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ABSTRACT
We continue the study of topological persistence [5] by investigat-
ing the problem of simplifying a function f in a way that removes
topological noise as determined by its persistence diagram [2]. To
state our results, we call a function g an ε-simplification of another
function f if ‖f − g‖∞ ≤ ε, and the persistence diagrams of g are
the same as those of f except all points within L1-distance at most
ε from the diagonal have been removed. We prove that for func-
tions f on a 2-manifold such ε-simplification exists, and we give
an algorithm to construct them in the piecewise linear case.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations, Computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics—Counting problems

General Terms
Algorithms, Theory

1. INTRODUCTION
In this section, we briefly motivate the problem studied in this

paper, review prior related work, and formally state our results.

Motivation. Scientists generate large quantities of continuous data,
such as electron densities, temperature distributions. Topological
analysis can be used to make sense of such data, to detect interest-
ing features and to observe patterns that cannot be seen in the raw.
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Regardless of how the data is obtained, whether it is observed in ex-
periments or computed in simulations, data is unfortunately always
burdened with noise. While the source of the noise may range from
purely physical such as imprecise measurements to purely com-
putational such as the choice of a triangulation, the difficulties it
creates always remain. In this paper we consider the problem of
ridding the data of that noise by simplifying the function it defines.

It is important to note that whether something is noise or a fea-
ture is in the eyes of the beholder. We endorse the idea of Cohen-
Steiner, Edelsbrunner, and Harer [2] that the importance of a fea-
ture can be quantified by the amount of change necessary to elimi-
nate it. We therefore study the question of how one would eliminate
a feature in order to both understand what parts of the domain it oc-
cupies, and what the function looks like without it.

Results and prior work. We build on the work of Edelsbrunner,
Letscher, and Zomorodian who introduced the concept of topolog-
ical persistence [5]. Applying this concept to continuous functions,
we view the resulting sequence of persistence diagrams as a char-
acterization in which each point represents a topological feature.
The importance of a feature is quantified by the distance of this
point from the diagonal. Points closer to the diagonal are deemed
less important than others and may be interpreted as representing
noise. This interpretation is in part justified by the stability of the
representation [2]. To state our results, we first introduce the cen-
tral concept of this paper. Let X be a topological space, f : X → R
a continuous function, Dp(f) its dimension p persistence diagram,
and ε a positive constant.

DEFINITION. A dimension p ε-simplification of f is a function
g : X → R such that ‖f − g‖∞ ≤ ε and all persistence diagrams
of g are the same as those of f except for Dp(g) which is the same
as Dp(f) but with all off-diagonal points at L1-distances at most ε
from the diagonal removed.

See Figure 1 for an illustration. Once we know that ε-simplifications
exist for all dimensions, we can iterate the construction and erase
the points close to the diagonal in all persistence diagrams. We
refer to the resulting function as an ε-simplification of f . In this
paper, we consider the problem of finding ε-simplifications of a
function f , either restricted to a single dimension or iterated across
all dimensions. Our main result is a constructive proof that for 2-
manifolds such simplifications exist.

SIMPLIFICATION THEOREM FOR 2-MANIFOLDS.

A. Given a 2-manifold M, a function f : M → R, a constant
ε > 0, and a dimension p = 0, 1, there exists a dimension p
ε-simplification g : M → R.
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Figure 1: Left: Two embeddings of a 2-manifold M in R3. The
functions f, g : M → R are the height functions of the light
shaded and the combined light and dark shaded embeddings.
Right: The dimension 0 persistence diagrams of f and g. The
two points below the threshold distance ε from the diagonal are
present in the persistence diagram of f but not in that of its ε-
simplification g. The other two points appear in both diagrams.

B. For p = 0, 1 and all ε > δ > 0 there exists a 2-manifold
M and a function f : M → R such that if g : M → R is a
dimension p ε-simplification of f then ‖f − g‖∞ > ε− δ.

The problem of simplifying continuous functions has been studied
before, in many different areas and from many different angles. The
work related most directly to ours is on the simplification of Morse-
Smale complexes initiated in [4]. Such complexes capture informa-
tion about the gradient vector field by partitioning the domain into
regions of uniform flow. While the simplification algorithms given
in [1, 4, 6] follow the persistence order, they only simplify the com-
plex and not the function itself. The use of the simplified complex
together with the original data may be tolerable for visualization
purposes, but it is not satisfactory when the simplified data is used
in the subsequent data analysis stage. It is worth noting that the
example used for the proof of part B of the Simplification Theo-
rem shows that the error bound of ε/2 for simplification of a single
pair of critical vertices claimed by Bremer et al. [1] is in general
unachievable.

In their original paper [5], Edelsbrunner et al. also consider the
question of topological simplification. However, there exist signifi-
cant differences between their work and the results presented in this
paper. The most obvious distinction comes from the problem state-
ment itself. Edelsbrunner et al. propose to move all the points of the
persistence diagram towards the diagonal regardless of their persis-
tence; in this paper, we require points of persistence higher than ε
to remain in place. In addition, we make explicit guarantees about
the distance between the simplified and the original functions.

