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Abstract

The motion of a biomolecule greatly depends on the engulf-
ing solution, which is mostly water. Instead of represent-
ing individual water molecules, it is desirable to develop im-
plicit solvent models that nevertheless accurately represent
the contribution of the solvent interaction to the motion. In
such models, hydrophobicity is expressed as a weighted sum
of atomic surface areas. The derivatives of these weighted
areas contribute to the force that drives the motion.

In this paper, we give formulas for the weighted and un-
weighted area derivatives of a molecule modeled as a space-
filling diagram made up of balls in motion. Other than the
radii and the centers of the balls, the formulas are given in
terms of the sizes of circular arcs of the boundary and edges
of the power diagram. We also give inclusion-exclusion for-
mulas for these sizes.

Keywords. Molecular dynamics, implicit solvent model, space-
filling diagram, dual complex, weighted area derivative.

1 Introduction

In this paper, we study questions about three-dimensional
conformations of molecules. As common in biology, we
model an atom as a ball bounded by a sphere and a molecule
as the union of a finite collection of such balls. This union
is referred to as the space-filling diagram of the molecule.
Specifically, we study the derivatives of the weighted and
unweighted surface area when the atoms are in motion.

Motivation. Bio-molecular simulations provide a platform
where theory and experiment can be combined to improve
our chance to unravel the complexity of cell functions. While
much effort is presently invested in identifying the actors that
�
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play a role, there is a growing need to understand the kinet-
ics of their interactions. The sequence or rate of events that
occur as molecules transform between their various possible
conformations and interact with each other is described by
kinetics. Understanding these conformational transitions as
well as the role of motions in molecular interactions are the
subjects of molecular dynamics studies. Accurate molecular
dynamics simulations remain a major challenge, since they
involve thousands of degrees of freedom in the molecule of
interest, in addition to the need to account for its water envi-
ronment. Computer simulations that include a large number
of water molecules remain the state of the art in this field,
but they are inefficient. It is desirable to develop different
approaches, in which the effect of the solvent is taken into
account implicitly. Such treatment would make it possible
to perform simulations covering much longer time intervals,
and including much larger molecular systems.

All solvent effects on a molecule can be included in an
effective potential, � �����
	 �
�
������� , in which the first
term accounts for electrostatic and the second for non-polar
contributions. � �
	 �
� is usually represented by continuum
electrostatics, for which several semi-analytical approximate
treatments have been proposed by Still, Tempczyk et al.
(1990), Davis (1994), and Schaefer and Karplus (1996).
Many solvation models describe � ��� as a weighted sum of
the solvent exposed or accessible surface area of each atom
of the solute; see Eisenberg and McLachlan (1986), Wes-
son and Eisenberg (1992), and Fraternali and Van Gunsteren
(1996). Inclusion of ����� in a molecular dynamics simula-
tion requires the calculation of accurate molecular surface
areas, as well as their analytical derivatives with respect to
atomic position.

Previous work. Lee and Richards (1971) define the acces-
sible surface of a protein as the van der Waals envelope of the
molecule expanded by the radius of the solvent sphere about
each atom center. Computational methods that evaluate the
area of this surface can be divided into approximate and ex-
act methods. Most of the approximate methods rely on nu-
merical integration, by representing the surface with a large



number of dots; see Shrake and Rupley (1973) and Legrand
and Merz (1993). Some of the approximations are analyt-
ical but treat multiple overlapping balls probabilistically or
ignore them; see Wodak and Janin (1979), Hasel, Hendrik-
son et al. (1988), and Street and Mayo (1998). The first
exact analytical methods for computing the accessible sur-
face area were introduced by Connolly (1983) and Richmond
(1984). They have been improved in recent years, the focus
by von Freyberg, Richmond et al. (1993) and Fraczkiewicz
and Braun (1998) being on computational efficiency and
that of Eisenhaber and Argos (1993) and Gogonea and Os-
awa (1995) being on stability. The idea of using inclusion-
exclusion to reduce intersections of five or more balls to lin-
ear combinations of at most four balls was introduced by
Kratky (1978) and by Gibson and Scheraga (1987). Doing
the reduction correctly remains however computationally ex-
pensive. The Alpha Shape theory solves this problem using
Delaunay triangulations and their filtrations, as described by
Edelsbrunner (1995). Alpha shapes have been used to com-
pute the surface area and volume of proteins as well as for de-
tecting and measuring cavities in proteins; see Liang, Edels-
brunner et al. (1998).

