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Abstract

Elucidating the molecular details of protein-protein interactions is essential to understanding cellular pro-

cesses. Given the recent increase in protein structural information, mostly of monomeric proteins, we now

have the data necessary to address protein-protein interactions by computational approaches. Previous at-

tempts at in silico protein docking generate a multitude of answers that have similarly high scores for both

correctly and incorrectly docked proteins. We have developed the first algorithm that successfully predicts

the re-docking of known protein-protein complexes without any false positives. Because our algorithm is

based on complementarity alone, this implies that shape matching suffices for recognizing correct docking

configurations. The essential features needed to achieve accurate protein docking are a fine covering of the

space of rigid motions and a score function that counts the number of atoms at close distance. Our results

provide a proof-of-principle for the development of faster docking methods based on shape complemen-

tarity alone that incorporate protein flexibility.

Keywords. Protein-protein interactions, protein docking, shape complementarity, rigid motions, quater-

nions.
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Abbreviations and Notation Used

�������
root mean square distance

PDB protein data bank

�	��
�������
protein; center, radius of � -th sphere� �����������
protein; center, radius of � -th sphere�������
packing radius, step-size in ���

 �!�  packing radius, step-size in "#�$ �!� $
(half) the distance threshold

% number of collisions or bumps

��� � "#� three-dim. Euclidean space, sphere
& ��'(�*) rigid motion, translation, rotation
+ ��, unit quaternions
- ��. pure imaginary quaternions
/ ��0 points in �1�
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Highly organized assemblies of proteins control most cellular events. In the past few years,

incredible progress has been made in cataloging all the potential players in these assemblies

through multiple genome sequencing projects. Comparative genomics and proteomics facili-

tated by these projects are answering many questions regarding the function and importance of

specific genes. In the next few years, a three-dimensional view will be added to this catalog of

sequences by the determination of large numbers of high-resolution protein structures (Monte-

lione and Anderson 1999). These structure determinations will be supplemented by increasingly

accurate homology models of proteins of unknown structure. Thus, we will soon have a rela-

tively complete picture catalog of most of the critical components of the cell along with a map

showing their network connections. This catalog and map will provide the groundwork to frame

the true question of interest to the biochemist. Namely, how do the individual proteins form

complexes and dynamically function together to generate the cell circuitry and its detailed time-

dependent responses to various stimuli? This is a three-dimensional puzzle of enormous scale

and, at the same time, an intricate parallel algorithm.

Towards protein assemblies. Protein-protein interactions appear to be one key to understand-

ing complex assemblies and their elucidation has been a major research goal for many years.

High-resolution crystal structure determination has provided one of the most powerful methods,

revealing the molecular details of many protein-protein interfaces. Protein-protein interface

maps have defined crucial residues and interactions, mostly for stable isolable complexes (Jones

and Thornton 1996). Yet, there exist limitations to the amount of information we can glean

through crystallography. First, protein structure determinations are usually performed using in-

dividual proteins and the elucidation of the structures of complexes becomes progressively more

difficult with the number of components due to protein expression and purification problems, the

difficulty of obtaining crystals of diffraction quality, and the solution of these large structures.

Second, structure determinations of complexes reveal only the static three-dimensional view

generated by co-crystallization and do not address the dynamic processes involved in the for-

mation of these complexes or the artifacts caused by the crystallization conditions (e.g. partially

truncated proteins, complexes lacking one or more subunits, lattice-forming residues). Thus, at

this point and for the near future, we have a wealth of structural information about individual

proteins, yet a severe limit on the structural tools with which to study their interactions.

In addition to crystallography, mutagenesis has been utilized to study protein-protein inter-

actions. Multiple mutagenesis schemes directed by crystal structures or by random searches

and subsequent biochemical analyses have revealed not only the sites of interaction, but also

the associated energetics. Alanine scanning mutagenesis has been one of the most successful

methods, allowing for an unbiased search and elucidation of molecular interfaces for binding

domains (Wells 1991). The major limitation of mutagenesis studies is the amount of labor re-

quired to perform a thorough study of a given system. Not only must two proteins of interest be
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cloned, purified, and quantitatively assayed for their binding interaction, but this must be per-

formed for many, if not hundreds, of individual mutants of each of the two proteins. Although

more high-throughput methods have recently attempted to address some of these limitations

(Weiss et al. 2000), exhaustive mutagenic analysis of protein-protein interactions will continue

to be a time-consuming process.

Electron microscopy, fluorescence spectroscopy, nuclear magnetic resonance spectroscopy,

and immunofluorescence serve as additional biochemical methods used to study protein-protein

interactions. While all of these techniques provide important answers in their unique way, in the

long run they will be insufficient to understanding the multitude of interactions we must decipher

to understand cellular regulation. Furthermore, it is speculated that many of the most important

protein-protein interactions are transient and/or weak, features that do not lend themselves well

to any form of currently available analysis. New methods must therefore be developed to predict

and then automate the analysis of potential protein-protein interactions using the tools of modern

mathematics and the power of computer processing.