Outline. Section 2 reviews background material necessary for this
paper. Section 3 gives an overview of our approach to constructing
ε-simplifications. Section 4 presents the details of our main result,
a procedure for simplifying a function in accordance with its per-
sistence diagram. Section 5 exhibits functions for which the error
bounds that we achieve are optimal. Section 6 concludes the paper.

2. BACKGROUND
We briefly review simplicial complexes and homology groups.

We refer the reader to Hatcher [7] or Munkres [9] for a thorough
study of these subjects. We also review the concept of topological
persistence [2, 5, 11], restricting ourselves to modulo 2 arithmetic.

Complexes and homology. A p-simplex is the convex hull of p+1
affinely independent points. The convex hull of any subset of those
points is again a simplex, and is called a face of the p-simplex. If
τ is a face of σ, then σ is a coface of τ . A simplicial complex
is the collection of faces of a finite number of simplices, any two
of which are either disjoint or meet in a common face. If K is a
simplicial complex in Rd, then its underlying space is the union
of its simplices together with the subspace topology inherited from
Rd. For a set of vertices U in K, we define its star as the set of
simplices that have at least one vertex in U , and its link as the set
of faces of simplices in the star that do not also belong to the star:

St U = {σ ∈ K | ∃u ∈ U, u ∈ σ},
Lk U = {τ ∈ K | τ ⊆ σ ∈ St U, τ 6∈ St U}.

We consider a topological space X and a triangulation K of X,
i.e., a simplicial complex whose underlying space is homeomor-
phic to X. In simplicial homology, a p-chain is a formal sum of
p-simplices in K. We use modulo 2 arithmetic implying the coef-
ficients in the formal sum are 0 or 1. We can therefore think of the
p-chains as subsets of all p-simplices, namely the ones with coeffi-
cient 1. Adding chains modulo 2, we obtain the group of p-chains,
denoted Cp(K). It is easy to see that Cp(K) is abelian. The bound-
ary of a p-simplex is the set of its (p−1)-dimensional faces, and the
boundary of a p-chain is the sum of the boundaries of its simplices.
Denoting the boundary map by ∂p, we observe that it is a homo-
morphism from Cp(K) to Cp−1(K). Noting that ∂p∂p+1 = 0, we
take the sequence of groups together with the homomorphisms to
obtain a chain complex,

. . .
∂p+2→ Cp+1

∂p+1→ Cp
∂p→ Cp−1

∂p−1→ . . .

The group of p-cycles is the kernel of the p-th boundary homo-
morphism, Zp(K) = ker (∂p), and the group of p-boundaries is
the image of the (p + 1)-st boundary homomorphism, Bp(K) =
im (∂p+1). Since ∂p∂p+1 = 0, Bp(K) is a subgroup of Zp(K).
The p-th homology group of K is the quotient of the two, Hp(K) =
Zp(K)/Bp(K). The p-th Betti number of K is the rank of its p-th
homology group, βp(K) = rank Hp(K). Homology groups and
therefore Betti numbers are invariants of the topological space X,
and do not depend on the choice of the triangulation K [7, 9].

A topological space is contractible if it is homotopy equivalent
to a point. In this case, all Betti numbers vanish, except for β0

which is 1.

Piecewise-linear framework. In this paper we consider real-val-
ued, continuous functions f : M → R defined on a 2-manifold.
More specifically, we restrict our attention to functions defined on
the vertices of a triangulation K of M and interpolated linearly
on all edges and triangles. Such functions are common in prac-
tice (when the underlying space is sampled at discrete points), and
are of interest in scientific visualization. We assume that f is non-
degenerate, i.e., the function values are different at all vertices. Us-
ing these function values, we refine the notions of star and link.
Specifically, the lower star of a vertex u is the set of simplices in
the star for which u has the maximum value of any vertex. The
lower link of u is the set of faces of simplices in the lower star that
do not also belong to the lower star:

St−u = {σ ∈ St u | v ∈ σ ⇒ f(v) ≤ f(u)},
Lk−u = {τ ∈ Lk u | v ∈ τ ⇒ f(v) < f(u)}.

Upper stars and upper links are defined symmetrically. Similar
to the star, we extend the concept of lower star to a set of ver-
tices, U , by taking the union of the individual lower stars: St−U =



S
u∈U St−u. Observe that if f is non-degenerate, the lower and up-

per stars and links of a vertex do not depend on the function values
but only on their ordering by function value.

We characterize all vertices by the Betti numbers of their lower
links. Since K is a triangulation of a 2-manifold, the link of a
vertex is a topological circle (a 1-sphere) and only β0 and β1 of the
lower link can be non-zero. We call a vertex u a

regular point
minimum

saddle
maximum

9>>=>>; if

8>><>>:
β0 = 1 and β1 = 0,
β0 = 0 and β1 = 0,
β0 > 1 and β1 = 0,
β0 = 1 and β1 = 1.