The distinction between approximate and exact compu-
tation also applies to existing methods for computing the
derivatives of the surface area with respect to atomic co-
ordinates. Computationally more efficient are the approxi-
mate methods implemented in the MSEED software by Per-
rot, Cheng et al. (1992) and the SASAD software by Srid-
haran, Nicholls et al. (1994). The computational efficiency
of MSEED is a consequence of ignoring the contribution of
internal atoms, at the cost of missing buried cavities. A nu-
merical procedure for computing the accessible fraction of
the circle of intersection between two surface spheres is im-
plemented in SASAD. The analytical method for surface area
calculation proposed by Richmond (1984) also provides an-
alytical gradients, and revised versions of this approach were
implemented in molecular dynamics programs by Wesson
and Eisenberg (1992) and Fraczkiewicz and Braun (1998).
All existing methods for computing the derivatives are ex-
tensions of strategies used for computing the surface area,
and therefore suffer the same stability problems. The Al-
pha Shapes software proposes a robust solution to the lat-
ter problem, by implementing arbitrary precision arithmetic
to avoid numerical problems and systematically resolving all
singularities without explicitly perturbing the positions of the
sphere centers. The latter method is referred to as Simula-
tion of Simplicity, as described by Edelsbrunner and Mücke
(1990). In this paper, we describe an extension of the Al-
pha Shapes method that includes the efficient, robust, exact,
and analytical computation of the derivatives of surface area
terms. There is an inherent difficulty in using a potential
based on surface area for energy minimization or molecu-
lar dynamics. Although the accessible surface area is con-
tinuous in the position of the atoms, its derivatives are not.
Wawak, Gibson et al. (1994) have published a list of situ-

ations in which discontinuity in the derivative is observed.
We re-examine this issue within the framework of the Alpha
Shape method and relate discontinuities with combinatorial
changes in the subcomplex of the Delaunay triangulation that
is dual to the space-filling diagram.

Outline. Section 2 explains our approach to computing
derivatives and states the results. Section 3 proves the for-
mulas for the unweighted and the weighted area derivatives.
Sections 4 and 5 discuss the continuity of the derivatives and
the implementation of the algorithm. Section 6 concludes
this paper.

2 Approach and Results
In this section, we explain how we approach the problem
of computing the derivatives of the surface area of a three-
dimensional space-filling diagram.

Derivatives. We need some notation from vector calcu-
lus to talk about derivatives. We refer to Spivak (1965)
for an introduction to that topic. For a differentiable map���������	�

, the derivative at a point 
�� �
� is a linear
map � �������������

. The geometric interpretation is as
follows. The graph of � � � is the tangent space of

�
at 
 ,

which is a hyperplane passing through the origin in
�������

.
The translation that moves the origin to the point ��
�� � ��
����
on the graph of

�
moves the tangent space to the supporting

hyperplane at that point. Being linear, � � � can be written
as the scalar product of the variable vector  �� � � with
a fixed vector !"� �
� known as the gradient of

�
at 
 :

� � � �� #�
�%$�!&�� �' . The derivative � � maps each 
(� ��� to
� �)� or, equivalently, to its gradient ! .

In this paper, we call points in
�
�

states and use them
to represent sets of balls in

�
*
. For + �-,/. , the state 


represents the set of balls 021 �3�54�16�87)19� , for :<;>=?;@.BADC ,
where E 
 * 1 ��� �F
 * 1 �HG �I
 * 1 �J*8KML �N4�1 is the center of 0O1 . The
radius 7)1 is assumed to be fixed and is not encoded in the
state. The weighted and unweighted areas of the union of
the 0O1 are maps PQ�FR �S�
*FTU�V�

. Their derivatives at a
state 
W� � *IT are linear maps �OP � �F�OR �X�Y� *FT �Z�

, and
the goal of this paper is to give a complete description of
these derivatives.

Power diagram. Let [ 1 be the sphere bounding 0 1 . A use-
ful concept is the power distance of a point \ from [ 1 , which
is defined as ] 1 �^\_� �a`8\QAW4 1 ` G Ab7 G1 . Note that [ 1 con-
sists of all points \ with zero and 021 of all points with non-
positive power distance. The set of points with equal power
distance from two spheres is their radical plane. It contains
the circle common to both spheres, if it exists. The radical
plane bounds the half-space of points whose power distance
from one sphere is less than or equal to that from the other.
Consider the collection of spheres [ 1 , for :c;d=&;e.?AfC . The
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Figure 1: The edges of the power diagram are solid inside and dot-
ted outside the union of disks.

power cell of [ 1 is the set of points \ for which [ 1 minimizes
the power distance,

� 1 � � \(� � *�� ] 1I�^\_��; ]�� �^\_� �����
	��
Each power cell is a convex polyhedron with at most .(ADC
polygonal faces. The polyhedra cover the entire

��*
and have

pairwise disjoint interiors. The power diagram consists of
the power cells together with their polygonal faces, edges,
and vertices. Let 
 ��� 1 0 1 be the space-filling diagram. If
we restrict the power diagram to within 
 , we get a decom-
position of 
 into the convex cells

� 1���
 � � 1��W0O1 . Fig-
ure 1 illustrates this decomposition for the two-dimensional
case.