Prior work on docking prediction. It is believed that one of the essential components of any

protein-protein interaction is the shape recognition that must occur between the two surfaces:

two proteins that form a complex must have good surface complementarity. Physically, the van

der Waals spheres cannot overlap in space and it has been noticed that protein-protein interfaces

generally do not contain large empty or water-filled holes (Hubbard and Argos 1994). Theoret-

ically, the protein-protein docking problem could be addressed by shape matching algorithms

(Connolly 1986), although this has not been successfully demonstrated until this paper. Over

the past years, a number of research groups have developed protein-protein docking algorithms

that incorporate shape complementarity in a variety of different ways. (For comprehensive re-

views, see (Elcock et al. 2001; Halperin et al. 2002). To reduce the complexity to six degrees

of freedom, the two proteins are treated as rigid bodies. To overcome the typical dilemma that

there are still too many possible rotations and translations that must be explored, a protocol that

detects potential binding patches or pronounced geometric shapes is implemented. Finally, the

scoring function evaluates geometrical complementarity with or without explicitly calculating

free energies of binding.

It appears that the major limitation of all the previously described techniques is that they

generate multiple possible docking positions with no way of distinguishing the correct one.

Specifically, the docking software generates the correct solution as well as other high scoring

solutions that do not correspond to a properly docked complex. Distinguishing true docking

from the sometimes large number of false positives can be a daunting problem, especially if it

needs to be addressed experimentally in the laboratory. Incorrect docking solutions have been

reduced by a number of research groups in a variety of ways, most often by including bind-

ing determinants other than simple surface complementarity. For example, hydrogen bonding,
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electrostatic energy, solvation or hydrophobicity terms have been included. Alternatively, con-

formational adjustments to binding have been taken into account using molecular flexibility and

limited energy minimization protocols

Despite the incorporation of these additional parameters, some of which are computationally

expensive, these previously described docking procedures still generate a significant number of

false positives. In addition, they appear to work best with protein-protein complexes that have

deep binding sites (e.g. protease-inhibitor complexes), reminiscent of small molecule ligands

interacting in the binding pockets of their proteins. These types of interactions are relatively

well addressed by software such as DOCK (Ewing et al. 2001) and are not necessarily appli-

cable to the larger and shallower surface interactions often found in protein-protein complexes.

As demonstrated by the poor success rate in a recent blind docking contest (CAPRI), protein-

protein docking methods still have a long way to go before they become useful to the biological

community (Janin et al. 2003).

Believing that local shape complementarity is of greatest importance, we have developed an

accurate unbiased exhaustive search algorithm based solely on geometric shape matching that

successfully generates a re-docked pair starting from a random relative positioning of the two

proteins. The advantage of our method is that it apparently does not yield any false positives.

Results

We implemented an algorithm to predict docking configurations, fine-tuned it using a model

system, and applied it to a suite of twenty-five re-docking problems.

Overall strategy. Examination of the interaction surface between two proteins reveals a highly

complex interface characterized by extensive shape complementarity. In our approach to the

protein-protein docking problem, we reason that it should be possible to take two protein sur-

faces and use this shape complementarity to match these proteins by exhaustively searching a

large number of potential docking orientations. To preserve sufficient surface detail, we use

a scoring function that counts the number of non-overlapping pairs of spheres on each pro-

tein at most at distance
� $������ � ˚

�
from each other. Additionally, we allow a limited number

of collisions between spheres, or bumps, %	� �
. One of the reasons that we use this simple

scoring function is the difficulty of searching in the space of rigid motions. This space has six

dimensions, three for rotation and three for translation that we sample independently. Each com-

bination of translation and rotation is a rigid motion for which we compute the score function.

Dense sampling of the six-dimensional space requires a huge number of samples. For example,

a step-size of 
 � � ˚
�

over
�� ˚
�

in length gives
��� � 
�
�
 translations. Doing this for

� ��� 
�� � different

rotations amounts to roughly � � ��� � 
�� sample points in the space of rigid motions for which

a scoring function that matches the atoms in one protein to another needs to be calculated, a
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total of almost
� 
�� � calculations for even a small protein complex. As pointed out by Connolly

(Connolly 1986), this is a computationally expensive approach, even now, fifteen years later

with significantly faster processors.

For our test system, we have relied primarily on the barnase/barstar complex (the PDB file is

1BRS, consisting of chain A with 864 atoms and chain D with 691 atoms (Buckle et al. 1994).