A saddle is simple if β0 of its lower link is 2, otherwise, it is a multi-
saddle. In the discussion below we assume that all the saddles in K
are simple, since we can unfold all the multi-saddles following the
procedure described in [4]. This assumption is not necessary but
simplifies the exposition of the algorithm described in this paper. A
vertex is a critical point unless it is a regular point, and we assign
to it an index which is 0 for a minimum, 1 for a simple saddle, and
2 for a maximum.

Persistence. Let σ1, σ2, . . . , σN be a sequence of the simplices
in K. Writing Ki = {σj | j ≤ i}, we call the sequence ∅ =
K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ KN = K a filtration of K if all Ki

are complexes or, equivalently, the faces of every simplex precede
the simplex in the given sequence. For a sequence v1, v2, . . . , vn

of the vertices in K, we can construct a sequence of the simplices
by listing all lower stars in order and sorting the simplices within
each lower star in the order of non-decreasing dimension. If the
vertices are sorted in order of increasing function value, we call
the resulting sequence of complexes the lower-star filtration of the
function. From here on, all filtrations will be lower-star filtrations
of functions defined at the vertices.

For 1 ≤ i < j ≤ N , consider the homomorphisms α, β, and γ
implied by the inclusions Ki−1 ⊂ Ki ⊂ Kj−1 ⊂ Kj :

Hp(Ki−1)
α→ Hp(Ki)

β−→ Hp(Kj−1)
γ→ Hp(Kj).

We say that a homology class λ ∈ Hp(Ki) is born in Ki if 0 6=
λ /∈ im (α). If λ is born in Ki, we say that it dies entering Kj if
β(λ) /∈ im (βα) and γβ(λ) ∈ im (γβα). Observe that since Ki

and Ki+1 differ by only one simplex, at most one homology class
is born or dies at any step in the filtration. If there is a λ ∈ Hp(Ki)
that is born in Ki, we call σi positive. Similarly, if a homology
class dies entering Kj , we call σj negative. If there exists a ho-
mology class λ that is born in Ki and dies entering Kj , we pair
simplices σi and σj and call (σi, σj) a persistence pair. It is easy
to see that if σi is p-dimensional then σj is (p + 1)-dimensional.
Edelsbrunner, Letscher, and Zomorodian [5] give an algorithm for
computing this persistence pairing in worst-case time cubic in the
number of simplices in the given sequence.

There is a close relation between the pairing of simplices and the
indices of critical points. To describe this, we consider a simplex σ
in the lower star of a vertex s and a simplex τ in the lower star of a
vertex t. Assuming (σ, τ) is a persistence pair we say σ and τ are
locally paired if s = t and they are non-locally paired if s 6= t. It
is not difficult to prove the following observation.

DIMENSION-INDEX LEMMA. A vertex v is regular iff all sim-
plices in its lower star are locally paired. Otherwise, it is critical
with index equal to the dimension of the non-locally paired sim-
plex in its lower star.

For every persistence pair of simplices, (σ, τ), we have the corre-
sponding persistence pair of critical points, (s, t). We call the latter

improper if s = t and proper if s 6= t. We record information about
all proper pairs by drawing the points (f(s), f(t)) in the plane. In
addition, for each unpaired simplex we draw the point (f(s),∞),
and following [2] we draw all diagonal points, each infinitely of-
ten. By separating the points in which s has index 0 from those in
which it has index 1 we get two multisets of points in the extended
plane, R̄2, which we refer to as the dimension 0 and the dimension
1 persistence diagrams, D0(f) and D1(f).

Stability and transpositions. Cohen-Steiner, Edelsbrunner, and
Harer [2] proved a stability result for persistence diagrams. The fol-
lowing is its restriction to 2-manifolds. Given two functions f, g :
M → R, as above, we define the distance between them to be the
L∞-norm of their difference: ‖f − g‖∞ = supx∈M |f(x)−g(x)|.
The bottleneck distance between the persistence diagrams of f and
g is the infimum over all bijections γ : Dp(f) → Dp(g) of the
supremum distance between corresponding points:

dB(Dp(f), Dp(g)) = inf
γ

sup
u∈Dp(f)

‖u− γ(u)‖∞.

For technical reasons the functions are required to be tame, by
which we mean they have only finitely many critical values and
any sublevel set has only finite Betti numbers.

STABILITY THEOREM. If f, g : M → R are two continuous,
tame functions then for any p ≥ 0, the bottleneck distance between
their dimension p persistence diagrams is not greater than the dis-
tance between the functions: dB(Dp(f), Dp(g)) ≤ ‖f − g‖∞.

Suppose that we continuously change the function values at the
vertices. As a result the points in the persistence diagram move,
but not more then the amount of change of the values. Even though
the motion is therefore continuous, the pairs defining the points in
the diagram can switch vertices, but only at moments in time when
these vertices have the same value.

SWITCH LEMMA. Transposing two consecutive vertices vi and
vi+1 in the ordering defining the lower star-filtration can only affect
the persistence pairs containing vi and vi+1.