Dual complex. The (weighted) Delaunay triangulation is
the dual of the power diagram. It is obtained by taking the
sphere centers as vertices and drawing an edge between any
two vertices whose corresponding power cells share a com-
mon polygonal face. We also draw a triangle for every three
power cells that share an edge and a tetrahedron for every
four power cells that share a vertex. It is convenient to as-
sume or simulate general position, so that no other types of
common intersections among power cells occur. In this case,
all dual elements are simplices and the Delaunay triangula-
tion is a simplicial complex. We write �W;�� if the simplex
� is a face of the simplex � .

The dual complex � is the dual of the decomposition of 
 .
Its vertices are again the sphere centers, but it contains only
those simplices that correspond to collections of clipped cells
with non-empty common intersection. Since

� 1�� 0O1�� � 1 ,
for every = , the dual complex is a subcomplex of the Delau-
nay triangulation. Figure 2 illustrates the definition by show-
ing the Delaunay triangulation and the dual complex of the
nine disks in Figure 1.

We formalize the notion of neighborhood within � by
defining the star of a simplex � ��� as the set of simplices
that contain � . The link of � is the collection of faces of
simplices in the star that are disjoint from � . More formally,

��� � � ��� ��� � �X;���	�� "! � � �$#��%� � #e;&� � ��� � and #'�(� ��)�	��

Figure 2: The Delaunay triangulation and dual complex of the disks
in Figure 1. The dotted edges and unshaded triangles belong to the
Delaunay triangulation, and the remaining simplices belong to both.

For example, the star of an interior edge contains the edge
together with a ring of triangles and tetrahedra around the
edge. The link is a cycle that consists of a vertex for each
triangle and an edge for each tetrahedron in the star.

Measuring. We use fractions to express the size of ge-
ometric entities in the decomposition of the space-filling
diagram. For example, * 1 �,+.-0/�+�� � 1 �21435
 �067+.-0/�+ � [ 1 �
is the fraction of the = -th sphere on the boundary of the
space-filling diagram. The area of 
 �8� 1 0 1 is therefore
R �:9 ]<;-7 G1 * 1 . Given real weights = 1 , the weighted area
is P �>9 ]?;@= 1 7 G1 * 1 . If the = 1 are the atomic solvation pa-
rameters, P is also known as the solvation energy. The for-
mulas for the derivatives require fractions of circles and line
segments. Two spheres intersect in a possibly empty circle
[Y1A� ��[Y1��W[B� . The fraction that belongs to the boundary of
the space-filling diagram is

* 1C� �
D /�EGF �0H � � 1�� � �I�(1J3K
 �D /$EGF �LH � [ 1A� � �

Three spheres [ 1 , [ � , and [�M intersect in a pair of points,
and these points span a line segment 0 1C� M , if they exist. The
fraction that belongs to the corresponding edge of the power
diagram is

N 1A� M �
D /�EGF �0H � � 1 � � � � � MO�P
 �D /$EGF �LH �50 1A� M � �

Given the dual complex � , it is fairly straightforward to
compute the * 1 , * 1C� , and

N 1C� M . We explain this for the frac-
tions needed to express the derivatives. Let [ M1A� be the por-
tion of the circle [ 1A� on ["M ’s side of the bisectors, [ M1A� �
� \e� ��* � ] M �^\_� ; ]G� �^\ � � ] 1F��\ � � :�	 . The general re-
sults in Edelsbrunner (1995) imply the following inclusion-
exclusion formulas for this fraction,

* 1C� � C�A ; M
D /�EGF �0H �5[ M1A� � AQ; MSR T D /�EGF �0H �5[ M1C� �W[ T1C� �U ]�7 1A� �

where 7 1C� is the radius of [ 1A� . The first sum ranges over all
vertices 4.M and the second over all edges 4.M�4�T in the link of
4 1 4 � in � . We note that * 1C��V�b: iff 4 1 4 � is a boundary edge
of the dual complex. Let 0 T1A� M be the portion of 0 1C� M on [4T ’s
side of the bisectors. Then

N 1A� M � C�A ; T
D /�EGF �0H ��0 T1C� M �U 7 1A� M �

3



where
U 7 1A� M � D /$EGF �LH �50 1A� M � . Here the sum ranges over all

vertices in the link of the triangle 4 1 4 � 47M in � . There are
at most two such vertices, each clipping one side of the line
segment to get the corresponding edge in the power diagram.