Barnase is a bacterial ribonuclease and barstar is its intracellular protein inhibitor. There exists

a high degree of shape and charge complementarity between the two proteins and the 1BRS

complex has sufficiently few atoms to allow extensive testing of software and input parameters.

Because of the extent of biochemical information available on this complex, it is ideally suited

for future exploration of the importance of specific residues in computational docking. We use

global and local RMSD to evaluate the success of our docking experiments.

Sampling density. In our algorithm, we need to determine the translational and rotational

sampling density required to successfully re-dock a protein-protein complex. Too sparse a sam-

pling would be expected to miss the correct solution whereas too dense a sampling would be

prohibitively expensive computationally. The translation density is varied by changing the step-

size
���

of the translational grid. Because the distance between any two grid points is at least� �
, we can draw non-overlapping spheres of radius

�
around the points. Similarly, the rotation

density is varied by changing the step-size
�  or, equivalently, the maximum radius for which

the spheres around the sampled points do not overlap. We use a density screening experiment

to determine feasible values of
�

and  . For efficiency reasons, this screening is done using a

local search in translational and rotational space. Specifically, we choose a small neighborhood

of twenty different small random perturbations of the initial position that is big enough to con-

tain some small but not too small number of rigid motions. We evaluated the highest scoring

solution after varying
�

and  in terms of both average score function and average RMSD over

the twenty random starting perturbations. As seen in Figure 1, there exists the expected trade-

off between the quality of prediction and the density of sampling. The best score of 319 was

obtained for
� � 
 � � and  � 
 � 
�� � � , with an average RMSD of

��� � � ˚
�

. We note that the

score function appears to fall off gently with progressively sparser sampling in either transla-

tional or rotational space. In contrast, the RMSD drops off more dramatically at  � 
 � 
 � � � ,
indicating that many of these docking solutions do not correspond to the correct solution. Visual

inspection of individual docking attempts confirms that the top-scoring solution, and all those

with
������� � � � � ˚

�
, have re-docked the 1BRS complex in the correct location; see Figure 2.

Thus, not only does the highest scoring solution generate the correct answer, but all other top

scoring solutions in each individual docking experiment, also generate the correct answer. This

demonstrates the robustness of our protein-protein docking algorithm based on shape alone.
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Initial position and false positives. Any valid protein docking algorithm must be insensitive

to the initial orientation of the proteins to be docked and should not generate high scoring so-

lutions that are incorrect (false positives). We investigated the outcome of re-docking barnase

(chain A) onto barstar (chain D) of the 1BRS complex following fifty different random rotations

of barstar using a full exhaustive search. Based on the initial density screen, we chose the pa-

rameters
� � 
 � � and  � 
 � 
 � � � for this experiment and each docking took about one hour on

a cluster of eighty computers (600 MHz to 2 GHz). As seen in Figure 3 (A), the range of top

scores varies from 195 to 329 in a fairly evenly distributed manner. Of the fifty random starting

rotations, forty-six gave the correct docking solution as indicated by RMSDs below � ˚
�

. The

most noteworthy observation we have made is indicated by the empty space in the upper right

hand plot of RMSD vs. score in Figure 3 (B). Although there does not exist a direct linear cor-

relation between score function and RMSD, we significantly do not obtain any false positives.

That is, there is no high scoring docked complex that yields a high RMSD. This is in contrast to

previously described docking programs, where the correct solution is among the top ten, hun-

dred, or more scores (Norel et al. 1995; Lenhof 1996; Ackerman et al. 1998; Fernández-Recio

et al. 2002). We do not achieve such favorable results using sparser sampling of rotational or

translational space. Thus, our protocol consistently generates believable results without the need

to weed out false positives, an important characteristic if data from docking programs are to be

trusted and utilized by the experimentalist.

Testing other data sets. We have also tested our program with a diverse data set of twenty-five

other protein complexes, some of which have been used in previous docking studies (Norel et al.

1994; Fischer et al. 1995; Norel et al. 1995; Lenhof 1996; Ackerman et al. 1998). To improve

our chances of finding the correct solution, we increase the translational sampling density from


 � � ˚
�

to 
 � � ˚
�

. This increases the computation time to between eleven and thirty-eight hours

per complex on the cluster of eighty microprocessors. Additionally, we evaluate the docking

solutions not only by RMSD, but also by RMSD*, a value that reflects the deviation of all atoms

near the region of the docking interaction. Essentially, correct docking solutions that only have a

slightly wrong angle can lead to high and potentially misleading overall RMSD values because

of the contribution of residues far from the docking site. Therefore, it has been previously sug-

gested that an alternative calculation such as RMSD* is more reflective for evaluating docking

experiments (Fernádez-Recio et al. 2002). Our results show that the top scoring solution with
% � �

always generates the correct docking solution with an RMSD (RMSD*) below � � � ˚
�

(
��� � ˚
�

), and is not accompanied by a single false positive (Table 1).

