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Abstract

The writhing number measures the global geometry of a closed
space curve or knot. We show that this measure is related to the
average winding number of its Gauss map. Using this relationship,
we give an algorithm for computing the writhing number for
a polygonal knot with � edges in time roughly proportional to
����� � . We also implement a different, simple algorithm and provide
experimental evidence for its practical efficiency.
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1 Introduction

The writhing number is an attempt to capture the physical
phenomenon that a cord tends to form loops and coils when
it is twisted. We model the cord by a knot, which in this
paper is, by definition, an oriented closed curve in three-
dimensional space. We consider its two-dimensional family
of parallel projections. In each projection, we count �
	 or
� 	 for each crossing depending on whether the overpass
requires a counterclockwise or a clockwise rotation to align
with the underpass. The writhing number is then the signed
number of crossings averaged over all parallel projections. It
is a conformal invariant of the knot and useful as a measure
of its global geometry.

The writhing number attracted much attention after its
relationship with the linking number, expressed by the White
formula, was discovered independently by Călugăreanu [6],
Fuller [15], Pohl [21], and White [26]:

�� � ��� �������(1)

Here
��

is the linking number between the two boundary
curves of a closed ribbon in space,

���
is its twisting number,

and ��� is the writhe of the axis of the ribbon. A small sub-
set of the mathematical literature on the subject can be found
in [2, 14]. Besides the mathematical interest, the White For-
mula and the writhing number have received attention both
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in physics and in biochemistry [12, 17, 20, 23]. For ex-
ample, they are relevant in understanding the various geo-
metric conformations we find for circular DNA in solutions,
as illustrated in Figure 1 taken from [5]. By representing

Figure 1: Circular DNAs take on different supercoiling conforma-
tions in solutions.

DNA as a ribbon, the writhing number of its axis measures
the amount of supercoiling, which characterizes some of the
DNA’s chemical and biological properties [3].

This paper studies algorithms for computing the
writhing number of a polygonal knot. Section 2 introduces
background work and states our results. Section 3 relates the
writhing number of a knot with the winding number of its
Gauss map. Section 4 shows how to compute the writhing
number in time less than quadratic in the number of edges of
the knot. Section 5 discusses a simpler sweep-line algorithm
and presents initial experimental results. Section 6 concludes
the paper.

2 Prior and New Work

In this section, we formally define the writhing number
of a knot and review prior algorithms used to compute or
approximate that number. We conclude by presenting our
results.

Definitions. A knot is a continuous injection ��� �"!$#%'&
or, equivalently, an oriented closed curve embedded in

three-dimensional real space. We use the two-dimensional
sphere of directions, �'( , to represent the family of parallel
projections in

%)&
. Given a knot � and a direction *,+-�'( ,

the projection of � is a possibly self-intersecting, oriented
closed curve in a plane normal to * . We assume * to be
generic, that is, each crossing of � in the direction * is
simple and identifies two oriented intervals along � , of
which the one closer to the viewer is the overpass and the
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other is the underpass. We count the crossing as �
	 if
we can align the two orientations by rotating the overpass
in a counterclockwise order by an angle between � and � .
Similarly, we count the crossing as � 	 if the necessary
rotation is in a clockwise order. Both cases are illustrated
in Figure 2. The Tait or directional writhing number of �

+1 −1

Figure 2: The two types of crossings when two oriented intervals
intersect.

in the direction * , denoted as � ��� *�� , is the sum of crossings
counted as �
	 or � 	 as explained. The writhing number is
the directional writhing number, averaged over all directions
* + � ( ,

��� � 	� � �
	�� � �� *
��� * �(2)

We note that a crossing in the projection along * also exists
in the opposite direction, along � * , and that it has the
same sign. Hence � ��� *�� � � ��� � *�� , which implies that
the writhing number can also be obtained by averaging the
directional writhing number over all points of the projective
plane or, equivalently, over all antipodal points pairs � *�� � *��
of the sphere.