Results. The first result of this paper is a complete descrip-
tion of the area derivative. Let � 1C� � `84 1 A 4 � ` be the dis-
tance between two centers. We write � 1A� � �54 1 AD4 � �06�� 1A�
for the unit vector in the direction of the connecting line. For
each � V��= � � , let �/1A� M ��� 1 M A�$��_1 M ���_1C� '	�
�_1A� be the compo-
nent of �_1 M normal to �_1A� , and let �_1C� M ���/1C� M 6 `��/1A� M ` be the
unit vector in that normal direction.

AREA DERIVATIVE THEOREM. The derivative of the area
of the space-filling diagram with state 
�� �
*IT

is
�OR � �^ �� � $�
Y�� �' , where�� 
 * 1 ���
 * 1 �HG
 * 1 �H* �� � �

�

�
* 1C� ��� 1A� ���

M
N 1A� M���� 1A� M��D�

� 1A� � ]��67 1 ��7 � �8E C�A �67 1 Ad7 � �
G� G1A� K ��� 1A� �� 1A� M � U 7 1A� M 7)1YAe7$�� 1C� ��� 1C� M �

for : ; =�� . . The summation is over all boundary
edges 4�1�4$� and their triangles 4�154 � 4 M in � .

The second result is a complete description of the weighted
area derivative. Let =�1
� � be the weight of the = -th sphere.

WEIGHTED AREA DERIVATIVE THEOREM. The deriva-
tive of the weighted area of the space-filling diagram
with state 
 � � *IT is �OP � �^ �� � $�� �F #' , where�� � * 1 ���� * 1 �HG� * 1 �H* �� � �

�

�
* 1A� ��� 1C� � �

M
N 1A� M �!� 1C� M������1A� � ]�E � = 167)1 � = �/7��#�

A � = 1�7�1YA�="�/7$�#� 7
G1 Ae7 G�� G1A� K �!� 1A� ���1C� M � U 7)1A� M = 1 7 1 AP= � 7 �� 1A� ��� 1A� M �

for : ; =�� . . The summation is over all boundary
edges 4 1 4 � and their triangles 4 1 4 � 47M in � .

We note that � R and �OP are not everywhere continuous.
Specifically, they may be discontinuous when two spheres
touch, three spheres intersect in a common circle, or four
spheres intersect in the same two points.

3 Derivation
This section derives the formulas claimed in the two theo-
rems. They are the sums of contributions from locally direc-
tion preserving and distance preserving components of the

motion. A direction is determined by two spheres and pre-
served if they move on the straight line that passes through
their centers. A distance preserving motion is a rotation of
one sphere about another.

Direction preserving motion. To study the derivative for
a direction preserving motion, we define 
 � 0 1	" 0K� and
assume the two bounding spheres, [ 1 and [ � , have a non-
empty intersection. Let � 1 and � � be the signed distances of
4 1 and 4 � from the radical plane, as illustrated in Figure 3.
The sum of the two distances is � 1C� �#� 1 ��� � � `84 1 A 4 � ` .
We have 7 G1 Ae7 G� ��� G1 A$� G� ��� 1C� �%� 1 A&� � � and therefore

j
ρ

zz jjii

i

ζ

ρ

ζ
ji

ρ

Figure 3: The two spheres intersect in a circle with radius '�( ) .
� 1 � CU �%� 1C� � 7 G1 Ad7 G�� 1C� �8� (1)�L� � CU �%� 1C� � 7 G� Ad7 G1� 1C� � � (2)

Using Archimedes’ area formula for spheres, we get

R � 9 ]�7 G1 7)1 �*� 1U 7 1 � 9 ]�7 G� 7�� �+�L�U 7 �
� U ]��67 G1 ��7 G� � � ]�� 7)1 �D7$�#� E �81C� � � 7 1 Ae7 � � G� 1C� K �

for the area of the boundary of 
 , where the second line
is derived from the first by a few simple algebraic manipu-
lations using Equations (1) and (2). The equation for R is
valid as long as the two spheres have a non-empty intersec-
tion, or equivalently as long as

� 7 1 A>7 � � ;,� 1C� ; 7 1 ��7 � .
The derivative with respect to the distance between the two
centers is therefore

3 R
3-� 1A� � ]��67 1 �>7 � �8E C?A �67�1HAd7��#�

G� G1A� K � (3)

Figure 4 sketches the function within the interval of permit-
ted distances.