A comparison of the top score to the score of the naive complex, the docked structure as read

from the database, shows no apparent correlation. The top score can exceed the naive score

(e.g. 4SGB and 1BUH), and this is always, except for 3SGB, accompanied by an increase in

the number of allowed bumps. We believe this occurs because our re-docking, in the absence
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of explicit water molecules, brings the two proteins closer together than in the naive complex,

where water forms a non-scoring part of the interface. At other times, the top docking score

lies significantly below the naive score (e.g. 1A22 and 3HLA). The bump parameter % is mostly

(
� 
�� ) at its maximum allowed value of 5 and use of %�� � begins to generate false positives

(data not shown). Importantly, we have successfully re-docked all twenty-five complexes with

no changes to the algorithm and its parameters, and there was no highest scoring solution that

yielded an incorrectly docked conformation. This is in contrast to the results observed for other

docking software to date. As one examines the second and third highest docking scores, we

detect docking solutions that are incorrect for eighteen of the twenty-five complexes tested. For

most of these false positives, the docking score is significantly below the top scoring solution

(e.g. 1F47, 1TGS, and 1MCT) whereas 1JAT, 3HLA, and 1STF have scores that are not much

below the top score. The occurrence of these false positives does not appear to correlate with

relative buried surface area but may be indicative of the number of highly buried water molecules

(data not shown).

Discussion

Ideally, an algorithm for protein-protein docking would take the information contained in the in-

dividual three-dimensional structure files of two proteins to generate a new data file containing

the coordinates of the docked complex. This is a lofty goal given the potential for conforma-

tional rearrangements of both side-chains and backbones in protein docking. Thus, we, as others

before us, are developing and validating algorithms using known protein-protein complexes as

test data. Although re-docking of such naive complexes is an artificial system compared to

the desired goal of docking proteins based on their structures free in solution, it is a necessary

step in the development and validation of an accurate docking algorithm that does not generate

false positives. Believing that local shape complementarity is crucial to protein-protein recog-

nition, we have developed our algorithm using geometric criteria alone. This is not a novel

approach. However, it has proven difficult to implement and rigorously test given the difficul-

ties of defining a shape-matching algorithm with sufficient sensitivity and attention to detail

without becoming prohibitively expensive in computational time. Thus, most previous methods

reduce the complexity of the protein surface, and supplement their geometry-based approach

with electrostatics, H-bonding, hydrophobicity, etc. These techniques have allowed some suc-

cesses in arriving at the correct docking solution, or at least in sorting through large numbers of

incorrectly docked solutions with scores higher than the correct solution (false positives). Given

that our aim is to develop fast algorithms for protein-protein docking based on geometry alone,

including ones that allow for local conformational flexibility in de novo docking, we needed

to generate proof-of-principle data supporting such a geometry-only approach. We have thus

implemented a simplistic but informative and successful algorithm for protein-protein docking.
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Below we further discuss important insights of broader significance to protein-protein docking.

Covering and sampling transformation space. Recall that the score of a relative placement

of proteins
�

and
�

is the number of pairs of non-overlapping van der Waals spheres at distance

at most
� $

from each other. The score is therefore a function from the space of rigid motions

to the integers. As one may easily imagine, the score of two arbitrarily close rigid motions can

be arbitrarily different. In other words, it is possible that the solution to a docking problem

corresponds to a small island of rigid motions with high score in the middle of a vast sea of

motions with low score and/or high bump number. Loosely speaking, our score function does not

“sense” the solution even if the rigid motion is nearby. We have indeed observed that attention to

detail in terms of evenly distributed high density sampling of translational and rotational space

is essential if we want to find the correct solution without predicting false positives. The mere

observation that we can detect the correct solution for all re-docking problems listed in Table

1 is strong evidence that our score function is well-suited to distinguish good from mediocre

matches, another detail that contributes to our success. Similar to the score function used in

ZDOCK (Chen et al. 2003), we count pairs of close spheres as opposed to spheres involved

in such pairs. Indeed the only but possibly important difference is that our score is computed

without resolution dependent error. The success of this score function is perhaps based on the

similarity to the van der Waals force that attracts two proteins.

The running time of our algorithm is dominated by the sheer number of rigid motions re-

quired to explore in order to cover the space of rigid motions sufficiently fine. We have a

three-dimensional space of translations, which we cover with a grid of step-size
���

, and a three-

dimensional space of rotations, which we cover with a point set of step-size
�  . The total number

of rigid motions we generate is thus proportional to
��� � �  � . In other words, refining the cover-

ing to half the step-size, both for translations and for rotations, increases the running time of our

algorithm by a factor of 64. We literally find ourselves between a rock and a hard-place: increas-

ing the density beyond what we used to get the reported results is not practical, and decreasing

the density would severely affect the quality of the results.