Cohen-Steiner, Edelsbrunner, and Morozov [3] give an algorithm
to maintain the pairing if two adjacent simplices are transposed and
the new sequence of complexes remains a filtration. In the follow-
ing sections, we will be transposing adjacent vertices vi, vi+1 in
the vertex ordering. The corresponding change in the lower-star
filtration is obtained by transposing the lower stars of vi and vi+1,
which reduces to a number of simplex transpositions. We get a first
constraint on switches between persistence pairs by observing that
the indices in each pair are contiguous and increasing.

SAME INDEX LEMMA. Transpositions between critical vertices
with different indices preserve the persistence pairing.

A crucial second constraint on how switches between pairs can hap-
pen follows from the analysis in [3]. To describe it, we call two
pairs of critical points, (vi, vj) and (vk, vl), nested if i < k < l <
j and disjoint if i < j < k < l. To use these notions for unpaired
vertices, we consider them artificially paired with a dummy vertex
with subscript equal to infinity and we permit equality when we
compare subscripts that are infinite.

NESTED-DISJOINT LEMMA. During a transposition of two con-
secutive vertices, the pairs can switch these vertices iff the pairs are
nested or disjoint both before and after the transposition.

This lemma in particular implies that if before the transposition
there exist k and l with k < i < i+1 < l such that vk is paired with
vi+1 and vi is paired with vl, then after vi and vi+1 are transposed
we still have the same two pairs.



3. OVERVIEW
In this section, we give a high-level view of our approach to find-

ing an ε-simplification and present the necessary structural lemmas.
We leave the details of the algorithm to the next section.

Basic strategy. Simplifications of a function are generated by can-
celling critical points in pairs, minima with saddles and saddles
with maxima. In order to cancel a pair, one’s initial inclination may
be to change the values of both critical points, i.e., lower the saddle
and raise the minimum for a minimum-saddle pair, and raise the
saddle and lower the maximum for a saddle-maximum pair. How-
ever, as the example in Section 5 shows, this may not always be
possible because extrema can get stuck as they encounter other crit-
ical vertices. To avoid this difficulty, we leave the values of extrema
unchanged, and move only the saddles. Below we describe the case
of lowering a saddle to its matching minimum; the case of raising
the saddle to its matching maximum is symmetric.

Let V be the ordering of the vertices by increasing function
value, and let (s, t) be a minimum-saddle persistence pair of the
lower-star filtration determined by V . To cancel (s, t), we lower
a contiguous subsequence of vertices, T , which we imagine as a
flat region the saddle drags along while being lowered. Initially,
T = {t}. Since T is contiguous in V , it partitions V into three
contiguous subsequences, W, T, U , as illustrated in Figure 2. Let
w be the last vertex in W . Lowering T means either moving w past

tw T UW

St−W St−w St−T St−t St−U

Figure 2: Top: The sequence of vertices is partitioned into W
with the last vertex w, T with the last vertex t, and U . Bottom:
The sequence of simplices defining the corresponding lower-
star filtration.

T (by assigning all vertices in T a value slightly less than f(w)),
or expanding T to include w (by setting the values of all vertices of
T equal to f(w)). The former approach is preferable, and we use
it when w is not in the link of T . A difficulty arises when w is in
the link of T since moving T below w may change the type from
regular to critical or vice versa or turn w into a multi-saddle if it
is already a saddle. In this case, we expand T which preserves the
type of the vertex. However, if w is a critical point with persistence
higher than (s, t) then we cannot afford to move the correspond-
ing point in the persistence diagram. We thus need to maintain a
critical point with the same value and cannot immediately include
w into T . This requirement dictates two properties we maintain as
invariants, namely that t be the only critical vertex in T and that the
star of T be contractible.

Encountering a minimum. If w is a minimum and belongs to the
link of T then the following lemma tells us that w is paired with t,
i.e., w is equal to s.

PAIRED MINIMUM LEMMA. If w is a minimum that immedi-
ately precedes T in V , the star of T is contractible, and the only
critical vertex in T is a negative saddle t, then w = s iff w belongs
to the link of T .

PROOF. If w = s then the definition of persistence pairs implies
a path starting at w whose edges belong to the lower star of T . In

particular the first edge connects w to a vertex in T implying that
w is in the lower link of T , as required.

To prove the reverse direction, assume w belongs to the link
of T . Starting with St−W we proceed along the lower-star fil-
tration by adding the simplices in St−T until we arrive at the lower
star of W ∪ T . In St−W , w forms its own component, and in
St−(W ∪ T ), w belongs to a component that contains all of St−T .
The latter component cannot just grow from w, by adding lower
stars of regular vertices to it, because there is one negative saddle,
t, and adding its lower star merges two components. One of these
components contains w and the other was started by another, older
vertex in W . Hence (w, t) is a persistence pair and w = s, as
required.

Once we reach s, we add it to T and reorder the vertices in T so
that all of them become regular, including s and t.

