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Simplification of Three-dimensional Density Maps
Vijay Natarajan and Herbert Edelsbrunner

Abstract— We consider scientific datasets that describe
density functions over three-dimensional geometric do-
mains. Such datasets are often large and coarsened rep-
resentations are needed for visualization and analysis.
Assuming a tetrahedral mesh representation, we construct
such representations with a simplification algorithm that
combines three goals: the approximation of the function,
the preservation of the mesh topology, and the improve-
ment of the mesh quality. The third goal is achieved with
a novel extension of the well known quadric error metric.
We perform a number of computational experiments to
understand the effect of mesh quality improvement on
the density map approximation. In addition, we study
the effect of geometric simplification on the topological
features of the function by monitoring its critical points.

Index Terms— Computational Geometry, Volume Visu-
alization, Hierarchy and Geometric Transformation.

I. INTRODUCTION

As scientific datasets are growing larger in size, it
gets more difficult to analyze and visualize them. A
popular approach to overcome this difficulty is reducing
the size of the data using geometric techniques and work
with the resulting coarser representation. We consider the
scenario where the data is represented as a tetrahedral
mesh that describes a continuous real function by its
values at the vertices.

Related prior work. Many of the techniques used for
tetrahedral mesh simplification are extensions of those
used to simplify triangle meshes. Surface mesh simplifi-
cation has been studied extensively within the computer
graphics and visualization communities. Hoppe [15]
pioneered work in this field by introducing progres-
sive meshes generated by repeated edge contraction 1.
Other approaches to surface simplification include ver-
tex clustering [20], vertex removal [21] and triangle
contraction [13]. Garland and Heckbert [10] describe
a quadric error metric to determine the order of edge
contractions and extend this error measure to surfaces
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with attributes [11]. Hoppe [16] proposes a different
extension of the quadric error metric for surface with
attributes. Lindstrom and Turk [17] generate simplified
models using memory efficient edge contractions to han-
dle large polygonal models. Heckbert and Garland [14]
and Cignoni et al. [3] compare different surface simpli-
fication algorithms.

Trotts et al. [23] extend the triangle contraction op-
eration described by Gieng et al. [13] to a tetrahedron
contraction operation and construct multiple levels of
tetrahedral meshes approximating a density function.
Staadt and Gross [22] describe a robust implementation
of edge contractions in tetrahedral meshes. They also
address the definition of appropriate cost functions for
specific applications, like the finite element method. Van
Gelder et al. [24] compare a mass-based and a density-
based metric for use in rapidly decimating a tetrahedral
mesh. Cignoni et al. [4] compare various cost functions
used to prioritize edge contractions.

Our results. We simplify a tetrahedral mesh representing
a three-dimensional density function by a sequence of
edge contractions. We modify the quadric error measure
described by Garland and Heckbert [10] to combine three
goals in prioritizing the contractions:
� the accurate approximation of the density function;
� the faithful preservation of global topological type

of the mesh;
� the improvement of the mesh quality defined in

terms of angles.

To pursue the first goal, we extend well established
ideas from

���
to
���

. The second goal needs no new
results and is based on applying tests described in [5].
To pursue the third goal, we develop a new idea, namely
the addition of particular hyperplanes to the quadrics
that have a positive influence on the mesh quality. We
perform various experiments which show that a small
relative weight of the second goal furnishes dramatic
improvements in mesh quality. Further increasing that
weight adversely affects the approximation of the density
function. Lindstrom and Turk [17] attempt to improve

1We prefer “edge contraction” over the term “edge collapse” used
in [15] because the latter collides with the standard use of collapses
in combinatorial topology, where it is a combinatorial deformation
retraction.
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the mesh quality by introducing an additional constraint
while determining the location of the vertex that replaces
an edge upon its contraction. The effect of their method
is limited because the new constraint applies only if the
other constraints lead to an ambiguous solution, which
happens typically at the mesh boundary. In contrast, our
method influences the placement of every vertex and also
affects the sequence in which the edges are contracted.
By adding extra hyperplanes into the quadric error met-
ric, we pro-actively influence the shape of the tetrahedra
created after an edge contraction. This is stronger than
previous techniques, like that described in [4], which
merely do not perform an edge contraction if it results
in badly shaped tetrahedra. We observe an interesting
side-effect: a small but non-zero weight on the mesh
quality improvement results in better approximations of
the density map.

Another surprising finding concerns the relationship
between geometric and topological simplification, the
latter aiming at preserving the critical point structure of
the function. While geometric simplification preserves
the overall shape of the function, it sometimes introduces
a large number of spurious critical points that confuse
the topological picture. In other words, geometric sim-
plification is compatible with but not a substitute for
topological simplification.

Outline. We introduce definitions in Section II and
discuss the recognition of topology preserving edge
contraction in Section III. We then describe the quadric
error measure and the choice of hyperplanes that drives
the simplification algorithm in Section IV. We explain
details of the implementation in Section V, give the
results of our various experiments in Section VI, and
conclude the paper in Section VII.

