix on the right in Equation (16) transforms the input vec-
tor into the coordinate frame spanned by u;; and v;;. The age
of the hyperbola is insensitive to sliding in the v;;-direction,
so we get the derivative of the age by differentiating Equa-
tion (13) with respect to ¢;;:

dgi; 1 (r; —r3)? T
Qi _ g4 ) L, 17
€z 1 ( Gij + ; Us; (17)

Case p = 2. The circle within u;;;, both slides and ages.
The sliding is restricted to the bisector defined by D; and
Dy,. We may compute the new focus z;; by projecting the
new focus z;; onto that bisector, with the direction of the
projection being orthogonal to the new edge o;;. We again
separate the motion of z; along w;; from that along v;; and
write 7;; for the coordinate of z; along the v;;-direction. We
get

dz,-jk dzijk dzi]‘k UT
= . [ 18
dz; [dCij " dny of | (18)
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where
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ddi; dg; ¥ TR

1 r}-r]
— 5 + =7 (uij + tan’d)z’jk . Uij)a
j

dz,'jk 2hij

- _ ui; + tani - vi;),
dnij Gij (s k)

;51 is the angle from o5 to the bisector defined by D; and
Dy, and 2h;; is the distance between z;; and z;;;,. The rela-
tion for the derivative with respect to 7, is illustrated in Fig-
ure 11. We may use Equation (11) to express 2h;; in terms
of radii and distances defined by orthogonal disks. The first
matrix on the right side of Equation (18) has rank one be-
cause z;;;, slides along a fixed line that is independent of the
motion of z;. To compute the rate of aging, we consider the

Figure 11: The motion of z; normal to the edge o;; = z;2; causes
the focus z;; to slide along the bisector defined by D; and Dy.

disk U, = (y.,s,) orthogonal to D;, D;, and Dy. We have
lly. — 2|* = 4w?, + 4h2,, since 2w, = ||z; — zjx|| and
2hji = ||zj1 — .|| are the distance components normal and
parallel to the bisector defined by D; and Dy, which con-
tains y, = zijx. This implies 57 = —r3 + w3, + 4h%,.
Since the derivative of the age is minus one half that of s2,
and since r; and w;;, remain constant, we have

dgi]-k _ d2h]‘k

P —2hjg Iz (19)

The motion of D; pushes y, along the bisector, which im-
plies that the rate at which 2h;;, changes is equal to the rate
at which g, slides. As illustrated in Figure 11, that rate is
1/ cos ;51 times the rate at which the projection of y, slides
along o;;. Using Equation (18), we get

d2h]~k _ 1 [de], _thj:| . [ uz;- ]

dz; cosVijr | dGj T Gij CHE
Propagation of growth. We grow a disk D; by varying its
square radius. Similar to motion, all mixed cells whose in-
dices include i change and contribute to the derivative. This
is illustrated in Figure 12. Again, we consider the three types
of mixed cells in turn.

Figure 12: The solid lines bound and decompose the initial body.
The dashed lines indicate how the body and its decomposition
change as a reaction to the growth of D;.

Case p= 0. Thecircle within u; does not slide but it ages
at the rate half the growth rate. Hence

dzi _ 0
dr? [ 0 ] ’ (20)
dg;

= 1/2. 21

Case p = 1. The hyperbola within y;; both slides and
ages. The first rate is obtained by differentiating Equation
(12), and the second by differentiating Equation (13):
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Case p = 2. The circle within p;;;, both slides and ages.
As before, we use the fact that z;; is the projection of z;;
onto the bisector defined by D; and Dy, in a direction orthog-
onal to g;;. Using Equation (22), we get

dzijk _ 1 tan "pz’jk
5 = —— Ui —
dT‘i 2Cij 2<z'j

* Vig - (24)

We compute the rate of aging by considering the disk U, =
(., s.) orthogonal to D;, D;, and Dy, as before. We again
have s7 = —r? + 4w, + 4h3,. The growth of D; pushes y,
along the bisector, and the derivative of 2k ;;, with respect to
72 is the length of the derivative of z;;, with respect to rZ,
which is given in (24). Finally, we use that the derivative of
the age is minus one half that of s2. Since r; and w,, remain
constant, the derivative of the age is therefore minus 2h 4,
times d2hj;,/dr?, which is

dgijx
dr?

K3

1+ tan2 d)ijk
4¢3 '

= —2hj (25)



Elementary derivativesfor area. As before, we consider
the three types of mixed cells in turn.