Computing the writhing number. Several approaches to
computing or estimating the writhing number of a smooth
knot have been developed. Consider a path-length parame-
terization � �)�'! # %'&

, and use ��� and
� � to denote the

position and the unit tangent vectors for � + ��! . The follow-
ing double integral formula for the writhing number can be
found in [21, 24]:

��� � 	� � �
	����
	���� � ��� � � � � � � � �"!# � � � � � # & �$����% �(3)

If the smooth knot is approximated by a polygonal knot, we
can turn the right hand side of (3) into a double sum and thus
approximate the writhing number of the smooth knot [4, 20].
This can also be done in a way such that the double sum gives
the exact writhing number of the polygonal knot [18, 25].

Alternatively, we may base the computation of the
writhing number on the directional version of the White for-
mula,

�� � � ��� *��"� ���� *
� for * + � ( . We get (1) by
integrating over � ( and noting that the linking number does
not depend on the direction. This implies

��� � �� � ���
� � ��� *
� � ���� *
� � 	� � � 	 � ����'& �(� & �(4)

Expressions for the directional and the (average directional)
twisting numbers that depend on the second knot nearby �
can be found in [18]. Le Bret [19] suggests to fix a direction
* and define the second knot such that in the projection it
runs always to the left of � . In this case we have

���)� *�� � �
and the writhing number is the directional writhing number
for * minus the twisting number.

A third approach to computing the writhing number is
based on a result by Cimasoni [10], which states that the
writhing number is the directional writhing number for a
fixed direction * , plus the average deviation of the other
directional writhing numbers from � ��� *�� . By observing
that � ���'& � is the same for all directions

&
in a cell * of

the decomposition of � ( formed by the Gauss maps
�

and
� � , we get

��� � � ��� *�� � 	� �,+.-0/ � � - � � ��� *��2143 - �(5)

where � � - is � ���5& � for any one point
&

in the interior of* , and 3 - is the area of * .
If applied to a polygonal knot, all three algorithms take

time at least proportional to the square of the number of
edges in the worst case.

Our results. We present two new results. The first can be
viewed as a variation of (4) and a strengthening of (5). First
we need some notation. For a non-critical direction

& +,� ( ,
let
��'& � be its winding number with respect to

�
and � � .

As explained in Section 3, this means that
�

and � � wind���5& � times around
&

.

THEOREM A. For a knot � and a direction * , we have

��� � � ��� *�� � ��� *�� � 	� � �$	 � ��'& ��� & �
Observe the similarity of this formula with Equation (4),
which suggests that the winding number can be interpreted
as the directional twisting number for a special second
knot constructed nearby � . We will prove Theorem A in
Section 3. We will also extend the relation in Theorem
A to open knots and give an algorithm that computes the
average winding number in time proportional to the number
of edges. Our second result is an algorithm that computes
the directional writhing number in time less than quadratic
in the number of edges.

THEOREM B. Given a polygonal knot � with 6 edges and
a direction * + � ( , � ��� *�� can be computed in time
O
� 6 !"7 8.9;:<� , where = is an arbitrarily small positive

constant.

Theorems A and B imply that the writhing number for a
polygonal knot can be computed in time O

� 6'!"7 8>9;:<� . As
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Figure 3: A knot whose directional writhing number is quadratic in
the number of edges.

shown in Figure 3, the number of crossings in a projection
can be as large as quadratic in 6 . The sub-quadratic running
time is achieved because the algorithm avoids looking at
each crossing individually. We also present a simpler sweep-
line algorithm that looks at each crossing individually and
therefore does not achieve the worst-case running time of
the algorithm in Theorem B. It is, however, fast when there
are few crossings.

3 Writhing and Winding

In this section, we develop our geometric understanding of
the relationship between the writhing number of a knot and
the winding number of its Gauss map. We describe the Gauss
map as the curve of critical directions, prove Theorem A,
and give a fast algorithm for computing the average winding
number.