II. DEFINITIONS

Most of the definitions we need to describe our
algorithm are standard and can be found in algebraic
topology textbooks such as Munkres [19]. We dis-
cuss simplicial complexes, manifolds, triangulations, and
edge contractions.

Simplicial complexes. A � -simplex � is the convex hull
of ����� affinely independent points. A face � of a
simplex � is defined by a nonempty subset of the �����
points. We write �
	�� and call � a coface of � . We
create new simplices by adding vertices to old ones: the
cone from a vertex � to a � -simplex � is the convex
hull of � and � , which is the 
�������� -simplex ��� . The
operation is defined only if � is not an affine combination
of the vertices of � . A simplicial complex � is a finite

collection of non-empty simplices for which ����� and
��	�� implies ����� and ����� � � �!� implies that the
intersection ���#"$� � is either empty or a face of both, �%�
and � � . In this paper we deal exclusively with simplicial
complexes that consist of 3-simplices (tetrahedra) and
their faces. The underlying space of � is the union of
simplices: & �'&)(+*�,.-0/�� .

The closure of a subset 1 2 � is the smallest
subcomplex that contains 1 , the star of 1 is the set of
cofaces of simplices in 1 , and the link of 1 is the set of
all faces of simplices in the star that are disjoint from
simplices in 1 :

1 ( 3��4�4�5&.�6	7����198:�;=< 1 ( 3������>&?��@7�6��198:�A�B 1 ( ;=< 1�C ;D< 1FE
Note that stars describe the neighborhood of 1 . For
example, the star of a vertex G in a simplicial complex
in
� �

consists of G together with all edges, triangles
and tetrahedra that contain G . The link of G consists
of all triangles, edges and vertices that are faces of the
simplices in the star and disjoint from G .

Manifolds and triangulations. Two topological spacesH
and I are homeomorphic or have the same topo-

logical type if there is a homeomorphism
H J I .

A topological space K is a L -manifold if every point
� � K has an open neighborhood homeomorphic
to

� �
. A topological space M is a L -manifold with

boundary if every point ����M has an open neighbor-
hood homeomorphic to

���
or to the closed halfspace,N � (O3P
Q�R�S�T� � �T� � ��� ��� &9����@VUD8 . The boundary,WYX M , consists of the points whose neighborhood is

homeomorphic to
N �

. The boundary of a 3-manifold
with boundary is always a 2-manifold without boundary.

A triangulation of a topological space
H

is a sim-
plicial complex � whose underlying space is homeo-
morphic to

H
. We can determine if a given simplicial

complex is a triangulation of a L -manifold by checking
if the link at every vertex is homeomorphic to the Z -
dimensional sphere [ � . The input to our simplification
algorithm is a triangulation � of a L -manifold with
boundary. We extend � to the triangulation of a 3-
manifold without boundary by connecting a dummy ver-
tex to each boundary component. If

WYX � is connected
we just add one dummy vertex, \ , and we denote the
extended triangulation by ]_^�(`�ba4\ WYX � . The link
of a simplex ����]c^ is denoted by

A�B ^F� . For a simplex
��� WYX � , the link of � within the boundary is denoted
by

A�B
Bd � . In a 3-manifold without boundary the stars

and the links are particularly simple: the link of a vertex
is a sphere, that of an edge is a circle, and that of a
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triangle is a pair of vertices. Similarly in a 2-manifold,
the link of a vertex is a circle and that of an edge is a
pair of vertices.

Edge contraction. The basic operation in our algorithm
contracts an edge to a vertex. Upon contraction, we
replace the edge � � with the vertex � . This changes
the triangulation only in the neighborhood of � and

�
.

In particular, the cofaces of � and
�

are deleted and
simplices connecting � to the boundary of the created
void are added. Formally, these simplices are the cones
from � to the simplices in the link of the set of simplices
1�(�3�� � ��� � � 8 . Note that the link of � � is also a sphere
consisting of simplices in the boundary of the above
mentioned void. Fig. 1 illustrates an edge contraction but
shows only a subset of the simplices that are removed
and added.

a

b

c

Fig. 1: Edge contraction: the edge ��� is contracted to the vertex� . Only the changes in the star of the edge �	� are shown.

III. PRESERVING DOMAIN TOPOLOGY

Our simplification algorithm performs a sequence of
edge contractions on the tetrahedral mesh. Each edge
contraction preserves the topological type of the mesh.
The algorithm recognizes the edges that can be con-
tracted without changing the topological type by looking
at their neighborhoods. The ability to make this judgment
based on local computations is crucial for the efficiency
of our algorithm.