Case p = 0. Within a mixed cell u;, the body is a disk
and the skin is a circle. The boundary of u; N B; consists of
circular arcs and straight line segments. Using the notation of
Section 3, the length of that boundary is P; + Ej H;;, where
P; is the total length of the arcs, and H;; is the length of the
shrunken Voronoi edge v;; clipped to within B;. When we
slide the center along a vector ¢;, then the area of B; within
1; changes at a rate that depends on the lengths of the line
segments and the angles they form with ¢;. Specifically, that
rate is (d4;/dz;) - t;, with

= Z(Hij Sug).

J

dA4;
dzz-

(26)

Note that the area does not change if B; contains the en-
tire mixed cell. In this case, we have ) H;;u;; = 0 by
Minkowski’s theorem for convex polygons. To compute the
rate of change while aging, we note that the area of the sec-
tor spanned by u; N S; is the area of the entire disk times the
fraction of the bounding circle inside x;, which is |/g; P; /2.
With respect to age, the derivative of that sector is the same
as that of u; N B;, which is therefore

dA;
dg;

P;
= i @7)

Case p = 1. We consider the body within a mixed cell
ij, as illustrated in Figure 6. The boundary of p;; N By;
consists of hyperbola arcs and straight line segments. When
we slide the focus of the hyperbola along a vector ¢;;, then
the area within p;; changes at a rate that depends again on
the lengths of the line segments and the angles they form
with ¢;;. Specifically, that rate is (dA;; /dz;;) - t;;, with

dA;;

H::)-uLl
o )

]

= (Hji-

+(Wji — W) - v ;.

ij

(28)

Note that Equation (28) can be decomposed into the terms
contributed by each side of the rectangle. We use this to
compute the derivative in the somewhat more complicated
case of aging the hyperbola. We first observe that aging
and scaling affect the hyperbola in the same way, that is,
z} — 23 + (gi; + ) = 0 defines the same hyperbola as
does 22?2 — c?z% + gi; = 0if ¢ = \/gi;/(gi; +¢). The
only difference between the two transformations is that ag-
ing does not affect the mixed cell while scaling does. The
new area is thus c% times the old area minus what we lose by
moving the sides of the mixed cell back to the original po-
sitions. Ignoring higher-order terms, that loss is (£ — 1)Yj;,
where Y;'j = H,-jwij + Hj,-wji + Wijhij + Wﬂhﬂ We
have CLQ =1+ ¢/g;; and, again ignoring higher-order terms,
% — 1 =¢/2g;;. To a first order of approximation, the area
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difference is therefore g%jA,-j - ﬁY,J We get the deriva-
tive by dividing by e:
dA;;
dgi;

= Au Y2 (29)
9ij

We note that for g;;, the hyperbola degenerates to a pair of
lines. In this case, A;; is the area of the double-cone clipped
to within the mixed cell. The four rectangles, whose signed
areas add up to Y;; cover twice as much area, which implies
Aij — Y;J/Q =0.

Case p = 2. The derivatives for triple-index mixed cells
Hijx are similar to the ones for single-index mixed cells. As-
suming the sequence ijk enumerates the vertices in a clock-
wise order, W;;, Wy, and Wy,; are the lengths of the three
edges clipped to within B;;;. By translating Equations (26)
and (27) to the triple-index case, we get

dAijr T

- ol 30
L %b (Wab - vgp) (30)
e L (31)
dgijx 4. /Gijk

where the first sum ranges over all ab € {ij, jk, ki}.

Elementary derivatives for perimeter. All perimeter
derivatives depend on the angles at which the skin meets the
edges of the mixed complex. We see in Figure 9 that the cir-
cle bounding the disk D; meets the Voronoi edge v;; at an
angle ¢;; = arccos(2w;;/r;). After shrinking v; by a factor
1/2 to p; and the circle by a factor 1/+/2 to S;, the angle be-
comes d;; = arccos(\/iw,-j /r:). Symmetrically, we let 6;;
be the angle at which the circle S;;, meets the shrunken De-
launay edge o;; that is an edge of the mixed cell p;5i. Since
the skin is tangent continuous, the hyperbola S;; meets the
same edges at supplementary angles 7 — d;; and = — 6;;,
on the respective other sides. All angles are measured out-
side the body. We compute the derivatives by considering
the three types of mixed cells in turn.