Critical directions. We specify a polygonal knot � by the
cyclic sequence of its vertices, ������� ! � � � �<������� ! . We use
indices modulo 6 and write �	� �0� ��� 9 ! � ��� �	
 # ��� 9 ! � ��� # for
the unit vector along the edge ������� 9 ! . Note that �� is also a
direction in

%)&
and a point in � ( . Any two consecutive points��� and ��� 9 ! determine a unique arc, which, by definition, is

the shorter great circle piece that connects them. The cyclic
sequence � � � � ! � � � �<�.� ��� ! thus defines an oriented closed
curve

�
in � ( . We also need the antipodal curve, � � , which

is the central reflection of
�

through the origin.
The directions � on

�
and � � are critical, in the sense

that the directional writhing number changes when we pass
through � along a generic path in �'( , and these are the only
critical directions [10]. It is clear that � is critical only if
it is parallel to a line that passes through a vertex ��� and a
point on an edge ������ 9 ! of the knot. There are 6 � 6 ��� �
vertex-edge pairs defining the same number of great circles
in � ( . First we note that only 6 of these great circles actually
carry critical points, namely the great circles that correspond
to � ��� � 	 . The reason for this is shown in Figure 4,
where we see that the writhing number does not change

Figure 4: Three cases in sliding the viewpoint sideways over the
great circle of directions defined by the hollow vertex and the solid
edge. The directional writhing number changes only in the third
case.

unless � � is separated from � � � � 9 ! by only one edge along
the knot. Second, we observe that the subset of directions
along which ��� projects onto ��� 9 ! ��� 9 ( is the arc ������� from��� to the direction ��� � � ��� 9 ( � ��� ��
 # ��� 9 ( � ��� # in � ( ,
and symmetrically the arc � ������ from � �� to � ��� . The
subset of directions along which ��� 9 ( projects onto ������� 9 !
are the arcs ���5��� 9 ! and � ���'��� 9 ! . The points �� , ��� , and� � 9 ! lie on a common great circle and � � lies on the arc� � � � 9 ! . This implies that the concatenation of � � � � and � � � � 9 !
is the arc � � � � 9 ! , and that of � � � � � and � � � � � 9 ! is the arc
� � � � � 9 ! . It follows that

�
and � � indeed comprise all

critical directions.

Decomposition. The curves
�

and � � are both oriented,
which is essential. We say a direction

& + � ( lies to the
left of an oriented arc ��� if it lies in the open hemisphere
locally to the left of the oriented great circle that contains
��� . Equivalently,

&
sees that great circle oriented in a

counterclockwise order. If
&

passes from the left of an arc ���
of
�

to its right, then we either lose a positive crossing (as in
the third row of Figure 4), or we pick up a negative crossing.
Either way the directional writhing number decreases by one.
This motion corresponds to � & passing from the right of the
arc � ��� of � � to its left. Since the directional writhing
numbers at

&
and � & are the same, this implies that also

in the opposite view we decrease the directional writhing
number by one. In other words, if

&
moves from the left

of an arc of � � to its right then the effect on the directional
writhing number is the opposite from what it is for an arc
of
�

. These simple rules allow us to keep track of the
directional writhing number while moving around in �)( . The
curves

�
and � � decompose � ( into cells within which the

directional writhing number is invariant. We can thus rewrite

3



Equation (2) as

��� � 	� � + - � � - 3 - �
where the sum ranges over all cells * of the decomposition,
and � � - is the directional writhing number of any one point
in the interior of * . Equation (5) of Cimasoni can now be
obtained by subtracting � ��� *�� from � � - inside the sum
and adding it outside the sum. This reformulation provides
an algorithm for computing the writhing number.

Step 1. Compute � ��� *�� for an arbitrary but fixed direc-
tion * .

Step 2. Construct the decomposition of �)( into cells,
label each cell * with � � - � � ��� *
� , and form the
sum as in Equation (5).

The running time for Step 2 is at least proportional to 6 (
in the worst case as there can be quadratically many cells.
We improve the running time to O

� 6 � and, at the same time
simplify the algorithm. First we prove Theorem A.