General link conditions. A L -complex is a simplicial
complex consisting of tetrahedra, triangles, edges and
vertices. Dey et al. [5] derive local criteria, called link
conditions, for recognizing when an edge contraction
in a 3-complex preserves the topological type. The link
conditions compare the link of the edge � � that is to be
contracted with the links of its endpoints. Fig. 2 shows
a situation in a 3-manifold where a contraction would
change the topology. In the case of a 3-manifold with
boundary, M , Dey et al. [5] show that the contraction
of an edge � � preserves the topological type if the
intersection of the links of the two vertices equals the
link of the edge, and this is true both in the extended

u

y

z v

a

b x

w

p

Fig. 2: Triangle 
���
 lies in the link of both � and � . After
contracting �	� to a new vertex � , the triangle 
���
 belongs
to only one tetrahedron, namely 
���
 � . The neighborhood of
a point in 
���
 is thus no longer homeomorphic to ��� . The
figure shows the ring of edges in ������� , namely ��
�������� .

3-complex and in the boundary of the 3-complex:

A�B ^��c" A�B ^ � ( ARB ^�� �� and (1)ARB
Bd �c" ARB

Bd

� ( ARB
Bd �

� E (2)

Specialized link conditions. In order to implement the
above conditions, we would have to consider the cofaces
of \ as special cases because these are not explicitly
stored. To simplify the implementation, we eliminate
\ from the condition. We have three cases, depending
on whether � � ����� and

�
belong to the boundary or the

interior.
Case 1: � � � � WYX M and � �"!� W X M . The contraction of
� � would change the topological type of M by pinching.
It is therefore prohibited.
Case 2: At least one of � or

�#!� WYX M . Without loss
of generality, assume that

�
is not on the boundary.

Since
�

and hence � � are not on the boundary,
A�B

Bd

�
and

A�B
Bd �

�
are not defined and Condition ( Z ) does not

apply. The only vertices and edges whose links contain
\ or any of its cofaces are the ones on the boundary.
This implies

A�B ^ � ( A�B �
and

ARB ^$� � ( A�B � � . Also,A�B ^���" ARB � ( ARB ��" ARB �
because

A�B �
does not contain

\ . Condition ( � ) now simplifies toA�B �c" A�B � ( A�B � � .
Case 3: � � � WYX M . We necessarily also have � and

�
on the boundary. We partition

A�B ^�� into
ARB � and the

set \ A�B
Bd � that contains the simplices that are cofaces of

\ . Similarly, we partition
A�B ^ � and

ARB ^�� � and obtain


 A�B ��" ARB � �&%a 
 \ A�B
Bd ��" \ A�B

Bd

� � ( A�B � � %a�\ A�B
Bd �

� �
which is equivalent to Condition ( � ). Three of the terms
contain no simplex in the star of \ and the other three
contain only simplices in the star of \ . We can therefore
express the condition as a conjunction of two conditions.
We further simplify by removing \ from the second set
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of three terms and get
A�B �`" ARB � ( ARB � �� andA�B

Bd �`" ARB
Bd

� ( ARB
Bd �

� E
We summarize the results of the case analysis by
stating a modified link condition for a 3-manifold with
boundary.

LEMMA 1 If M is a 3-manifold with boundary then the
contraction of an edge � � � M preserves the topological
type if one of the following is true:

1) at least one of � and
�

does not belong to
WYX M

and
A�B ��" ARB � ( A�B � � ;

2) � � belongs to
WYX M ,

ARB �c" A�B � ( A�B � � , andA�B
Bd �c" A�B

Bd

� ( A�B
Bd �

�
.

Lemma 1 applies to our data, which in all cases
consists of a tetrahedral mesh of a cube in

� �
. In

Section V, we describe the procedure that checks the
link conditions and explain how to make it more efficient
than the straight implementation of the formulas.

IV. PRIORITIZING CONTRACTIONS

We use a cost associated with each edge to determine
the order of contractions. A vertex is a point in

���
,

with three spatial coordinates and the fourth giving the
function value. Each vertex and edge is associated with
a finite set of hyperplanes in

���
. The cost of an edge

is the minimum, over all points of
���

, of the sum of
square distances between the point and the hyperplanes
associated with the edge and its endpoints. This cost can
be computed from the hyperplanes using an extension
of the quadric error measure proposed by Garland and
Heckbert [10]. Hoppe [16] extends the quadric error
metric for surface attributes by performing a projection
in
� �

and computing geometric and attribute errors. This
approach is particularly efficient when the number of at-
tributes is large unlike our setting with only one attribute.
We chose to use the simple and more direct extension
of Garland and Heckbert’s quadric error metric, namely
performing a projection in

���
for computing the error.

Hyperplanes. The purpose of the hyperplanes associ-
ated with a vertex is to locally preserve the density
function. We use hyperplanes spanned by tetrahedra of
the mesh. Initially, each vertex is associated with the
set of hyperplanes spanned by the tetrahedra in its star.
When we create a new vertex � by contracting the edge
� � we associate the union of the sets of � and

�
to

� . The purpose of the hyperplanes associated with an
edge is to locally improve the quality of the mesh.
We use perpendicular bisectors of edges. Specifically,

the hyperplanes associated with � � are the bisectors
of the edges in the link of 1V( 3�� � ����� � 8 . For each
edge in this link, we take the bisecting plane in

� �

and extend it vertically to a hyperplane in
� �

. Figure 3
illustrates this idea one dimension lower, where the link
of a contractible closed edge is a circle. The rationale

Fig. 3: The dotted link of a closed edge and the solid bisectors
of its edges.

for this choice of hyperplanes is to encourage almost
spherical links of new vertices. As a consequence, the
new tetrahedra are almost isosceles, with three almost
equally long edges. Since there are no preferred vertices,
we really encourage regular tetrahedra. The contraction
of an edge � � causes a change in the link of all vertices
in

A�B �9a A�B �
and thus requires an update in the sets of

hyperplanes associated with the edges incident to these
vertices.