Distance preserving motion. To study the area deriva-
tive for a distance preserving motion, we define 
 �
0 1 " 0 � "W0OM and assume the three bounding spheres inter-
sect in two points, �/.J�/0�	 �b[ 1 �W[ � �W[�M . Recall that 0 1A� M
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ρji| |i j- ρ

dA d/

ρ +

ζij

ζi

jdA d/ ζi

ji + ijρ ζjρ ρ 0

Figure 4: To the left we see the graph for ' ( �� ' ) , in which case
the area derivative is positive at � ( ) � ' (�� ' ) and zero at � ( ) �� ' (�� ' ) � . To the right we see the graph for ' ( � ' ) , in which case
the area derivative is a positive constant over the entire interval,
except for � ( ) �
	 , where it is undefined.

is the line segment with endpoints . and 0 . In the assumed
case, the two caps � 1A� �>0 1 �W[ � and � M � ��0OM �W[ � have
a non-empty common intersection, and their bounding cir-
cles intersect in the same two points, �
.��
0�	 �-[J1C�I� [ M � ,
as shown in Figure 5. The spherical distance between the

k

j

yi

S

C jkCji

y

q

p

η j

Figure 5: Two spherical caps whose bounding circles intersect in
two points.

centers � 1 and � M of the two caps is 
7� � 7�� ����� 154 ��� M . Con-
sider the area of the union, R5� � +.-0/�+ ��� 1A� "�� M �)� . We use
geometric reasoning to compute the derivative with respect
to the spherical distance. To the first order, the area gained
by moving the two caps apart, while keeping their centers
on the same great-circle, is equal to the area of a spherical
rectangle. Its height is the spherical distance between . and0 and its width is 3�
 � . Using Archimedes’ formula, the area
of the slice of [ � between the two planes passing through. and 0 normal to . 0 is the area of [ � times the Euclidean
distance between . and 0 divided by the diameter, which is
9 ]�7 G� ` . A 0 `�6 U 7�� �>9 ]�7$�/7)1C� M . The area of the rectangle is
the area of the slice times 3�
7� divided by

U ]�7�� . The deriva-
tive of the area covered by the two caps is therefore

3�R �
3�
 � � U 7�1A� M � (4)

Figure 6 sketches the function within the interval of permit-
ted spherical distances.

j

ij kj ρ +

j η/Aj j

ρ ρ ηij kj j+ij kj ηj ρ

d

- ρρ

/ ηA d

| |

dd

0

Figure 6: To the left we see the graph for ' ( ) �� '�� ) , in which case
the area derivative at both extremes is zero with infinite slope. To
the right we see the graph for ' ( ) � '�� ) , in which case the deriva-
tive approaches twice the common radius as the distance between
the two centers goes to zero.

Assembling the relations. Let  be the velocity vector of
the motion at state 
 . Then � 1 �UE  * 1 ��� �� * 1 �HG �F * 1 �J* KML is the
velocity vector of 4 1 . Because the derivative is linear, we can
decompose the motion into components and add the contri-
butions. For every ordered pair = � � , we consider the direction
preserving component $�� 1C� ��� 1 ' ��� 1A� , and for every ordered
triplet = � � �/� , we consider the distance preserving component
$��_1C� M ���619' ���_1C� M of �61 .

The contribution of the ordered pair = � � is the fraction of
the circle [H1A� that belongs to the boundary of 
 � � 1 0 1
times what is given in Equation (3). This is * 1C� $ � 1C� ���61 ' ,
where � 1A� is as given in the Area Derivative Theorem. One
part of the contribution of the ordered triplet = � � �/� is the frac-
tion of the line segment 0 1A� M , that belongs to the correspond-
ing edge of the power diagram, times the negative of what is
given in Equation (4). We take the negative because the two
measured caps subtract from the area of 
 . The other part of
the contribution of = � � �/� is the same fraction of 0 1A� M times
what is given in Equation (4) after switching = and � (which
does not change the right side of the equation). This part
accounts for the two caps � �F1 and � M 1 on [ 1 and is taken
positive because the motion of [J1 along �61 with fixed [J� is
relatively the same as the motion of [4� along A��61 with fixed
[Y1 . The velocity vector of the center of the cap ��1A� is 7��S6�� 1A�
times the component of �F1 along �_1A� M , and that of the cen-
ter of the cap � �F1 in the relative motion is A27/1 6��81C� times the
same vector. The contribution of = � � � � to the area derivative
is therefore

N 1C� M�$ � 1C� M ��� 1 ' , where � 1A� M is as given in the Area
Derivative Theorem. Adding the terms for all ordered pairs
and triplets gives

�OR � �^ #� �
T��H�� 1�� � � ��!�H1 "# * 1C� $ � 1C� ��� 1 ' � �

M !�J1 R � N 1C� M�$ � 1C� M���� 1 '%$&
for the area derivative. We can write this more succinctly as
� R � �� #�
�%$�
Y�� �' , where 
 is as defined in the Area Deriva-
tive Theorem. We have * 1A� � : unless 4 1 4 � is a boundary
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edge and
N 1C� M � : unless 4 1 4 � 47M is a triangle of � . Fur-

thermore, the sum over indices � vanishes unless 4 1 4 � is a
boundary edge. This implies that the summation can be lim-
ited to all boundary edges 4)154 � and their triangles 4�154$�84 M in
� , as stated in the Area Derivative Theorem.