Any valid protein docking algorithm must be insensitive to the initial orientation of the pro-

teins to be docked. A sensitivity to the initial orientation would bias all results and be problem-

atic when we apply the algorithm to two separate protein structures and attempt to dock them

de novo without knowledge of the correct answer. It is also of importance in our model system

of re-docking known protein-protein complexes. Thus, in order to avoid cheating by re-docking

back to the original position, we have implemented a random rigid motion of one of the two

proteins in every experiment. The details of how this random rigid motion is computed can be

found in the Methods section. It is important that this initial perturbation is independent of the

way we cover the space of rigid motions, else there would be a possibility that the two steps

interact with each other.
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Diversity of test set. An important criterion for any computational docking algorithm is that

it will be generally applicable to a wide variety of protein-protein complexes. Traditionally,

the majority of test cases in protein docking algorithms have been the highly similar protease-

inhibitor complexes (e.g. 1TGS, 2PTC, 3SGB, 4SGB). The interactions in these complexes are

dominated by the tight binding of a peptide strand of the inhibitor into a groove on the enzyme;

see Figure 4. As reflected by the low RMSD* values, docking of these protease-inhibitor com-

plexes is predicted extremely well by our algorithm, as has also been found using other methods

(Table 1). The core of the interaction motif shows a good overlap of the original and the docked

structures for both the side chains and the backbone (Figure 4). Any observed deviations tend to

arise from slight twists within the binding pocket that do not affect the quality of the docking pre-

diction. Given the high degree of similarity among these complexes, an algorithm that correctly

docks one of these complexes should be able to dock all the others. The protein-protein com-

plexes that have a broader surface-to-surface interaction are more interesting from a biochemical

point of view and more difficult from a computational point of view (e.g. 1A22, 1BUH, 1FIN,

1TX4, 3YGS). In the literature, these types of complexes have proven more difficult to dock

than the protease-inhibitor complexes. Therefore we were pleased to find that our algorithm

correctly docked all of these types of complexes (Table 1). Even, 3YGS, despite its very small

and flat interaction area, shows a correct docking conformation, see Figure 5. Given that all

of the primary amino acid contacts at the interface are preserved, the quality of these docking

results are sufficient for the biochemist to proceed with further investigations (e.g. site-directed

mutagenesis).

In conclusion, we are able to re-dock a wide variety of protein-protein complexes using geo-

metric shape-matching criteria alone without the occurrence of false positives. This is an encour-

aging and significant result for the field of computational docking of proteins, given the complex

and lengthy calculations required to dock proteins using energetic considerations. Our success

lies both in the scoring algorithm that has sufficient attention to detail and in a sufficiently

dense search-grid. We thus provide a proof-of-principle result for further development of faster

docking algorithms based on shape complementarity alone. In the future, we will enhance our

approach to incorporate the conformational flexibility required for docking of unbound proteins.

Materials and Methods

Our docking algorithm is based on a purely geometric approach, in which we treat the two

proteins as solid objects and search for the best fit between them. To that end, we exhaustively

explore the space of rigid motions and evaluate each motion using a score function. Hence the

two topics of this section: rigid motions and scoring.
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Representing rigid motions. A rigid motion is a transformation that preserves distances and

orientations. There are two types of rigid motions in � � : translations that preserve difference

vectors and rotations that preserve the origin. Indeed, every rigid motion can be expressed as

a rotation followed by a translation: & � '�� )
. The translation is obtained by adding a three-

dimensional vector to every point / in � � :
'�� /�� � /���� . Sampling the space of translations is

thus as easy as sampling vectors in ��� , but rotations are more subtle. It is customary to express

a general rotation as the composition of three rotations about the coordinate axes, using Euler

angles to parametrize the three special rotations, see eg. (Leach 1996). A disadvantage of that

composition is the difficulty to sample the space of rotations uniformly, which is the reason we

use quaternions instead of Euler angles. Specifically, we present a point / � � /
�
� /
	 � / � � by

the 4-vector - � � 
 � / �
� /
	 � / � � and perform a rotation by multiplying - with a unit quaternion, � ���� ���

�
��� 	 ��� � � from the left and its conjugate

,�� � ���� �����
�
����� 	 ����� � � from the right.

This operation yields a 4-vector
. � � 0  ��0

�
��0 	 ��0 � � that corresponds to a point

0 � � 0
�
��0 	 ��0 � �

in � � . The map that moves / to
0

has a simple geometric interpretation: it is the rotation by the

angle � � ������������� � 
about the line spanned by the vector

���
�
��� 	 ��� � � in �1� . We see that two

unit quaternions + and
,

represent different rotations unless + �"! ,
. this implies that " � is a

double covering of the space of rotations.