Fundamental quadric. Let
�

be a set of hyperplanes
and � ( 
Q�R�S�T� � �T� � �T� � � � a point in

���
. Let the unit

normal of a hyperplane � � �
be G��$( 
QGD�S�TG � �TG � �TG � � �

and the offset 	
� (`C�� ��
 G�� , for any point ����� . The
square of the distance between � and � is given by:� � ( 
T
Q� C�� � � 
 G��.� � ( 
Q� � 
 G���C�� � 
 G��)� �

( 
Q� � 
 G��F��	��)� � ( 
�� � 

� �)� �
( 
�� � 

� �)� 
 � � � 
 �%� ( � � 
 � � 

� � � ��� �

where � ( 
Q�����T� � �T� � �T� � �S��� � and
� � (


QG � �TG � �TG � �TG � ��	��P� � . The sum over all �4� �
is� ( �� -�� � � ( � ��� �� -�� � � 
�� � � � � E

The 5-by-5 matrix ! (#" � -�� � � 
$�%�� is symmetric
and positive semi-definite and is called the fundamental
quadric of

�
. Instead of storing sets of hyperplanes,

we store their fundamental quadrics. This representation
requires two types of updates whenever we contract
an edge � � . First the quadric of the new vertex � is
computed as the sum of the quadrics of � and

�
. This

new quadric really represents a multi-set of hyperplanes
because a hyperplane associated with both endpoints
is now counted twice. The difference to the quadric
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of the set (without double-counting) is however small
since a single hyperplane cannot be counted more than
four times. Second, the contraction changes all edges
that have � or

�
as endpoint. We update the quadrics

stored at edges associated with the changed bisectors by
subtracting the contributions of the old and adding the
contributions of the new bisectors.

Weighted hyperplanes. Although the edge contraction
operation preserves the continuity of the model, it does
not handle the boundary very well. Following the solu-
tion proposed by Garland and Heckbert [10], we rectify
this by adding boundary constraints. For each boundary
triangle, we include the hyperplane passing through the
triangle and perpendicular to the hyperplane spanned
by the tetrahedron that contains the triangle as a face.
Further, these new hyperplanes are weighted with a large
penalty value preventing vertices from moving too far
from the boundary. Weighted hyperplanes can be easily
incorporated into the current setting. The square distance
between a vertex � and a hyperplane � with weight � � is
now

� �$(�� ��� � 
 � � 
 � � � ��� . The sum of square distances
to all hyperplanes can be derived as before. We compute
new quadrics by adding old ones, same as before. The
only change is in the step where we compute the initial
quadrics.

Another place where we use weights is in controlling
the influence of the mesh quality improving hyperplanes
on the simplification process. Each such hyperplane is
weighed by a constant �'@ U , which we refer to as the
mesh quality factor. For example, ��( U corresponds to
no influence from these hyperplanes and ��( � corre-
sponds to equal influence of both types of hyperplanes.

Optimal vertex placement. The cost of an edge � �
depends also on the location of the new vertex. In the
generic case, there is a unique location � � ���

that
minimizes the error. This minimum is given by setting
the partial derivatives to zero, for � ( �0� ZD� LD��� :

� � 
Q� �� ��� (
� � �� �	�


 ! 
 � � � � 
 ! 
 � �� ���
( 
 � � 
 � � � � 
 
��
( U=�

where 
 � � is the � -th row and 
�� the � -th column of ! .
The solution is given by ��( C�
�� � 
�� , where 
 is the
upper left 4-by-4 submatrix of ! and

�
is the 4-vector

consisting of the upper four entries in the fifth column
of ! .

In the non-degenerate case, 
 has rank four. We
detect degeneracies by estimating the rank of 
 before
computing � . Ranks three, two and one correspond to a

line, plane and hyperplane of minima in
���

, respectively.
Note that 
 has at least one non-zero diagonal element
and hence the rank is never zero. In each of the three
degenerate cases, we add the contributions of additional
hyperplanes to increase the rank of the matrix. We
discuss how we estimate the rank and omit the discussion
of how we find appropriate hyperplanes that increase the
rank. We estimate the rank by comparing the coefficients
of the characteristic polynomial given by

det 
�
�C����=� ( � � C��#� � ��� � � � C�� � ��� ��� � E
Here, � � is the determinant and � � is the trace of 
 .
The other two coefficients are sums of 3-by-3 and 2-by-
2 minors of 
 . We note that the coefficients are cheaper
to compute than the eigenvalues and may be substituted
for the latter in estimating the rank of the matrix.
Specifically, we consider 
 to have rank three, two and
one, respectively, if the absolute value of Z����0� ��� � � � ,
���0� ��� � � � and  0� ��� � �� is small.