Winding numbers. We now introduce a function
�

over
� ( that may be different from � � but changes in the same
way. In other words,

��5& � � �� *�� � � ���5& � � � ��� *��
for all

& � * + � ( . This function is the winding number
of a point

& + � ( with respect to the two curves
�

and
� � . We fix non-critical, antipodal directions * and � * and
define

��5& � equal to the number of times
�

winds around
the annulus between

&
and � * plus the number of times � �

winds around the annulus between
&

and * . This is illustrated
in Figure 5, where

�� *
� � ��� � *�� � 	 and
��5& � � � .

Here we count the winding of
�

in a counterclockwise order

−T

T

−z

z

x

Figure 5: The winding number counts the number of times �
separates � from ��� and ��� separates � from � .

as seen from
&

positive, and winding in a clockwise order
negative. Symmetrically, we count the winding of � � in a
clockwise order as seen from

&
positive, and winding in a

counterclockwise order negative. Imagine moving a point
� along

�
and connecting

&
to � with the arc of the circle

passing through
&

, � , and � * that does not contain � * .

Symmetrically, we move � � along � � and connect
&

to
� � with the arc of the circle passing through

&
, � � , and *

that does not contain * . Locally at
&

we observe continuous
movements of the two arcs. Clockwise and counterclockwise
movements cancel, and

���5& � is the number of times the
first arc rotates in a counterclockwise order plus the number
of times the second arc rotates in a clockwise order. The
winding number of

&
is necessarily an integer but can be

negative.
Observe that

�
indeed changes in the same way as � �

does. Specifically,
�

drops by 1 if
&

crosses
�

from left to
right, and it increases by 1 if

&
crosses � � from left to right.

Starting from the definition (2) of the writhing number, we
thus get

��� � 	� � � 	 � � ��5& �(� &
� � ��� *�� � 	� � � 	 � / � ���5& � � � ��� *
� 1 � &
� � ��� *�� � 	� � �
	 � / ���5& � � ��� *��21 � &
� � ��� *�� � �� *�� � 	� � �
	�� ��5& �(� & �

which completes the proof of Theorem A.

Signed area modulo 2. Observe that the writhing number
changes continuously under deformations of the knot, as
long as � does not pass through itself. When � passes
through itself there is a � � jump in � ��� *�� , while

�� *�� and
the average winding number change continuously. We use
these observations to give a new proof of Fuller’s relation
[16],

	������ � 3�� 
 � � �
	�� � � � �(6)

where 3 � � !(
 ��'& � � & is the signed area of the curve

�
in � ( . Note first that 	�� ��� � 3�� 
 � � �
	�� � 	 � because
both � �� *�� and

�� *�� are integer. We start with � being a
circle in

%'&
, in which case (6) holds because ��� � � and3�� � � � � . Other than continuous changes, we observe

jumps of � � in ��� when � passes through itself. Theorem
A together with the fact that the fractional parts of 	 � ���
and 3 � 
 � � are the same implies that (6) is maintained
during the deformation. Fuller’s relation follows because
every knot can be obtained from the circle by continuous
deformation.

Computing the average winding number. Three generic
points � ������� + � ( define three arcs, which bound the
spherical triangle ����� . Recall that the area of ����� is the
sum of angles minus � . We define the signed area of �����
as 3 ��� ��� ��� � � if � lies to the left of the oriented arc
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��� , and as 3 � � � � � � � � � if it lies to the right. Let
*$+ � ( be a direction not on

�
and not on � � . As shown in

Figure 6, every arc � � � � 9 ! forms a unique spherical triangle
*�� � � � 9 ! . Let 3 � be its signed area. The corresponding
arc � � � � � 9 ! of � � forms the antipodal spherical triangle
� *�� � � � 9 ! with signed area � 3 � . The winding number of

it

+1i−t
−ti

ti
+1

−z

z

Figure 6: The two spherical triangles defined by an arc of � and its
antipodal arc of ��� .