Encountering a saddle. If w is in the link of T , it cannot be a
maximum, therefore the only remaining case is a saddle. To cope
with this case, we subdivide some of the edges in the lower star
of w in a way so that w is no longer a saddle, and the new saddle
that replaces it is no longer in the link of T . To perform such a
subdivision, we need vertices in the link of w that are in U . If there
are no such vertices, we build a tunnel to U between the lower star
of T and the lower star of W . To guarantee that this is possible,
we use again the invariant that guarantees that the lower star of T
is contractible. This ensures that the link of T is connected and we
can travel to a vertex in U by following this link.

The following structural lemma will play a crucial role in the
analysis presented in the next section. It assumes a partition of V
into W, T, U and writes w for the last vertex of W , as usual. In a
nutshell, the lemma says that unlike suggested by Figure 3, it is not
possible to draw a path through w that enters the lower star of U as
we move from w in both directions and which locally separates the
vertices of T in the link of w.

NON-SEPARATION LEMMA. Suppose St−T ∩ Lk w 6= ∅, the
star of T is contractible, and the only critical vertex in T is a nega-
tive saddle. Then Lk−w merges all pieces of St−T ∩ Lk w into a
single component.

PROOF. Label the vertices in the link of w that belong to T in
a counter-clockwise order around w as t1, t2, . . . , tm. To get a
contradiction, we suppose there are two vertices, ti and tj , that are
not in the same component of (St−T ∩ Lk w) ∪ Lk−w. In other
words, ti and tj are locally separated by a path that passes through
w, connecting it on both sides to vertices in U , as in Figure 3.

Since the star of T is contractible, there exists a path that con-
nects ti and tj entirely within the lower star of T . Adding tiw
and wtj to the path forms a cycle. Since w is incident to triangles
in the lower star of U on both sides, this cycle does not bound a
2-chain inside the lower star of W ∪ T . Indeed, suppose that it
does. Then that 2-chain must contain either wtiti+1, or wtiti−1

since they are the only two triangles in the lower star of W ∪ T
that contain wti. Assuming it contains wtiti+1 and noting that the
cycle does not contain wti+1, the 2-chain also contains wti+1ti+2.
Continuing this way, the 2-chain must contain a triangle wti+ku,
with u ∈ U , which is impossible since wti+ku is not in the lower
star of W ∪ T .

Therefore, the cycle does not bound a 2-chain in the lower star
of W ∪ T . But this implies that adding the lower star of T to
the lower star of W creates a non-zero class in the first homology
group. It follows that there is a positive saddle in T , contradict-
ing the supposition that the only critical vertex in T is a negative
saddle.
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Figure 3: The addition of the lower star of T to the lower star of
W creates a non-bounding cycle, which implies that T contains
a positive saddle. The partially indicated path passing through
w locally separates ti and tj .

Order of cancellations. The only remaining question is the or-
der in which we consider the pairs of critical points. Most natural
would be the order of increasing persistence. Unfortunately, with
our technique such an order cannot guarantee that f is changed by
at most ε. If two pairs overlap, canceling the one with higher per-
sistence may drag a vertex that has already been lowered during the
cancellation of a pair with lower persistence. Therefore, the change
in the function values may compound. Instead, we consider criti-
cal point pairs (s, t) in the order of increasing values of t, i.e., we
sweep the vertices from bottom to top and lower the saddles that
belong to a pair of persistence less than ε. If a vertex was low-
ered during the cancellation of one pair and then again during the
cancellation of another pair, then our technique guarantees that the
first pair was nested in the second. Therefore, the total change in
the function value of this vertex does not exceed ε. This implies
‖f − g‖∞ ≤ ε, as required.

Naturally, if we cancel minimum-saddle and saddle-maximum
pairs, we sweep the vertices twice, from bottom to top and from
top to bottom. The change in function values is still bounded by
ε since the former pass lowers vertices by at most ε and the latter
pass raises them by at most ε.

4. SIMPLIFICATION DETAILS
As described in the previous section, we cancel pairs in the order

of increasing values of the second vertex. To cancel a pair (s, t),
we lower a collection of vertices, initializing it to T = {t}.

Case analysis. The algorithm proceeds by lowering or expanding
T one vertex at a time. To guarantee progress at each step, we
maintain three properties as invariants throughout the algorithm.

INVARIANT.

I. T contains only one critical vertex, namely t;

II. the star of T is contractible;

III. T is a contiguous sequence in V .

Since we only consider cancellations of minimum-saddle pairs, the
one critical point t in T can be assumed to be a negative saddle.
Invariants I, II, III are trivially true when T = {t}. As in the
previous section, since T is consecutive in V , it partitions V into

three contiguous subsequences, W, T, U . Let w be the last vertex
of W . We distinguish two cases, each with two subcases.

Case I. The vertex w does not belong to the link of T . Note that in
this case exchanging w and T in V changes neither the lower star
of w nor that of T .

Case I.1. w is regular. After exchanging w and T in V , w remains
regular. The Stability Theorem thus implies that there are no
changes in the pairing of the critical points.