The following result from differential geometry is useful for sampling rotations. Let " 	 be the

unit 2-sphere centered at the origin in � � , let / be an arbitrary but fixed point on " 	 , and write0 � 0#� , � for the image of / under the rotation that corresponds to
,

, as before.

UNIFORMITY LEMMA If
,

is sampled uniformly at random in "�� then
0

is uniformly dis-

tributed on " 	 .
We note that this is a desirable but far from trivial property. For example, the common sam-

pling of Euler angles that translates into picking a line uniformly at random from the space of

directions and an angle uniformly at random from $ 
 ���&% � does not enjoy this property. The Uni-

formity Lemma justifies the use of the geometry of "1� to measure the distance between rotations,

which is the angle between the two unit quaternions defining the rotations:
�'�(�������#) + ��,�* .

Covering rigid motions. Our algorithm explores the space of rigid motions by selecting a

finite collection of points in this space that leaves no large empty gap. In other words, for every

possible rigid motion there is a nearby selected rigid motion. Equivalently, we cover the space of

rigid motions with small spherical neighborhoods. We describe this separately for translations

and for rotations.

Let protein
�

consist of + atoms with centers denoted as


�
��
 	 � � �� ��
 , and let protein

�
consist of - atoms with centers denoted as

�
�
�!� 	 � � � � ���/. . The centroids of the two sets are

the average vectors:

 �

�,10 
 �
and

� �
�.20 ���

. It is convenient to first translate the two

proteins so that both centroids lie at the origin of � � . After that initial translation, let 3�4 be
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the maximum absolute coordinate of any

 �

, and similarly let 3�� be the maximum absolute

coordinate of any
� �

. We define cubes
� 4 � $ ��� 4 ��� 4�� � and

� � � $ ��� � ��� ��� � that contain�
and

�
with the property that any translation that leads to non-overlapping cubes leads to

protein placement with zero score and thus does not have to be considered by our algorithm.

It is sufficient to set
� 4 � 3 4 �
	�����2� $

and
� � � 3 � ��	����� � $

, where 	����� is the

largest radius of any van der Waals sphere in the data set and
$

is the separation threshold used

in the definition of the score function. (Smaller non-cubic boxes with this property are possible

and have been implemented but for the purpose of simplifying the discussion are not described

here.) A translation
'�� /�� � / � � leads to overlapping cubes if and only if � is a point in the

cube
� � $ ��� ��� � � , where

� � � 4 � � � . To cover the space of translations represented by

this cube, we choose a step-size
��� � 
 and let ��� be the portion of the regular cubic grid with

step-size
�

that lies within
�

:

��� � � � � � ����� � ��������� ��� ��� � � � � ��� � ���!����� � ��� �

where � , � and
�

are integers. The points in the cube that maximize the distance to the grid

are the centers of the grid cells. These points are at distance � � � from the grid points, which

implies that the closed balls with centers in � � and radii � � � cover
�

.

We treat rotations in a similar manner, by covering "1� with balls of small radius. There are

many ways to cover "#� , but none is as straightforward as taking the regular grid in � � . We

choose a parameter  � 
 , which we refer to as the packing radius, and select a collection

of points ��� in " � such that no two are closer than
�  and no point can be added to ��� without

violating that property. The maximality of the collection implies that no point in " � is at distance�  or more from a point in � � . This implies that the closed balls with centers in � � and radii
�  

cover " � . The algorithm we use to select the points proceeds in layers of 2-spheres sweeping

out "#� . We begin with the equator 2-sphere, given by /  � 
 and / 	
�
� / 		 � / 	�

� �
, and

proceed in steps of distance
�  . For each 2-sphere, we proceed in layers of circles sweeping out

the 2-sphere. Again we begin with the equator and proceed in steps of distance
�  . Finally, for

each circle, we distribute as many points as possible at equal distances at least
�  apart. The

resulting set is maximal almost everywhere, except possibly near the poles of the 2-spheres and

near the poles of the 3-sphere. We could make the set maximal by adding a few more points, but

we did not in our implementation because the gaps are far between and not very large.

The total volume of "#� is
�&% 	

. Each ball of radius  covers roughly
� %  � � � of that volume,

which implies we cannot have more than roughly � % � �  � points. Since the packing is not

perfect, we expect only about half that number. Table 2 shows the numbers we get for a few

values of  . Recall that "#� covers the space of rotations twice. We thus use only half the unit

quaternions generated by the algorithm, namely those with positive first non-zero coordinates.