a direction
&��� * can be obtained by counting the number

of spherical triangles that contain it. To be more specific, we
call a spherical triangle positive if its signed area is positive
and negative if its signed area is negative. Let ��� �'& � and� � �'& � be the numbers of positive and negative spherical
triangles * � � � � 9 ! that contain

&
, and similarly let � � � �5& � and� � � �5& � be the numbers of positive and negative spherical

triangles � * � � � � 9 ! that contain
&

. Then

��'& � � / � � �5& � � � � �'& �21 � / � � � �5& � � � � � �5& � 1 �
To see this note that the equation is correct for

& � * and
remains correct as

&
moves around and crosses arcs of

�
and

of � � . The average winding number is thus

	� � �$	 � ��'& ��� & � 	� � ��� !+ ����� 3 � � 	� � ��� !+ ����� � � 3 � �
� 	

� � ��� !+ ����� 3 � �
Computing the sum in this equation is straightforward and
takes only time O( 6 ).

Open knots. We define an open knot as a continuous
injection � � / ��� 	<1
# %'&

. Equivalently, it is an oriented
curve with endpoints embedded in three-dimensional real
space. The directional writhing number of � is well-defined,
and the writhing number is the directional writhing number
averaged over all parallel projections, as before. Assume
� is a polygon specified by the sequence of its vertices,
� ����� ! � � � �;������� ! , and let � be the knot obtained by adding
the edge connecting the last vertex to the first. The directions
defined by � ! and an interior point of the additional edge
� � � ��� ! are critical for � but not for � , and the directions

defined by � � and an interior point of the polygon from � !
to � ��� ! are critical for � but not for � . By symmetry, the
same is true for the directions defined by � � � ( and � ��� ! � �
and by � � � ! and the polygon from � ��� ( back to � � . As

un−3

v 2

wn−3

w 2

vn−3

...

..
.

−un =

.

u

−1

0

...

1

tw nn −2−2 =

v t=

.

0

.

..

.
. ..

−t
1

−2 −2nv=n−u
0=−1vn=−1n

w

w

Figure 7: The critical curves of the knot � are marked by hollow
vertices, and the additions required for the critical curves of the
open knot 	 are marked by solid black vertices.

illustrated in Figure 7, changing the critical curve
�

of �
to the critical curve 
 of � can be achieved by removing
some arcs and adding others. To describe the process, we
define � � � � ��� � ��� ��
 # ��� � ��� # , for 	�� � � 6 � 	 , and� � �0� ����� ! � ��� �	
 # ��� � ! � � � # , for �� ��� 6 � � . Observe
that � !

� � � , � ��� ( � � ����� ( , � ��� !
� � � � � ��� � ! ,�

!
� � ����� ! , and

� � � (
� ����� ( . We get the critical curve


 from
�

by

1. removing the arcs � � � ( � � � ! and � ��� ! � � ,
2. adding the new path ��� � � ! �� ( � � � � �� ��� ( � � ����� ( ,
3. adding the two partial arcs � � ��� ( � ��� ! and � � ��� ! � ��� !

of � � , and

4. adding the new path � ��� � !
� �

! � � ( � � � � � � ��� ( �� ��� ( .
Symmetrically, we get � 
 from � � . Everything we said
earlier about the winding number of the critical curve

�
of

� applies equally well to the critical curve 
 of � . Similarly,
all algorithms described in the subsequent sections apply to
knots as well as to open knots.

4 Computing Directional Writhing

In this section, we present an algorithm that computes the
directional writhing number of a polygonal knot with 6
edges in time roughly proportional to 6 !"7 8 . The algorithm
uses complicated subroutines that may not lend themselves
to easy implementation.