Case p = 0. Locally within y;, the skin is the same as
the circle S;, which intersects each edge of u; in zero, one,
or two points. When we slide the center along the vector ¢;,
the perimeter changes at a rate that depends on the angles at
which S; meets the boundary, and on the angles the boundary
edges form with ¢;. Specifically, that rate is (dP;/dz;) - ¢,

with
E;
2j: <Sin5z'j uij) '

Similarly, the rate of aging depends on the angles at which S;
meets the boundary of y;, but it also depends on the perime-
ter within p;, which is P;. The contribution of each intersec-
tion point is minus one over the sine of the angle times the

dF;
dzi

(32)



derivative of the radius. Since r; = 1/2g;, that derivative is
dr;/dg; = 1/4/2g;. This implies

dp;

g (33)

_ P; El]
o 2¢; %:\/2gisin5ij'

Case p = 1. The hyperbola S;; intersects the left, right,
lower, and upper sides of the mixed cell p;; in E;;, Ej;, Fij,
and F}; points. The corresponding angles are = —d;;, m—d;;,
w—0;;, and m—8;;. When we slide the focus of the hyperbola
along a vector ¢;;, the perimeter within p;; changes at a rate
that depends on these angles and on the angles the sides form
with ¢;;. Specifically, the rate is (dP;; /dz;;) - t;;, with

Eji Eij T
= _—— U
sin 5ji sin 6ij K4

+ <—J — —’) . UZ.;
sinf;;  sinf;;

To compute the derivative of the perimeter with respect to
aging, we use again the idea of simulating aging by scaling
and shrinking. To increase the age to g;; + €, we scale the
hyperbola by a factor % = /1 +¢/g;;. This increases the
perimeter to %Pij. To correct for the scaling of the mixed
cell, we move the four sides back to their original positions.
In doing this, we lose some of the perimeter. To first order,
that loss is (1 — 1) Zy;, with

dP;;

dzij

(34)

Eijwij | Ejiwji | Fijhij

sin 0,5

Zi:
J : .
sin 6;;

sin éij sin 5]','
To first order, % is equal to 1 + €/2g;;. The difference be-
tween the perimeter before and after the transformation is
therefore approximately ﬁ(Pi- — Z;;). We get the deriva-
tive by dividing by e, which gives

dP;; Pij — Zij

= U2y (35)
dgi; 2gi;

We note that for g;; = 0, all angles are 7 or 37” Therefore,
Z;; is the perimeter of the double-cone clipped to within the
mixed cell, which implies P;; — Z;; = 0.

Case p = 2. The derivatives for triple-index mixed cells
Wij are similar to the ones for the single-index mixed cells.
Assuming again that :jk enumerates the vertices of the trian-
gle in a clockwise order, F;;, Fji, and F}; are the numbers
of points at which the skin meets the three edges. By trans-
lating Equations (32) and (33) to the triple-index case, we

get
dPijk Fop T
= - 36
dzijk zab: <sin Oup Yab | (36)
dPiji, Piji Fa
= - R (37)
dgije 2gijk % /2035k Sin O,

where both sums range over all ab € {ij, jk, ki}.
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Continuity. We study the continuity by inspecting Equa-
tions (14) to (37), which flesh out the Derivative Theorem.
Both the area and the perimeter derivatives are continuous
almost everywhere and have measure-zero subsets of R3” at
which they are discontinuous. These subsets are smaller than
the ones for the area and perimeter derivatives of a union of
disks, which are studied in [6]. Furthermore, the discontinu-
ities are milder for the body than they are for the union. This
is not surprising since the difference between the two are the
blending regions, which are added to the body to soften the
transitions caused by the motion or growth of the input disks.
There are potential discontinuities only when two disk cen-
ters approach each other, when the skin meets an edge of the
mixed complex tangentially, and when the age of a circle or
hyperbola vanishes. We discuss the three cases in turn.

Case (;; — 0. Ofthe twelve Equations (14) to (25), eight
have the distance between two centers in the denomina-
tor. Some of these occurrences are harmless because the
numerators are constant zero or because the body has an
empty intersection with the corresponding mixed cells.
Some occurrences, however, seem to remain and may
cause the derivatives to blow up. Even if they do not
blow up, the unit vectors u;; and v;; exhibit locally dis-
continuous behavior and may lead to different limits if
the points of discontinuity are approached from differ-
ent directions.