Let � � be the edge being contracted. In the case of
a rank three matrix, we add the contribution of the
hyperplane normal to the line of minima that passes
through the midpoint of � � to the fundamental quadric,
hoping that the rank increases to four. In the case of
a rank two matrix, we have a plane of minima. We
compute two hyperplanes that are orthogonal to each
other and the plane and that pass through the midpoints
of � � and add their contributions to the quadric. We
compute the first hyperplane by taking the cross product
of the two independent rows, and the second by taking
the wedge product of the now three independent rows.
Similarly, in the case of a rank one matrix, we get
three new hyperplanes and add their contributions to the
quadric. In each of the above cases, we progressively
increase the weight of these hyperplanes until the rank
increases to four. If the rank does not improve after
several iterations, then we select the midpoint of � � as
the new vertex location.

V. IMPLEMENTATION

In this section, we describe our implementation of the
edge contraction operation. Various choices were made
in determining the order of contractions, recognizing
topology preserving contractions, and updating all data
structures. We begin with the data structures and the
outline of the simplification procedure.

Data structure and algorithm. We use a heap to
implement the priority queue for the edges of the mesh.
Along with the edges, we store the cost of contraction
and the optimal vertex location. We store the mesh in a
triangle-edge data structure [18], which is a version of
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the more general edge-facet data structure by Dobkin and
Laszlo [6]. It is made up of triangles, each represented
by the six possible orderings of its three vertices. As
illustrated in Fig. 4, each ordering maintains a pointer
to the next triangle reached by a rotation about the edge
of its first two vertices. The list of triangles is stored
in an array. The coordinates of the vertices are stored
in another array, and the indices of the vertices in this
array are used as vertex names.

va

b

u

w

xy

z

Fig. 4: Each ordering ��� 
 stores a pointer to the next triangle:
�	� 
�� next � �	� � . By following these pointers, we traverse
the ring of triangles in the star of ��� . After contracting ��� to� , the ring of triangles becomes a ring of edges around � .

Function SIMPLIFY performs a sequence of edge con-
tractions to simplify the tetrahedral mesh � . It continues
until the mesh reaches a user-specified number of at
most G � vertices or no edge can be contracted without
changing the topological type, whichever occurs first.

Mesh SIMPLIFY (Mesh � )
initialize priority queue

� 
 with set of edges in � ;
while #vertices in � exceeds G � do

pop the minimum cost edge in
� 
 and call it � � ;

if PRESTOP ( � � ) then
delete edges in

;=< � and
;D< �

from
� 
 ;

update costs of edges in
;=< � , ��� A�B ��a ARB �

;
� = CONTRACT ( � , � � , � );
insert edges in

;=< � into
� 
 ;

endif
endwhile;
return � .

The remainder of this section explains the two main
functions used in this algorithm.

Preserving domain topology. Function PRESTOP uses
the two conditions in Lemma 1 to determine whether or
not the contraction of � � preserves the topological type
of � . We prevent redundant tests by first checking which
part of the edge is on the boundary and then test zero,
one or two conditions.

boolean PRESTOP (Edge � � )
if ��� � � WYX � and � � �� WYX � then
return FALSE

endif;
if � � �� WYX � then return LINKCOND1 ( � � ) endif;
if � � � WYX � then
return (LINKCOND1 ( � � ) and LINKCOND2 ( � � ))

endif.

Functions LINKCOND1 implementing Condition ( � ) and
LINKCOND2 implementing Condition ( Z ) use enumera-
tions of the simplices in the link of a vertex or edge.
In Function LINKCOND2, we also need the restrictions
of these links to the boundary of � , and to facilitate
their computation, we label each triangle in

WYX � . Each
link is computed by a local search procedure that starts
at an ordered triangle provided by the vertex or edge
for which we compute the link. Next, we describe
the implementation of Function LINKCOND1, which
determines whether or not the intersection of the links
of � and

�
contains simplices that do not belong to the

link of � � . We use a marking mechanism to keep track
of the processed vertices.

boolean LINKCOND1 (Edge � � )
foreach G � A�B � do MARK ( G ) endfor;
foreach G � A�B � � do UNMARK ( G ) endfor;
foreach G � A�B �

do
if ISMARKED ( G ) then return FALSE endif

endfor;
return TRUE.

After testing the three links, we unmark all vertices
again. We repeat the same test for edges in the inter-
section of the links restricting it to edges that connect
two vertices in

A�B � � . It is not necessary to test triangles.
Condition ( Z ) is tested in a similar manner by Function
LINKCOND2, which traverses the links of � ,

�
and � �

on the boundary of the mesh.

Contracting edges. Function CONTRACT updates the
mesh � by contracting an edge � � as follows:

Mesh CONTRACT (Mesh � , Edge � � , Vertex � )
foreach triangle �)��� � ;=< � do
if �R��� !( �

then add � ��� to � endif
endfor;
foreach triangle

� ��� � ;D< �
do

if �R��� !( � and � ��� !�4� then add � ��� to � endif
endfor;
delete all triangles in

;D< � and
;D< �

from � ;
return � .