Case I.2. w is critical. The Paired Minimum Lemma implies w 6=
s. If w is a minimum or a maximum then the Same Index
Lemma implies that exchanging w and T does not affect the
pairing. If w is a positive saddle then it is either unpaired
or paired with a maximum. In the first case, we consider it
paired with a dummy vertex that succeeds all other vertices.
In either case, the two pairs that contain w and t are nei-
ther nested nor disjoint. If w is a negative saddle, the fact it
has not yet been cancelled implies its persistence exceeds ε.
Since w precedes t, the pairs that contain w and t are neither
nested nor disjoint. The Nested-Disjoint Lemma thus contra-
dicts any switch in the pairing. In conclusion, exchanging w
and T in V does not affect the pairing, as desired.

Case II. The vertex w belongs to the link of T .

Case II.1. w is regular. If St−T ∩ Lk w is contractible, we add
w to T by prepending it on the left. Then t is still the only
critical vertex in T , the star of T is still contractible because
St (T − {w}) is a deformation retract of St T , and T is still
contiguous in V . In summary, Invariants I, II, III are pre-
served.

The situation is more complicated if St−T ∩ Lk w is not
contractible. By the Non-separation Lemma, the union of
St−T ∩ Lk w and Lk−w is contractible, and by the regular-
ity of w, St−T ∩ Lk w consists of two components, as illus-
trated in Figure 4. Picking one of these components, we sub-
divide each edge connecting it to w with two new vertices.
The value of the vertex closer to w is chosen above T but
below U , and the value of the vertex further from w is cho-
sen below T but above w. Within this range, we choose the
values such that we get two monotonically increasing paths
from Lk−w to U , one passing through the new vertices above
T and the other passing through the new vertices below T , as
shown in Figure 4. Observe that all new vertices are regular.
Indeed, each new vertex above T has a single vertex upper
link and each new vertex below T has a single vertex lower
link. The type of every other vertex remains unchanged as
increasing edges in its star are replaced by increasing edges
and decreasing edges are replaced by decreasing edges. After
subdivision, we add the new vertices below T to T , observ-
ing that Invariants I, II, III are preserved. But now we are
back in the case in which St−T ∩ Lk w is contractible, so
we can add w to T , as discussed earlier.

Case II.2. w is critical. It cannot be a maximum else its upper link
would be empty and it could not be in the link of T .

Consider first the case in which w is a saddle. By assump-
tion, all saddles are simple which implies that the lower link
of w consists of two components and so does the upper link.
The vertices in the upper link belong to T and to U , and here
we consider the easy case in which there are vertices of U in
both components of the upper link. We will show how to re-
duce the other case to this one shortly. By the Non-separation
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Figure 4: The vertex w is regular. Before the subdivision,
St−T ∩ Lk w is not contractible while (St−T ∩ Lk w)∪Lk−w
is. By subdividing, we reduce the problem to the case in which
St−T ∩ Lk w is contractible. The new edges are dashed and
the lower stars after subdivision are indicated by the shading.
The arrows indicate the direction in which the values of the new
vertices increase.

Lemma, the portions of the upper link that contain vertices
of T sandwich one component of the lower link of w, and the
portions that contain vertices of U sandwich the other com-
ponent, as illustrated in Figure 5. We subdivide by placing a
single vertex on each edge connecting w with the latter com-
ponent of the lower link. The values of the new vertices are
chosen above T and below U . Within this range we choose
the values such that the path of new vertices first decreases,
attains its minimum at a vertex x, and then increases, as in
Figure 5. All new vertices are regular, except for x, which
is a saddle. With these changes, w is regular and all other
vertices retain their original type.

We argue that x replaces w in the pairing using a continuity
argument. To start, we assign to each new vertex the value
of the point where it is placed. At this time, all new ver-
tices are regular and do not belong to any proper persistence
pair. Next, we continuously change the values of the new
vertices, updating the sequence through transpositions as we
go. This is done so that all new vertices remain regular at
all times, except for x which makes a crucial transposition
with w in which x becomes a saddle and w a regular vertex.
The Switch Lemma implies that x replaces w in its pair, as
desired.

We finally continue the simplification process by moving x
and the other vertices past T . Because of the subdivision, we
are now in Case I implying that these transpositions do not
affect the pairing. The vertex w is now regular, so we can
add it to T as described in Case II.1.

Consider second the case in which w is a minimum. By the
Paired Minimum Lemma, we have w = s. We add s to T
and reorder T to make all its vertices regular, as described
below. The reordering finally cancels the pair (s, t).

To measure progress, we count the vertices in W . Each step shrinks
W , therefore the algorithm halts after a finite number of steps.