Reduction to five dimensions. Assume without loss of
generality that we view the knot � from above, that is, in
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the direction of * �0� ���.��� � 	�� . Each edge � � � � � � � 9 ! of �
is oriented. Another edge � � � � � � � 9 ! that crosses � � in the
projection either passes above or below and it either passes
from left to right or from right to left. The four cases are
illustrated in Figure 8 and classified as positive and negative
crossings according to Figure 2. Letting � � and

� � be the

+1 −1 −1 +1

Figure 8: The four ways an oriented edge can cross another.

numbers of edges that form positive and negative crossings
with � � , the directional writhing number is

� ��� *
� � 	
�
� ��� !+ ����� � � �

� � !+ ����� � ��� �
To compute the sums of the � � and

� � efficiently, we map
edges in three to points and half-spaces in five dimensions.
Specifically, let � � be the oriented line that contains the
oriented edge � � and use Plücker coordinates as explained
in [9] to map � � to a point � � + %�� or alternatively to a half-
space ��� in

%��
. The mapping has the property that � � and� � form a positive crossing iff � � lies in the interior of � � .

We use this correspondence to compute 	 � � � in two stages:
first we collect the pairs of oriented lines that form positive
crossings, and second we count among them the pairs of
edges that cross.

Recursive algorithm. It is convenient to explain the algo-
rithm in a slightly more general setting, where 
 and � are
sets of

&
and � oriented edges in

%)&
. Let � � 
 ���� denote the

number of pairs
� �
��;� +�
 � � that form positive crossings,

and note that 	 � � � � � � 
 ���� if 
 is the set of edges of
the knot � and � � 
 . We map 
 to a set � of points
and � to a set � of half-spaces in

%��
. Let ��� � be a

sufficiently large constant. A !� -cutting of � and � is a col-
lection of pairwise disjoint five-dimensional simplices that
cover � such that each simplex intersects at most � � of the
hyperplanes bounding half-spaces in � . We use the algo-
rithm in [1] to compute a !� -cutting consisting of % simplices
in time O(

& ��� ), where % is at most some constant times
����� ��� � . For each simplex ��� in the cutting define
 � � ��� � + 
"!#� � +$� � � �� � � �% � + �&!%' �(� �*) � � ��,+ � �- � � �% � + �&!#� �/. � � � �
Letting

& � and � � be the cardinalities of the first two sets,
we have 	 � & � � &

and � � �0�� . By construction, every

� �
�1;� + 
 �� - � defines a pair of lines that form a positive
crossing. For each simplex � � , we count the edge pairs� �
�1;� +�
 � � - � that form positive crossings and let � �
be the number of such pairs. Then

� � 
 ���� �
�
+� � ! / � � 
2�����3� � � �4��1 �

We use the algorithm in [8] to compute all numbers � � in
time 5 �'& ���� � O

�5& (�6 & ��(16 & � �7��& � & � ��� & � �8� �7� ��� , and
we recurse to compute the � � 
9�$���3� � , stopping the recursion
when � �-� . The running time of this algorithm is at most: �'& ���� � 5 �5& ���� � �

+� � ! : �'& � �	��
 � ��
O
� � � 9<; � & � ��� ( & �"�

for any =>� � , provided � � � � ="� is sufficiently large.

Improving the running time. We improve the running
time of the algorithm by taking advantage of the symmetry of
the mapping to

%��
. Specifically, a point � � lies in the interior

of a half-space � � iff the point � � lies in the interior of the
half-space � � . We proceed as above, but when the fourth
power of the number of edges in 
 dips below the number
of edges in � then we switch roles. In other words, if

& �@? �
then we map the edges in 
 to half-spaces and the edges in� to points. By our above analysis, the running time is then
less than

: � � � & � � O
�5& � 9<;����8� ��� ( ��� � O

� � ! 9�; � . The
overall running time is thus less than: �'& �	�$� � A 5 �5& ���� � 	 �� � ! : �'& ���B�� � if

& �DC � �
� � ! 9�; if

& � ? �
�

O
� �'& ��� � 7 E>9GF � �5& � ��� ! 9GF �"�

where � is a positive constant and H is any real larger than = .
It follows that 	 � � � can be computed in time O( 6'! 7 8>9;: � ,
for any constant =I� � . Similarly, 	 � � � and therefore
the directional writhing number, � �� *
� , can be computed
within the same time bound.