Random rotation. In a re-docking problem we are given two proteins in complexed position,

and the problem is to re-discover this position from separate descriptions of the proteins. To
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avoid using any knowledge of the given position, we apply a random rigid motion to one of the

proteins and use this configuration as input to our docking algorithm. We really only worry about

rotations since the initial step of our algorithm moves the centroids to the origin and therefore

erases any knowledge of the correct translation in the first step. To pick a random rotation, we

choose a point in "#� uniformly at random. By the Uniformity Lemma, this procedure is not

only justified but indeed mandatory for else the algorithm could take unfair advantage of the

statistical bias in which the two proteins are presented. There are various methods we could use

to choose a point in "#� uniformly at random, one being described in (Marsaglia 1972):

1. Pick numbers / ��0 ��� ��� uniformly at random in $ � � � � � .

2. If / 	 � 0 	 � �
or
� 	 � � 	 � �

then reject the selection and repeat Step 1. Else return, � � / ��0 ����� ����� � , with

� � � � � / 	 � 0 	
� 	 � � 	 �

Note that / 	 � 0 	 � � 	 � 	 � � 	 � 	 � �
, so

,
is indeed a unit quaternion, as required.

Computing the score. Given a rotation
)

and a translation
'

, the number of collisions or

bumps is the number of pairs of van der Waals spheres, one from
�

and one from
�

, that have

a non-empty intersection. The score is the number of non-intersecting pairs at distance at most

some threshold
� $

from each other:

�
	
�� � ) ��' � � ���'��� � � � � � � ��� 
 � � ��� ��� � � � ��� � �
���������'� ) ��' � � ���'��� � � � � � � � �#� � � � ��� 
�#� � � � � ��� � � � � � $ � �

where
���

and
� �

are the radii of the van der Waals spheres with centers

(�

and
� �

. The straight-

forward way of computing the two numbers compares all atoms of
�

with all atoms of
�

, which

takes time proportional to + - , and this for each rigid motion. We speed up the process by com-

puting the bump and score values for all translations corresponding to a single rotation at once.

To do this, we use two arrays that have an entry for each translation
'

defined by a vector in � � .
Initially, all entries are zero.
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for each rotation
)
do

for each pair
� � � � � do

for each translation
'
do

if � 
�#� '�� � � � � � ��� � � � � � $
then

if � 
�#� '�� � � � � � ��� � � �
then

�
	
�� $ ' � ++
else

������� � $ ' � ++
endif

endif

endfor

endfor

endfor.

So far, we still use the same amount of time, namely + - for each combination of rotation and

translation. We save time by restricting the innermost for-loop to only a small subset of all

translations, namely the ones for which the cubes of side length
� � � � � $

centered at

 �

and

of side length
� � � � � $

centered at
� �

have a non-empty intersection. The amount of time this

modification saves depends on the sizes of the two proteins and is usually about three orders of

magnitude.

Computing the root mean square distance. After identifying promising docking positions

using the score and bump functions, we evaluate their accuracy using two different standard

root mean square procedures. The RMSD procedure calculates the root mean square distance

between the initial points
� �

and the corresponding computed points obtained by applying, in

this sequence, the translation
' 

of the centroid to the origin, the random rotation
) � , and the

computed rigid motion & :

������� � & � �
���� �
-

.�
���
�

� � � � �	�� � 	 �

where
� �� � & � ) � � '  � � � � . The

������� �
procedure does the same but restricts the sum to those

residues of protein
�

whose van der Waals spheres in the naive complex are within distance
� $

of the spheres of protein
�

.
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PDB chains sc b RMSD RMSD* PDB chains sc b RMSD RMSD*