Tunneling. In Case II.2 when w is a saddle, we assumed that there
are vertices of U in both components of the upper link of w. Now
we describe additional actions that put such vertices in the upper
link in case they are missing. A crucial property in this construction

x

St−WSt−W

St−T

St−TSt−U

St−U

w

Figure 5: The vertex w is a saddle. The lower star of U sand-
wiches a component of the lower star of w. By subdividing its
edges, we turn w into a regular vertex, replacing it by the new
saddle x. The shading shows the lower stars after the subdivi-
sion. The arrows indicate the direction in which the values of
the new vertices increase.

is Invariant II which implies that the link of T is connected. This
link contains vertices both in W (for example, w) and in U (since
the link of t ∈ T contains vertices in U ). This implies that we can
walk on this link from w until we encounter a first vertex u in U .
Let π be this path, as illustrated in Figure 6. By construction, all
vertices in π other than u belong to W . To get a vertex of U into the
upper link of w, we subdivide edges that connect interior vertices
of π with U . More precisely, we construct a connected strip of
triangles incident on π, starting with the triangle that connects the
first edge of π with a vertex in T and ending with the triangle that
connects the last edge of π with a vertex in T . We subdivide the
interior edges in the strip, placing two new vertices on each. The
value of the new vertex closer to π is chosen above T but below U
and the value of the new vertex further from π is chosen below T
but above w. Within these two ranges, we choose the values to get
two monotonically increasing paths from w to u. Similar to Case
II.1, all new vertices are regular and the types of the other vertices
remain unchanged.

The new vertices in the path below T are now added to T . Note
that this preserves Invariants I, II, III. The other new vertices belong
to U so we succeeded in our goal of putting a vertex of U into
the upper link of w. If necessary, we repeat this procedure for the
second component of the upper link of w. Finally, we proceed as
in Case II.2.

Reordering. We now discuss the last step of the algorithm in more
detail, the reordering of the vertices in T . Recall that T is contigu-
ous in V , it starts at s and ends at t, and all vertices in T are regular
except for s and t. By removing t we decompose the lower star of
T into components, and we let S ⊆ T be the set of vertices in the
same component as s. To reorder T , we

Step 1. remove S from V ;

Step 2. reverse S;

Step 3. add the reversed sequence S right after t to V .

The situations before and after the reordering are illustrated in Fig-
ure 7. The procedure is straightforward but it takes a bit of effort to
show that it is correct. In particular, we prove that after reordering
T all vertices in T are regular. This is clear for all vertices different
from t that do not belong to S. We distinguish four cases.
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Figure 6: Connecting w to U in case the upper link of w has
only vertices in T . The subdivision creates two monotonically
increasing paths of new vertices parallel to the path π in the link
of T . The shading shows the lower stars after the subdivision.

Case i. The last vertex, t ∈ T . Before reordering, t is a saddle
whose lower link consists of two components, one in the
lower star of S. Step 3 effectively raises the vertices in S
above t, making one of the components disappear and turn-
ing t into a regular vertex.

Case ii. The first vertex, s ∈ T . Since s is a minimum, its lower
link is empty. Hence all neighbors of s belong either to T
or to U , and the Non-separation Lemma implies that the por-
tion of the upper link of s inside St−T is connected. This
is the same as Lk+s ∩ St−S, and because the star of T is
contractible, at least some of the neighbors of s belong to
U . This implies that the portion of the upper link defined by
vertices in S is contractible. Step 2 turns this portion into the
lower link and s into a regular vertex.

Case iii. A vertex u ∈ S whose link is contained in the lower star
of S. The upper link of u becomes its lower link and vice
versa, implying that u remains regular.

Case iv. A vertex v ∈ S, different from s, whose lower link is not
contained in the lower star of S. We first observe that v has
no neighbors in W . To see this, we consider the lower-star
filtration defined by V (before the reordering). Starting with
the lower star of W ∪ {s} we add lower stars of vertices
in T until we arrive at the lower star of W ∪ T . For our
argument only the vertices in the same component as s are
relevant so we consider St−(W ∪ S). But if v has neighbors
in W then this process would have merged the component
of s with another component, contradicting the fact that all
vertices in S−{s} are regular. This shows that all neighbors
not in T belong to the upper link of v. The neighbors in
T all belong to S and at least some of them are lower than
v. These vertices form a contractible lower link of v, else
v would not be regular. Similarly, the neighbors in S above
v form a contractible portion of the upper link of v, else we
would have gotten a contradiction to Invariant II at the time
v was added to T . It thus follows that reversing S preserves
v as a regular vertex.

Multi-saddles. We note that it is not necessary to unfold all multi-
saddles for the algorithm to work. Generally, we distinguish sad-
dles with persistence larger than ε, which do not have to be un-
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Figure 7: Reordering the vertices in T . Before the reordering,
all vertices in T are regular except for s and t. After reordering,
all vertices in T are regular. Plus and minus signs distinguish
between upper and lower links. The cases in which the reorder-
ing swaps upper and lower links are marked by two signs.

folded, and saddles with persistence at most ε, which have to be
unfolded. However, this is oversimplifying the situation because a
multi-saddle can be part of multiple pairs with persistence larger as
well as smaller or equal to ε. The Nested-Disjoint Lemma implies
that a multi-saddle can be unfolded such that the resulting positive
simple saddles have higher function value than the resulting nega-
tive simple saddles. Similarly, pairs with smaller persistence can be
nested within pairs of larger persistence. Finally, the resulting sim-
ple saddles with persistence larger than ε are assigned the function
value of the multi-saddle so that the unfolding does not interfere
with bounding the change of the function through simplification.