The weighted case. Let = 1 be a real number for : ;e= �d. ,
and define the weighted area of the space-filling diagram 

equal to

P � 9 ]
T��Y�� 1�� � = 1�7 G1 *�1F�

where *�1 is the fraction of = -th sphere that belongs to the
boundary of 
 . Similar to the unweighted case, we distin-
guish between direction and distance preserving components
of the motion. We get the derivatives by straightforward
modifications of the unweighted formulas. For the direc-
tion preserving motion, we consider again the union of two
balls whose bounding spheres intersect in a common circle,

 �>0 1 "W0 � . Using Archimedes’ area formula for spheres,
we get

P � 9 ]"= 1�7 G1 7 1 �*� 1U 7 1 �Q9 ]"="�/7 G� 7 � �*� �U 7 �
� U ]�� =�1�7 G1 �Q="�/7 G� � � ]�� = 167)1 � = �/7��#���81C�

� ]�� = 1 7 1 A�= � 7 � � 7
G1 Ae7 G��81C� �

The derivative with respect to the distance between the cen-
ters is

3 P
3-� 1A� � ]�� = 1 7 1 � = � 7 � �

A�]�� = 1 7 1 A�= � 7 � � 7
G1 Ae7 G�� G1A� � (5)

which for = 1 � = � � C agrees with Equation (3). For a
distance preserving motion, we generalize Equation (4) to

3 P��
3�
 � � U = �)7)1C� M � (6)

Assembling these relations as in the unweighted case, we get

�OP � �^ �� �
T��H�� 1�� � � ��!�H1 "# * 1A� $ � 1C� ��� 1 ' � �

M !�J1 R � N 1C� M�$ � 1A� M ��� 1 ' $&
for the weighted area derivative. We can write this more suc-
cinctly as �OP � �� #� � $�� �� #' , where ��1A� , ��1C� M , and � is as de-
fined in the Weighted Area Derivative Theorem. Similar to
the unweighted case, the summation can be limited to all
boundary edges 4 1 4 � and their triangles 4 1 4 � 47M in � .

4 Discontinuity
In this section, we enumerate the cases in which the area
derivative can be discontinuous and relate them to singulari-
ties in the definition of the dual complex. Since the weighted
area contains the unweighted area as a special case, we may
restrict the discussion to the former.

Combination of maps. Recall that the derivative of the
weighted area function is the map �OP � �
*IT � ��*IT

de-
fined by �OPQ��
�� � � . It has discontinuities along a measure
zero subset of

� *IT
, where P is not differentiable. This subset

has been studied before in the context of molecular dynam-
ics by Wawak, Gibson et al. (1994) and can be understood
by examining the formula in the Weighted Area Derivative
Theorem. That formula is composed of the fraction maps
*�1A� and

N 1C� M , the coefficient maps `���1A��` and `���1C� M ` , and the
direction maps �_1A� and � 1A� M . All six are almost everywhere
but not everywhere continuous. We have a discontinuity of
� P only if at least one of the maps is discontinuous and the
multiplying other maps are non-zero. Note, however, that
having one discontinuous map with a non-zero multiplying
factor does not necessarily imply a discontinuity since there
may be relations that cause non-trivial cancellations.

We will see shortly that every state 
 at which �OP is dis-
continuous also has the property that every open neighbor-
hood contains states which combinatorially different dual
complexes. In other words, when 
 passes through a dis-
continuity of �OP then the dual complex passes a moment
at which it may undergo a combinatorial change. All these
changes happen at the boundary of the dual complex, but not
every change on the boundary corresponds to a discontinuity.

Pair maps. We first consider the maps that depend on two
spheres, * 1A� , `�� 1C� ` , and � 1A� . The three cases in which * 1A�
may be discontinuous are illustrated in Figure 7. Case (b) is
further split into Case (b.1), when 7/1 V�%7�� , and Case (b.2),
when 7)1 �b7�� .

(b)(a) (c)

Figure 7: (a) Two non-nested touching spheres. (b) Two nested
touching spheres. (c) Three spheres meeting in a common circle.

Case (a). Spheres [H1 and [J� touch in a point \ and lie on
opposite sides of the common tangent plane. The states
that satisfy this description form a ��,/.�A C�� -dimensional
cylinder in

��*IT
. If \ lies outside all other spheres then

6



* 1C� jumps from 0 to 1 or from 1 to 0. The maps `�� 1A� `
and � 1C� may both be non-zero, which implies that �OP
can be discontinuous.