Case sind;;,sind;; — 0. The six Equations (32) to (37)
have the sine of the angle formed by a Delaunay and
a \Voronoi edge in the denominator. Although the cor-
responding quotients blow up when this angle goes to
zero or to m, the quotients cancel each other and do
not cause any discontinuities in the perimeter deriva-
tive. To see this, we note that sin §;; or sin8;; vanish
only if S; or S;;, touches an edge of the mixed com-
plex tangentially. When the circle grows further, the arc
on the other side of that edge gets replaced by a piece
of a hyperbola. That piece corresponds to a blowing up
quotient in the derivative of P;; that cancels the one in
the derivative of P; or P;jy,.

Case g. — 0. Each of the six Equations (27), (29), (31),
(33), (35), and (37) either has ,/g. or g, in the denomi-
nator. The numerators vanish at the same time, leading
to undefined quotients % Some of these quotients have
finite limits, but some blow up. The quotients in Equa-
tions (33) and (37) blow up the fastest, but even their
speed is only proportional to one over ,/g.. If we dif-
ferentiate with respect to the radius rather than the age,
we get another factor dr? /dr; = 2r;, which off-sets the
explosive growth in all six cases. It follows that doing
so eliminates the age as a source of discontinuities.

In summary, the subset of R3” where the area and perimeter
derivatives are discontinuous has dimension 3n — 1, but if we
differentiate with respect to radii instead of square radii, the
dimension of that subset is at most 3n — 3.



5 Discussion

This paper presents analytic formulas for the area, the
perimeter, the area derivative, and the perimeter derivative
of the body defined by a finite collection of disks in the
plane. Given the filtrations of the Delaunay triangulation
and of the Voronoi diagram, these formulas can be evalu-
ated in time proportional to the number of disks. However,
the formulas are fairly involved, and it would be worthwhile
to double-check them, possibly experimentally by compar-
ing the derivatives with changes computed by evaluating the
area and perimeter formulas.

Although this paper completely settles the question it stud-
ies, there is much further work still to be done. The gen-
eralization of the formulas from two to three dimensions is
perhaps the most important next step. It would also be in-
teresting to analyze the second derivatives, which could be
useful in accelerating the global design cycle of topology
optimization. Finally, we note that three-dimensional bod-
ies are natural representations of molecular conformations.
It would thus be interesting to see whether or not the for-
mulas developed in this paper are useful in the simulation
of dynamic molecular processes. In this context, we men-
tion the weighted area derivative of a union of balls, which is
used to estimate the hydrophobic effect in implicit represen-
tations of the solvent [4]. That derivative has discontinuities
along a measure-zero subset of the state space. We expect
that the derivative of the area of a skin surface has fewer and
milder discontinuities, which is an advantage in large scale
simulations.
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Appendix A

Table 1 provides a list of notation used in this paper.

D,F =D
u,G =Ju
D; = (zi,r4)
U, = (yu SL)
Cz';CL
T35 Ty

Vis Vij, Vijk
0i;0ij,Oijk
iy i s Hijk
hij, hji
Wij, Wi
Ui, Vij
Gigs Mij

Si, Sijs Sijk
B;, Bij, Biji
iy Zij> Zijk
9i> 9ij»> Gijk

a7Di,a>Da
/B7Ui,67u5
Fa = UDa
G =UUs
K., Vs

Aiy Aijy Aiji
P‘i; R]; P’z]k
Lij, Wij, Hij
Nij, Eij, Fij
dij, bij

ijk

z,t € R3"
x,a,p € R3"
A:R” 4R
P:R™ 5 R
DA,

DP,

collection, union of disks
collection, union of disks
disk with center and radius
orthogonal disk

circle bounding D;, U,
power distance from D;, U,

\oronoi polygon, edge, vertex
Delaunay vertex, edge, triangle
mixed cell

heights of quadrant

widths of quadrant
orthonormal coordinate frame
coordinates in the w;;v;;-frame
circle, hyperbola, circle

region bounded by S;, Sij, Sijk
focus of Sz', Sij , Sz'jk

age of Si, Sij, S,;jk

growth parameter, disk, collection
growth parameter, disk, collection
union of grown disks

union of grown disks

a-complex, B-complex

area within mixed cell

perimeter within mixed cell
clipped total length, width, height
number of intersections with skin
angles at the intersection points
angle from o;; t0 v;y,

state, state velocity vector
gradient of X, A, P

area function

perimeter function

area derivative at state z
perimeter derivative at state z

Table 1: Notation for geometric concepts, functions, variables.
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