Note that the contraction of � � may change the status
of other edges in the mesh. We are interested in edges
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��� that violate the conditions of Lemma 1 before
the contraction of � � and that satisfy these conditions
after the contraction of � � . We say these edges turn
contractible. We detect the edges that have the potential
for turning contractible and add them to the priority
queue, using labels to avoid duplicate entries. We prove
below that only edges in a relatively small subset of the
link of � can turn contractible. This result is essential
for an efficient detection of these edges.

LEMMA 2 If the contraction of � � causes another edge
��� to turn contractible then the end points of ��� , � and
� , are contained in

A�B � � .
PROOF. For every edge ��� , we have

A�B ��� 2 ARB ��"A�B
� with the equality holding if ��� does not violate the

conditions in Lemma 1. Suppose
A�B � " A�B

� consists
of the cycle

A�B ��� plus some additional simplices. The
only way the contraction of � � can cause ��� to turn
contractible is by removing these extra simplices. Now,
for

ARB � " A�B
� to shrink, we need � and

�
in both links.

Since � � A�B � iff � � ARB � , this is equivalent to �R���6�A�B � " A�B �
. Lemma 2 follows because � � satisfies both

link conditions, particularly
A�B �_" A�B � ( A�B � � .

VI. EXPERIMENTS AND RESULTS

There are two parameters that affect the performance
of our algorithm: the target vertex count, G � , and the
relative weight of the hyperplanes that were added into
the quadric to improve the mesh quality, � . We perform
various experiments in order to determine an optimum
value for � . We evaluate the results by computing
approximation errors, visualizing the simplified mesh
through isosurfaces and looking at critical point statistics.
We compute the approximation error of a simplified
mesh as the root mean square and maximum of the error
at each vertex of both the simplified mesh as well as the
original mesh. The error at a vertex is the difference
between its density values in the original and simplified
meshes. We apply our simplification algorithm to four
datasets. Table I lists the size of the datasets. Isosurfaces
of the original and several simplified versions of the data
can be seen in Figures 10 to 13. The first dataset contains

dataset #vertices #tetrahedra
ribosome 512,000 2,958,234
head 70,262 391,608
turbine 126,976 714,420
hydrogen 32,768 178,746

TABLE I: List of datasets used for evaluation.

cryo electron microscopy data of a ribosome. The second

is an MRI scan data from the Chapel Hill volume
rendering test data set, volume I. The third is density
data of a turbine blade. The fourth is an electron density
dataset of a hydrogen molecule. Each of the datasets
is available to us for input as a tetrahedral mesh with
function values specified at the mesh vertices and linearly
interpolated within the mesh elements. We eliminate the
effects of large scale differences between the spatial
coordinates and the function values by normalizing the
data within the unit hypercube in

���
.

Tetrahedral shape improvement. The objective of the
first experiment is to determine the effect of varying �
on the mesh quality. We do this by applying the sim-
plification using various values of � and computing the
dihedral, solid, and face angles of the tetrahedra in the
simplified meshes. The average values of the three types
of angles remain almost constant at around �0E Z0U=� U=E ���D�
and �0E U � radians. We see in Fig. 5 that the introduction of
a positive value for � sharpens the distribution of angles
around their respective averages. Fig. 6 provides visual
evidence of the improvement in the tetrahedral shape
quality. These results are for experiments run on the
hydrogen dataset. The other datasets behave similarly.
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0.65

0.7

0.75

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3
Mesh quality parameter

dihedral angle
solid angle
face angle

Fig. 5: Graph of the standard deviation for the dihedral, solid
and face angle measurements (in radians) for various values
of the mesh quality parameter � . Note the initial dip followed
by almost no change.

Approximation error vs tetrahedral shape. As men-
tioned earlier, we add weighted hyperplanes into the
error quadric in the hope of improving the shape of tetra-
hedra in the mesh. However, adding these hyperplanes
reduces the weight on the density map error that should
be minimized for a good approximation. The objective of
our second experiment is to study the effect of varying �
on the approximation error. Fig. 7 shows the root mean
square and max error for various values of � .

Topology preservation vs tetrahedral shape. In this
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Fig. 6: The simplified meshes of the hydrogen dataset
obtained for � ��� � � (left) and � ��� � ��� (right). Note the
dramatic improvement in the shape of the elements for a non-
zero shape quality factor.
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Fig. 7: Graphs of the root mean square error (with values
shown on the left) and maximum error (with values shown on
the right) of the simplified meshes for various values of the
mesh quality parameter � . Note the initial dip for very small
values of � after which the errors increase monotonically.

experiment, we study the effect of varying � on the
smallest achievable vertex count. Violation of the link
condition seems to require badly shaped tetrahedra, so
we expect that we can reach smaller sizes if we increase
� . Fig. 8 is a graph of the number of vertices in the
smallest mesh reachable by the simplification algorithm
for various values of the parameter � . Note the expected
dip followed by an almost horizontal section. This is
consistent with the earlier observation of a dramatic
improvement in the shape quality of the mesh tetrahedra
even with small values of � followed by no significant
change on further increasing � .