Case (b.1). Spheres [ 1 and [ � touch in a point \ , they
lie on the same side of the common tangent plane, and
7 1�V��7 � . As in Case (a), the states that satisfy this
condition form a ��, . A C�� -dimensional cylinder in

� *IT
,

and if \ lies outside all other balls then * 1C� jumps from
0 to 1 or from 1 to 0. In the unweighted case we have
`���1A��` � : , as shown in Figure 4 on the left, and there-
fore no discontinuity of the derivative. In the weighted
case we may have `��)1A��` V��: , and since �_1C� is non-zero
by construction, �OP can be discontinuous.

Case (b.2). [Y1 � [J� . The states that satisfy this de-
scription form a ��,/.(Ae, � -dimensional linear subspace
of
��*IT

. Using limit considerations, we get a possibly
non-zero continuous extension for the pairwise coeffi-
cient map, namely `�� 1A� ` �U]�� = 1 7 1 �&= � 7 � � . If a non-
zero fraction of the common sphere surface lies on the
boundary of 
 then we also get non-zero limits for * 1A� .
Since there is no continuous extension of the direction
map, � P can be discontinuous.

Case (c). Spheres [ 1 , [ � , and [�M intersect in a common
circle. The states that satisfy this description form a
�5,/.XAW,�� -dimensional subset of

�
*IT
. If a positive frac-

tion of the common circle belongs to the boundary of 
 ,
we get positive limits for * 1C� , * 1 M , and * � M , which are
different for different approaching directions. The co-
efficient maps and direction maps can all be non-zero,
which implies that �OP can be discontinuous.

The state can pass through a singularity in various ways. The
generic way of passing through Cases (a) and (b.1) corre-
sponds to adding an edge to the dual complex or removing it
from the same. The generic way of passing through Case
(b.2) corresponds to contracting an edge followed by un-
contracting the same. There is more than one way to generi-
cally pass through Case (c), and in each way we witness the
removal of a degree-2 vertex and the replacement of its two
edges by a new edge connecting their two other endpoints,
or the inverse of that operation.

Triple maps. The maps
N 1A� M , `���1A� M ` , and �_1A� M have dis-

continuities where the circles bounding caps on [ � form con-
figurations as in Figure 7.

Case (d). The spheres [H1 , [B� , and [ M intersect in a com-
mon point, as in Figure 7 (a) and (b). In this case we
have 7 1A� M �b: . The discontinuity of

N 1A� M is thus wiped
out by the vanishing of `�� 1A� M ` , which implies that � P
is continuous.

Case (e). The spheres [ 1 , [ � , ["M , and [JT intersect in a
common point pair, as in Figure 7 (c). The states that

satisfy this description form a ��, .�A U � -dimensional
cylinder in

��*IT
. We can arrange the other spheres so

we get positive limits for
N 1A� M , N 1C� T , N 1 M T , and

N � M0T that
are different for different approaching directions. We
can choose the centers and radii such that the coeffi-
cient maps and direction maps are all non-zero. It thus
seems possible that �OP is discontinuous.

The generic way of passing through Case (d) corresponds to
adding a triangle to the dual complex or removing it from the
same. This triangle may fill or open a tunnel, or it may be
added or removed together with one of its edges. Similarly,
the generic way of passing through Case (e) corresponds to
adding a tetrahedron to the dual complex or removing it from
the same. The tetrahedron may fill or open a void, or it may
be added or removed together with one of its triangles.

If no Cases (a), (b), (c), (d), and (e) occur in the collec-
tion of spheres defining the space-filling diagram, then we
have continuous fraction maps, continuous coefficient maps,
continuous direction maps, and therefore a state where the
weighted area derivative is continuous.

5 Implementation
We implemented the Weighted Area Derivative Theorem by
re-implementing the Alpha Shapes software to compute the
dual complex of the space-filling diagram. As described be-
low, we have validated the resulting software as correct and
sufficiently fast for applications in molecular dynamics.

Molecular simulation application. Implicit solvent mod-
els usually compute the interaction of water with non-polar
atoms of a molecule as a weighted sum of the accessible sur-
face area of each atom. The weights are the atomic solvation
parameters introduced by Eisenberg and McLachlan (1986).
These terms, and their derivatives with respect to the position
of the atoms can be computed using the Alpha Shape soft-
ware and the Weighted Area Derivative Theorem with the
coefficient = 1 set to the values of the atomic solvation param-
eters. Applications of this method to molecular simulations
such as molecular energy minimization or molecular dynam-
ics require that special care be taken to minimize the compu-
tational cost. One step of a molecular dynamics simulation
in vacuo of a 90-residue protein requires approximately 40
microseconds (ms) on a 1000 Mhz Pentium III computer;
the same simulation performed with explicit water requires
240 ms. An implicit solvent simulation should therefore po-
sition itself between these two figures. We have written a
new version of the Alpha Shape software, ALPHAMOL, spe-
cific to molecular simulation applications that includes im-
plementations of the area and weighted area derivative for-
mulas. Computation of the surface area and its derivatives
of a 90-residue protein using ALPHAMOL require 60 ms on
a 1000 Mhz Pentium III computer, which is well within the
specifications required for molecular dynamics. The 60 ms
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roughly break down to 20 ms for computing the Delaunay
triangulation, 20 ms for generating the alpha complex, 10
ms for computing the weighted surface area, and 10 ms to
compute the weighted surface area derivatives.