We remark that the technique described in this section
can also be used to compute the linking number between two
polygonal knots with 6 and J � 6 edges in time O( 6)!"7 8>9;: ).
5 Experiments

In this section, we sketch a sweep-line algorithm that com-
putes the writhing number of a polygonal knot using Theo-
rem A. We implement the algorithm in C++ using the LEDA
software library and compare it with two versions of the al-
gorithm based on the double integral in Equation (3). We did
not implement any version of Le Bret’s algorithm mentioned
in Section 2 since it is based on a formula similar to Theo-
rem A and can be expected to perform about the same as our
sweep-line algorithm.
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Sweep-line algorithm. Theorem A expresses the writhing
number of a knot � as the sum of three terms. Accordingly,
we compute the writhing number in three steps.

Step 1. Compute the directional writhing number for an
arbitrary but fixed, non-critical direction * , � ��� *
� .

Step 2. Compute the winding number of * relative to the
Gauss maps

�
and � � ,

�� *
� .
Step 3. Compute the average winding number by sum-

ming the signed areas of the spherical triangles * ���5��� 9 ! ,!(�� 	 � 3 � .
Return the alternating sum of the three results, � ��� *�� ��� *�� � !(�� 	 � 3 � .
Instead of using the algorithm described in Section 4, we
implement Step 1 using a sweep-line algorithm [13], which
reports the J crossing pairs formed by the 6 edges in time
O
� � 6 � J � � �7� 6 � . Steps 2 and 3 are both computed in a

single traversal of the spherical polygons
�

and � � , keeping
track of the accumulated angle and the signed area as we go.
The running time of the traversal is only O

� 6 � .
Double-sum algorithm. We compare the implementation
of the sweep-line algorithm with two implementations of
Equation (3). Write � � � � � 9 ! � � � for the unnormalized
tangent vector. Following [4, 20], we discretize Equation (3)
to

� & � 	� � ��� !+ ����� + ������
� � � � � �.����� � ��� !# � � � � � # & �(7)

We note that � &
is not the writhing number of the polygonal

knot, but it converges to the writhing number of a smooth
knot if the polygonal approximation is progressively refined
to approach that knot.

Alternatively, we may discretize the double integral in
such a way that the result is the writhing number of the
approximating polygonal knot. Given two edges � � and � � ,
we measure the area of the two antipodal quadrangles in �'(
along whose directions we see the edges cross. The area of
one of the quadrangles is the sum of angles minus one full
angle,

� � � � � � H � � � . The absolute value of the signed
area 3 � � is the same, and its sign depends on whether we see
a positive or a negative crossing. We thus have

��� � 	� � � � !+ ����� + ������ 3 � � �(8)

Straightforward vector geometry and trigonometry can be
used to derive analytical formulas for the 3 � � [18].

Comparison. We compare the three implementations us-
ing a sequence of polygonal approximations of an artificially
created smooth knot. It has the form of the infinity symbol,
� , and is fairly flat in

% &
, with only a small gap in the mid-

dle. Because the knots are fairly flat, most of their parallel
projections have one crossing and the writhing number is just
a little smaller than 	 � � . Figure 9 shows that the algorithms

Figure 9: Comparing convergence rates between ��� (upper curve)
and � � (lower curve).

that compute the exact writhing numbers for polygonal ap-
proximations converge faster to the writhing number of the
smooth knot than the algorithm implementing (7). Figure
10 shows how much faster the sweep-line algorithm is than
both implementations of the double-sum algorithm. Let 6
be the number of edges. The graphs suggest the obvious,
namely that the running time of the sweep-line algorithm
is O( 6 � ��� 6 ) and those of the two implementations of the
double-sum algorithm are � � 6 ( � . We observe the 6 � ��� 6
bound whenever we approximate a smooth knot by a poly-
gon, since for generic projections the number of crossings is
independent of the number of edges.