5. LOWER BOUND
In this section, we prove part B of the Simplification Theorem

for 2-Manifolds stated in Section 1: for p = 0, 1 and all ε > δ > 0
there exists a 2-manifold M and a function f : M → R such
that if g : M → R is a dimension p ε-simplification of f then
‖f − g‖∞ > ε − δ. The topology of the 2-manifold is less im-
portant for the proof than the details of the function. We thus let
M be the 2-sphere and we choose f as the (vertical) height func-
tion of the embedding of M displayed in Figure 8. There are three
critical points with similar heights, f(P ) = r − ε, f(Q) = r − δ,
f(R) = r, where 0 < δ < ε. The two minima have function
values f(A) = a < f(B) = b that are both much smaller than
r, and the maximum has a function value f(Z) = z that is much
larger than r. The critical points are paired as (B, Q), (P, R), leav-
ing A and Z unpaired. The off-diagonal points in the persistence
diagrams are therefore

D0(f) : (a,∞), (b, r − δ);

D1(f) : (r − ε, r);

D2(f) : (z,∞).

All points have L1-distance larger than ε from the diagonal, except
for (r − ε, r) whose L1-distance from the diagonal is ε. To get a
dimension 1 ε-simplification, we thus need to cancel P with R and
leave the other critical points in tact (or replace them by new critical
points at the same height). It seems plausible that f does not have
a dimension 1 (ε− δ′)-simplification with δ < δ′ < ε. Indeed, we
cannot lower R by more than δ since it gets stuck at Q. Hence we
need to raise P by at least ε− δ. A more formal argument support-
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Figure 8: Embedding of the 2-sphere M in R3 such that f :
M → R is its height function. There are two minima, A and
B, two saddles, P and Q, and two maxima, R and Z. The two
ascending paths from A to P decompose M into a left and a
right hemisphere.

ing this conclusion will be presented shortly. Since this works for
arbitrarily small δ > 0, this implies the claimed lower bound. To
prove the same bound for p = 0 we use the construction upside-
down, that is, we substitute −f for f .

We now give the more formal argument for the claim that the
difference between f and g is ‖f − g‖∞ > ε − δ. To get a
contradiction, we assume there is a dimension 1 ε-simplification
g : M → R of f with ‖f − g‖∞ = ε − δ′ for some δ′ > δ. Let
α be the cycle consisting of two monotonically increasing paths
from A to P , as drawn in Figure 8. It decomposes the 2-sphere into
a closed left hemisphere (containing Z) and a closed right hemi-
sphere (containing B, Q, R). Consider the restrictions f̄ and ḡ
of f and g to the right hemisphere. The diagram D0(f̄) is the
same as D0(f). By the Stability Theorem, the diagram D0(ḡ) con-
tains a point (b′, q′) at L∞-distance at most ε from (b, r − δ) in
D0(f̄). The value q′ is that of a saddle Q′ of ḡ. By definition of
ε-simplification, we have g(Q′) = q′ = r − δ, which is larger
than g(x) ≤ f(x) + (ε − δ′) < r − δ for any point x on α. This
implies that Q′ lies in the interior of the right hemisphere and is
therefore also a saddle of g. Furthermore, there are no other fi-
nite off-diagonal points in the persistence diagrams of g. It follows
that g has only one saddle, namely Q′. A similar argument implies
that g has only one maximum, Z′, in the left hemisphere and that
g(Z′) = z. Since there is only one maximum and only one saddle,
we can draw a path from Z′ to Q′ that monotonically decreases
in g. This path crosses the cycle α. But the points x on α have
g(x) < r − δ which is less than the values of Z′ and Q′ at the two
ends. This contradicts the monotonicity of the path and implies
‖f − g‖∞ > ε− δ, as required.

6. DISCUSSION
The main contribution of this paper is a constructive proof of

the existence of ε-simplifications for continuous functions on 2-
manifolds. The proof extends to 2-manifolds with boundary since
we can convert those into 2-manifolds without boundary by glu-

ing a disk to each boundary cycle. A curious aspect of our proof
is that dimension 0 and dimension 1 homology can be simplified
independently. Indeed, we can cancel all minimum-saddle pairs
of persistence at most ε while leaving all saddle-maximum pairs
intact, or vice versa. It is also worthwhile to mention that the algo-
rithm is combinatorial and we are free to assign function values that
are consistent with the computed ordering of the vertices. How-
ever, our algorithm is not incremental in the sense of continuously
increasing the error threshold and this way generating a hierarchy
of simplifications. The main reason for this shortcoming is that
the sequence of pairs cancelled by our algorithm is generally not
sorted by persistence. We leave the design of such an incremental
simplification algorithm as an open question.

The authors consider the simplification of continuous functions
as a central problem in visualization. It may be used to clean up
Morse-Smale complexes [4] and Reeb graphs [8, 10], which are
powerful tools in the study and visualization of continuous data in
scientific computing. We therefore believe that the extension of
our results to three- and higher-dimensional manifolds as well as to
other topological spaces is important.
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