Validation. The area derivative formula was tested for
7PCY (99-residue protein, 871 atoms) and 1TIM (247-
residue protein, 1870 atoms) against the numerically esti-
mated first derivatives of surface area:

��� * 1 � � � R ��
 * 1 � � ���/��AWR ��
 * 1 � � A��/�U � � (7)

where 
 * 1 � � is the � -th coordinate of the = -th atom center. A
similar expression holds for the weighted area by replacing
R with P in Equation (7). The average relative differences
between analytical and numerical derivatives were computed
as a relative RMS error:

� �5R � �

�
; T��H�1�� � ; *��� � � 
 * 1 � � A ��� * 1 � ��� G�

; T��H�1�� � ; *��� � � ��� * 1 � � � G � (8)

where . is the number of atoms, as before. The average rel-
ative differences � ��P � for the weighted areas are computed
in a similar way. For the weighted areas, the tests were per-
formed using the atomic solvation parameters from Table 3
of Wesson and Eisenberg (1992). Using � �>:
� : : : C , we find� ��RO� equal to �G� , � C : �
	 and ��� 9 �8C : �
	 for 7PCY and 1TIM,
respectively, and � �5P � equal to �G� � �_C : �
	 and �G�
� �_C : �
	
for the same proteins. The good agreements between the
analytical and numerical derivatives of the surface area and
weighted surface areas show that our approach and imple-
mentation are correct.

Performance. We compared the performance of AL-
PHAMOL to that of one other analytical program for com-
puting molecular surface area and its gradients, GETAREA

by Fraczkiewicz and Braun (1998), and of one fast approx-
imate program, PROSURF. The latter software is our own

Protein 6PTI 7PCY 1TIM 1MCP
#atoms 444 871 1,870 3,401

ALPHAMOL 0.04 0.06 0.24 0.47
GETAREA 0.05 0.11 0.26 0.48
PROSURF 0.03 0.06 0.17 0.32

Table 1: Comparison between ALPHAMOL, GETAREA and PRO-
SURF. The running time is given in seconds.

implementation of the fast numerical procedure proposed by
LeGrand and Merz (1993). Accessible surface areas and
their derivatives were calculated for a set of four proteins,
6PTI, 7PCY, 1TIM and 1MCP. Atomic radii and solvation
parameters were the same for every input protein. AL-
PHAMOL and GETAREA agree within numerical precision
for both the surface area and derivatives, while the value

of the surface area computed with PROSURF is found to be
on average 3% larger than the analytical values. Computing
times on a Intel 1000 Mhz Pentium III computer for the three
pieces of software are given in Table 1. ALPHAMOL is found
to be slightly faster than GETAREA, and slightly slower than
the numerical method. It should be mentioned however that
the latter does not include the computation of the derivatives.

6 Discussion

The Alpha Shape software with the Weighted Area Deriva-
tive Theorem provides a fast, accurate and robust method for
computing the interaction of water with non-polar atoms of
a molecule in an implicit solvent model. The corresponding
software, ALPHAMOL, has similar CPU time requirements
as other analytical or fast approximate programs. It surpasses
numerical programs however, in that it is accurate. To our
knowledge, ALPHAMOL is also the only analytical program
that explicitly deals with the problem of discontinuities of the
weighted area derivatives. We have made preliminary steps
towards inserting ALPHAMOL into the molecular dynamics
program ENCAD by Levitt et al. (1995), but it is too early to
say anything about the corresponding results.

When we evaluate the derivative formulas, we assume the
availability of the dual complex of the space-filling diagram.
At this time, we re-compute the entire Delaunay triangula-
tion and obtain the dual complex by selecting its simplices
from that triangulation. It would be worthwhile to develop a
fast algorithm that maintains the dual complex during a con-
tinuous motion without repeatedly rebuilding the Delaunay
triangulation.

The mathematical tools used in this paper to express the
area derivative of a space-filling diagram should prove use-
ful to extend the results to the weighted volume derivatives
and to the second derivatives of the weighted area and vol-
ume. It might also be interesting to compute derivatives for
other molecular models. For example, the area derivative of
the molecular skin surface defined by Edelsbrunner (1999)
may turn out to be continuous and thus lead to more robust
simulations than the partially discontinuous area derivative
of the space-filling diagram.
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