Density map preservation. The results of the above
experiments suggests we choose a mesh quality factor
in the range where the graphs show significant improve-
ment in the shape quality of mesh tetrahedra. We set
�
( U=E U:Z and apply the simplification algorithm to the
four datasets. Figures 10, 11, 12, and 13 display a small
sample of isosurface to provide a feeling for the effect
the simplification has on the datasets. Significant artifacts
begin to appear when the target vertex count drops to
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Fig. 8: Graph of the number of vertices in the smallest mesh
reachable by the algorithm. Similar to the mesh quality, we
observe a dramatic initial improvement followed by almost no
change.

��U�� or below. This is reflected in the root mean square
and max errors shown in Table II. The table also show
the time taken to perform the simplification.

Critical point statistics. The topography of a density
map is often expressed in terms of its critical points,
which in the generic case are of one of four types:
minima, 1-saddles, 2-saddles and maxima. As defined in
[7], the lower link of a vertex � is the subcomplex of the
link induced by the vertices with smaller function value
than � . Using reduced Betti numbers for measuring the
connectivity of the lower link, we classify � as regular
or critical. In the piecewise linear case, a critical vertex
can have non-trivial multiplicity even in the generic
case, which is reflected in our statistics shown in Figure
9. Contrary to our initial expectations, the simplifica-
tion first increases the number of critical points before
decreasing them. We explain this phenomenon by the
temporary creation of spurious critical points in relatively
flat regions of the distribution. The criticality of these
vertices is based on small fluctuations of the density
function. We substantiate this rationalization by mea-
suring the importance of a critical point as the amount
of change in function value necessary to turn it into a
regular point. Formally, we compute the persistence of
the critical vertices as defined in [9]. In the graphs of
Figure 9, we reflect this information by ignoring critical
points whose persistence is less than a threshold that
increases from back to front. We see that a very small
threshold suffices to erode the gain in critical points
caused in the initial simplification phase.

Sanity checks. To ensure that the implementation does
not have subtle flaws that create biases or other artifacts
is always a challenge when working with non-trivial
datasets. Typically, one looks for unusual behavior while
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ribosome
% #vert rms max time

100 512,000
50 256,000 0.000 0.016 3,009
30 153,600 0.001 0.223 4,178
20 102,400 0.002 0.684 4,771
10 51,200 0.003 0.392 5,403

5 25,600 0.006 0.140 5,760
3 15,360 0.007 0.205 5,914
2 10,240 0.008 0.218 5,997
1 5,120 0.011 0.310 6,087

hydrogen
% #vert rms max time

100 32,768
50 16,384 0.001 0.030 135
30 9,830 0.002 0.153 187
20 6,553 0.003 0.099 213
10 3,276 0.005 0.146 242
5 1,638 0.014 0.228 257
3 983 0.017 0.301 264
2 655 0.021 0.302 267
1 327 0.032 0.442 271

turbine
% #vert rms max time

100 126,979
50 63,488 0.000 0.052 606
30 38,092 0.001 0.088 825
20 25,395 0.004 0.349 938
10 12,698 0.014 0.289 1,058

5 6,348 0.027 0.549 1,126
3 3,809 0.042 0.678 1,155
2 2,539 0.057 0.669 1,170

head
% #vert rms max time

100 70,262
50 35,131 0.007 0.314 315
30 21,078 0.041 0.784 438
20 14,052 0.028 0.791 504
10 7,026 0.035 0.660 575
5 3,513 0.049 0.965 616
3 2,107 0.069 0.965 633

TABLE II: rms and max errors associated with each of the simplified meshes for the four datasets and the running time in
seconds.

00.10.20.30.40.50.60.70.80.91 Target vertex count fraction

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Persistence

0

50

100

150

200

250

300

350

400

450

Number of minima

00.10.20.30.40.50.60.70.80.91 Target vertex count fraction

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Persistence

0

200

400

600

800

1000

1200

1400

Number of 1-saddles

Fig. 9: Graphs of the numbers of minima and 1-saddles in the hydrogen data. The numbers change from left to right as we
simplify the density and from back to front as we eliminate critical points of low persistence. The graphs for the numbers of
2-saddles and maxima are very similar.

testing the code against special data. In addition, we
check the code by collecting evidence that the output
is structurally correct. We perform low and high level
structural checks of the mesh. At the lowest level, we
test whether the triangles in � are connected the right
way. Details of such tests can be found in Mücke [18].
At a higher level, we compute the Euler characteristic:
� (�� � C��:� ��� � C�� � , where � � is the number of � -
simplices in � . The Euler characteristic of a 3-ball is 1,
and since our algorithm maintains the topological type,
it must be 1 throughout the process. There is a relation
between the Euler characteristic and the critical points,

namely � ( � � C � �F� � � C � � , where � � , � � , � � and
� � count the minima, 1-saddles, 2-saddles and maxima,
respectively. The compactification that changes the 3-
ball into the 3-sphere changes the Euler characteristic to
0. The alternating sum of critical points thus furnishes
another test for the correctness of the simplified mesh.