Figure 10: Comparing the running times of the sweep-line algo-
rithm (lower curve) and the two implementations of the double-sum
algorithm: approximate (middle curve) and exact (upper curve).

Protein backbones. We present some preliminary experi-
mental results obtained with the three implementations. All
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Figure 11: The open knots modeling the backbone of the protein
conformations stored in the PDB files 1AUS.pdb (upper left),
1CDK.pdb (upper right), 1CJA.pdb (lower left), and 1EQZ.pdb
(lower right).

experiments are carried out on a SUN workstation, with a
333 MHz UltraSPARC-IIi CPU, and 256 MB memory. Short
of conformation data of long DNA strands, we decided to
run our algorithms on a modest collection of open knots rep-
resenting protein backbones down-loaded from the protein
data bank [22]. We modified the algorithms to account for
the missing edge in the data, as explained in Section 3. Fig-
ure 11 displays the four backbones chosen for our experi-
mental study. Table 1 presents some of our findings.

Thick knots. Even though the writhing number of a polyg-
onal knot can be as large as quadratic in the number of
edges, all four protein backbones in Figure 11 have writhing
numbers that are significantly smaller than the numbers of
edges. If a knot is made out of rope with non-zero thick-
ness, then the quadratic bound can be achieved only if the
ratio of length over cross-section radius is sufficiently high.
Specifically, a knot of length

�
that has an embedded tubu-

Data Size Time Writhing #
� � ����� ���	� ���	
 ��� � �

1AUS 439 122 0.09 3.93 9.28 22.70 17.87
1CDK 343 111 0.06 2.39 5.62 7.96 6.01
1CJA 327 150 0.06 2.19 5.10 12.14 10.43
1EQZ 125 18 0.02 0.31 0.73 4.78 3.37

Table 1: Four protein backbones modeled by open polygonal knots.
The size of the problem is measure by the number of edges, � ,
and the number of crossings in the chosen projection, � . The time
the sweep-line (

�	���
), the approximate double-sum (

��� �
), and the

exact double-sum (
����


) algorithms take is measured in seconds.
� � is an approximation of the writhing number for polygonal data.

Figure 12: Two linked window-frames outlining a knot whose
length is  , whose cross-section radius is � , and whose writhing
number is some constant times the ratio of the two to the power �� .

lar neighborhood of radius � has writhing number less than
!� � � 
�� � � 6 & [7]. Such ‘thick’ knots can be used to capture
the fact that the edges of a protein backbone are about as
long as they are thick. A backbone with 6 edges thus has
writhing number at most some constant times 64��6 & . The ex-
ample indicated in Figure 12 shows that this upper bound is
asymptotically tight. Replace each window-frame by a spiral
that intersects a cross-section of the frame in a


-by-


grid of

points, and connect the two spirals to form a single knot. The
length once around a frame is some constant times


, which

implies that
� 
�� is at most some constant times

 &
. The di-

rectional writhing number for the direction shown in Figure
12 is � �  ( � ( . We have the same directional writhing number
in almost every direction, which implies that the writhing
number is some constant times

� � 
�� ����6 & , as claimed.

6 Discussion

In this paper, we have described the relationship between the
writhing number of a knot in

% &
and the winding number of

its Gauss map. Based on this relationship, we have given an
algorithm that computes the writhing number of a polygonal
knot in time less than quadratic in the number of edges.
We implemented a different algorithm whose running time
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depends on the number of crossings in a projection and tested
the software on open knots describing protein backbones.
It would be interesting to expand these experiments to see
whether there is a correlation between the writhing numbers
and the common categorization of folding patterns into
protein families. To approach this question, it might be
necessary to consider knots on a range of scale levels and
look at the writhing number as a function of scale.

Acknowledgment The third author thanks Sariel Har-
Peled and Robert K.-Z. Tan for helpful discussions.
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