1A22 A: 1466 415 4 – – 1A4Y A: 3410 393 5 – –

B: 1578 270 5 2.03 1.44 B: 993 278 5 1.93 1.31

249 3 3.16 2.11 235 5 25.87 28.46 FP

228 4 49.81 27.96 FP 222 4 47.49 44.90 FP

1BI8 A: 2113 290 7 – – 1BUH A: 2311 185 0 – –

B: 1378 227 5 2.88 2.16 B: 605 236 5 0.75 0.53

219 5 61.47 57.93 FP 214 4 40.36 28.53 FP

218 4 69.47 73.89 FP 211 5 65.18 65.65 FP

1BXI A: 646 302 4 – – 1CHO E: 1750 263 1 – –

B: 1023 241 4 2.58 0.99 I: 400 272 4 1.79 0.78

235 5 3.33 1.52 214 4 2.55 1.52

223 4 1.57 1.01 209 6 13.98 19.19 FP

1CSE E: 1920 269 3 – – 1DFJ E: 951 277 4 – –

I: 522 265 4 1.88 0.63 I: 341 270 5 2.40 1.03

265 4 1.88 0.63 248 5 1.55 0.72

222 5 40.75 35.41 FP 214 4 46.58 32.06 FP

1F47 A: 135 170 3 – – 1FC2 C: 354 194 0 – –

B: 1129 217 5 1.83 0.97 D: 1656 233 5 2.85 1.15

169 5 33.91 32.96 FP 223 4 3.56 1.07

164 5 19.87 11.44 FP 205 5 62.06 42.81 FP

1FIN A: 2398 464 13 – – 1FS1 A: 333 239 1 – –

B: 2101 272 5 4.01 2.40 B: 909 252 5 1.35 0.64

251 5 56.66 53.87 FP 213 5 37.43 30.05 FP

246 5 78.59 73.79 FP 201 5 2.90 1.37

3HLA A: 2189 440 7 – – 1JAT A: 1193 232 1 – –

B: 829 254 4 1.76 1.85 B: 1025 230 5 0.96 0.59

235 5 7.06 7.53 FP 224 5 25.40 38.28 FP

231 5 1.42 1.30 219 5 51.09 45.04 FP

1JLT A: 948 486 2 – – 1MCT A: 2029 483 19 – –

B: 963 355 5 1.40 1.21 I: 265 348 4 3.18 1.68

286 5 3.37 2.32 275 3 3.90 2.74

284 3 2.06 1.81 259 4 36.02 26.64 FP

1MEE A: 1948 343 1 – – 2PTC E: 1629 287 2 – –

I: 530 287 5 1.35 0.82 I: 454 321 4 0.96 0.53

234 5 2.59 1.52 277 4 3.85 1.51

209 5 49.45 47.50 FP 238 3 3.36 1.16

3SGB E: 1310 246 2 – – 4SGB E: 1310 245 2 – –

I: 380 280 2 0.58 0.54 I: 380 280 5 1.57 0.59

235 4 1.83 0.98 249 3 1.03 0.66

229 5 2.89 1.37 226 3 2.35 1.41

1STF E: 1655 279 1 – – 1TEC E: 2004 291 0 – –

I: 789 276 3 3.72 1.17 I: 522 268 3 1.66 0.82

264 3 1.79 0.76 243 5 3.94 1.48

246 5 35.22 36.51 FP 242 5 1.98 0.72

1TGS Z: 1646 336 2 – – 1TX4 A: 1579 330 2 – –

I: 416 316 3 1.28 0.59 B: 1378 293 5 1.54 1.05

285 5 1.82 1.05 220 5 37.93 33.65 FP

206 5 30.55 27.41 FP 219 5 52.87 52.77 FP

3YGS C: 763 159 2 – –

P: 790 223 5 1.09 0.71

213 5 32.98 20.53 FP

204 5 48.73 49.31 FP

Table 1: The respective first column gives the number of atoms/spheres of the two chains forming the

complex. The respective last column indicates the false docking predictions. We note that 1CHO only has

two scores with at most five bumps.
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� 0.0676 0.0576 0.0476 0.0376

# points 4,852 6,552 12,036 25,432

Table 2: The number of balls of radius � our algorithm packs into the 3-sphere.
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Figure Legends

Figure 1: Searching with finer grid points, although computationally more expensive, yields higher scoring

values in re-docking experiments of the two chains of the 1BRS complex. The two horizontal axes repre-

sent the translational step-size
���

and the rotational step-size
� � . The vertical axis represents the average

score (A) or average RMSD (B) from twenty different random starting positions.

Figure 2: Overlay of the individual docking solutions from ten of twenty different starting positions of

1BRS using
������� �

and � ����� �
	
��� . Chain D is represented as a protein surface and serves as the fixed

chain. The ten different chains A have been truncated to the interaction area (residues 24 to 47) and are

shown in ribbons of different colors (original in black). The average score of 262 (with range from 167

to 364) and the average RMSD of  � ��� ˚
�

(with range from
��� �
�

to � � ��	 ˚
�

) are represented in Figure 1.

Note that despite the broad range of scores and RMSDs, all the docking solutions are correct at the site of

interaction.

Figure 3: (A) Score (circles) and RMSD (triangles) vs. test numbers, as sorted by score, for the top scoring

solution for each of the fifty different starting rotations using the parameters
������� �

and � ����� � � ��� . (B)

RMSD vs. top scoring solution for each of fifty different starting rotations.

Figure 4: Overlay of chain I of docked (yellow ribbon) and naive (red ribbon) with chain E (blue surface)

of 3SGB complex ( ������� ����� 	�� ˚
�

). Side chains of residues 15 to 19 from chain I are shown in licorice

to emphasize the predominance of the single peptide strand of chain I binding into the deep groove of chain

E that is typical of a protease-protease inhibitor complex.

Figure 5: Overlay of chain P of docked (yellow ribbon) and naive (red ribbon) with chain E (blue surface)

of 3YGS complex ( ������� �  � �
� ˚
�

). Side chains of residues 11 to 15, 53 to 54, 57, 61, and 64 from

chain P are shown in licorice to emphasize the predominance of the discontinuous and broad interaction

surface between the two chains that is typical of most protein-protein complexes.
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