Mesh quality revisited. We conclude this section with
a brief comparison between two different implementa-
tions of the mesh quality improvement using bisecting
hyperplanes. The explained algorithm uses a memoryless
implementation in which the bisectors at each step are
taken for edges in the current mesh. Alternatively, we
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could accumulate the bisectors of edges in the original
mesh, similar to the way we accumulate hyperplanes
spanned by tetrahedra in the original mesh. Initially,
each vertex stores the quadric defined by the hyperplanes
bisecting the edges in the link. Note that in the case
of a vertex, the link is precisely the boundary of the
star. Later in the process the vertex represents a col-
lection of vertices in the original mesh and stores the
quadric defined by the hyperplanes bisecting edges in the
boundary of the union of vertex stars. The link condition
guarantees that this union is a topological ball and its
boundary is a topological sphere. The quadric of this set
of hyperplanes can be computed by accumulation, but
there is a complication caused by the need to remove
hyperplanes that bisect edges in the interior of the ball.
We cope with this complication by inclusion-exclusion:
� initialize a quadric for each simplex of the original

mesh defined by the bisectors of the edges in the
boundary of the star of the simplex;

� upon contracting the edge � � to the vertex � , com-
pute the quadric as !�
 �S� ( !�
 �=� � !�
 � ��C !�
 � � � .

Similarly, we use inclusion-exclusion to compute the
quadrics of newly formed edges and triangles. We note
that inclusion-exclusion is also the preferred way to ac-
cumulate the quadrics of shape preserving hyperplanes,
except that the simpler method of just adding quadrics
commits only the negligible error of double-counting
certain hyperplanes. We implemented the alternative
method and compared it with the memoryless one,
finding possibly predictable differences in performance:

(i) the alternative method is faster than the memory-
less method by a factor of about three;

(ii) the approximation error for the alternative method
is marginally higher than that of the memoryless
method;

(iii) the reachable limit of maximum simplification
increases from about U=E ��� for the memoryless
method to about L�� for the alternative method.

In summary, the quality of the simplification is somewhat
worse for the alternative method, but the running time is
somewhat better. In this paper, we place more weight on
the quality of the computed result than on speed and thus
decided to present detailed experimental results only of
the memoryless method of mesh quality improvement.

VII. DISCUSSION

We described an algorithm for simplifying a density
function represented by a tetrahedral mesh of a three-
dimensional geometric domain. The main ingredients of
the algorithm are topology preserving edge contractions
and quadratic cost functions that attempt to preserve

the density map as well as improve the mesh quality.
There has been some recent work on simplification of
tetrahedral meshes that preserve the topology of the
isosurfaces [2] or control the topology simplification of
the isosurfaces [12]. In this context, we want to clarify
that we aim to preserve the topology of the domain.
The decrease in critical point count for the simplified
models reflects the topology simplification of the isosur-
faces. We performed various computational experiments
to determine relationships between the parameters that
control the algorithm. We ran our algorithm on four
datasets and evaluated the results by computing the
approximation error, some isosurfaces, and the number
of critical points, all as variables depending on the
amount of simplification. We conclude this paper with
a short list of future projects suggested by the work in
this paper.

(1) Use the hierarchy of critical points to get a com-
parison between two similar density functions that
is more qualitative than the approximation error
computed in this paper. Study the behavior of this
comparison as the functions become progressively
less similar.

(2) Compare the numerical method that maintains the
mesh boundary using extra hyperplane constraints
with a combinatorial method based on the general
link condition. The latter method would preserve
the face and edge structure of the mesh boundary
and treat boundary vertices with higher priority.

The natural next step in simplifying a density function
is a synthesis of geometric and topological methods,
similar to the work of Bremer et al. [1] and Edels-
brunner et al. [8] for two-dimensional functions. This
amounts to constructing the three-dimensional Morse-
Smale complex [7] and simplifying it in a sequence of
cancellations ordered by persistence [9]. While doable,
the implementation of this method is technically chal-
lenging and we are looking for alternatives. For example,
is it possible to achieve similar results by re-prioritizing
the edge contractions in our current algorithm to include
topological information about the critical points?
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Fig. 10: From left to right: isosurfaces extracted from the original ribosome dataset and after simplifying the mesh to � ��� ,� ��� , � ��� and � ��� its original size.

Fig. 11: From left to right: isosurfaces extracted from the original head dataset and after simplifying the mesh to � ��� ,
� ��� ,

� ��� and � ��� its original size.

Fig. 12: From left to right: isosurfaces extracted from the original turbine dataset and after simplifying the mesh to � ��� ,� ��� , � ��� and � ��� its original size.

Fig. 13: From left to right: isosurfaces extracted from the original hydrogen dataset and after simplifying the mesh to � ��� ,� ��� , � ��� and � � its original size.


