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ABSTRACT
In this paper, we bound the difference between the total mean cur-
vatures of two closed surfaces inR

3 in terms of their total absolute
curvatures and the Fréchet distance between the volumes they en-
close. The proof relies on a combination of methods from algebraic
topology and integral geometry. We also bound the difference be-
tween the lengths of two curves using the same methods.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations, Computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics—Counting problems

General Terms
Algorithms, Theory

Keywords
Integral geometry, curvature, Fréchet distance, persistence diagrams,
bottleneck distance, approximation, stability.

1. INTRODUCTION
Given an oriented hypersurfaceS smoothly embedded inRd,

the mean curvatureof S at p ∈ S is the average of thed − 1
principal curvatures atp. The total mean curvatureis the integral
of the mean curvature overS. It is the second in a sequence of
d quantities associated with a hypersurface, calledQuermassinte-
grale, Minkowski functionals, orLipschitz-Killing curvaturesin the
literature [3]. The total mean curvature and its relatives have many
interesting properties and have been extensively studied by mathe-
maticians during the last 150 years.
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While curvature isa priori defined only for smooth objects, total
mean curvature can be defined consistently for a large class of non-
smooth, including piecewise-linear objects [15]. This is of practi-
cal interest since smooth surfaces are often represented by approx-
imating meshes. From this perspective, an important question is
whether the total mean curvature of a piecewise-linear surface is
close to the one of approximated the smooth surface. More gen-
erally, understanding the behavior of Lipschitz-Killing curvatures
under approximations is an important unsolved theoretical ques-
tion [12]. In this direction, a convergence result for the Lipschitz-
Killing curvatures of increasingly fine triangulations inscribed in a
smooth submanifold was obtained in [11]. For surfaces, this result
was strengthened in [5, 7] by extending it to curvature tensors and
by giving an explicit error bound. An essential requirement in the
latter approximation result is that the normals to the mesh are close
to the normals to the smooth surface.

In this paper, we give an approximation result for the total mean
curvature of surfaces under weaker conditions, using a stability re-
sult on topological persistence proved in [6]. We show that control-
ling the Fŕechet distance between the smooth object and its approx-
imation is sufficient to guarantee that their total mean curvatures are
close, provided the approximation has bounded total absolute cur-
vature. Surprisingly, the closeness between the normals to the two
surfaces is not explicitly required. We prove this using the integral-
geometric interpretations of the total absolute and the total mean
curvatures [14]. Our method also yields a simple and apparently
new geometric inequality for curves. More precisely, we obtain
a bound on the difference between the lengths of two curves as a
function of their Fŕechet distance and of their total curvature. This
result can be viewed as a generalization of Fáry’s theorem [10].

Outline. Section 2 recalls the necessary background on topological
persistence and integral geometry. Section 3 states and proves our
results on surfaces and curves. Section 4 concludes the paper.

2. BACKGROUND
Before we state and prove our results, we review the necessary

background. We need to understand topological persistence, a topic
in algebraic topology [13], and we need integral-geometric inter-
pretations of curvature and length, concepts studied in differential
geometry [8].

Topological persistence.Given a generic smooth functionf on a
manifoldM , Morse theory shows that the changes in the topology
of the sublevel setsf−1(−∞, x] are related to the critical points of
f . More precisely, when the levelx increases and passes a critical



value, a handle is attached to the current sublevel set. This opera-
tion can have two kinds of consequences: either a new homology
class is created or some homology class is destroyed. Topological
persistence is a canonical way to pair up critical values that create
homology classes with critical values that destroy them [9]. Each
such pair forms a half-openpersistence interval[a1, a2) that can
be interpreted as the life-span of a topological feature in the fil-
tration ofM by sublevel sets. An example is shown in Figure 1.
Sweeping the curve from bottom to top, we encounter five critical

∞

Figure 1: A one-dimensional real-valued function, its per-
sistence intervals, and its persistence diagram. The dark,
medium, light regions corresponds to persistent Betti numbers
3, 2, 1.

values in sequence. The first three create a new component each.
The fourth critical value merges the component created last with
the component created just before. The life-span of the third com-
ponent is thus the interval between the third critical value and the
fourth, as indicated in the middle of the figure. Similarly, the fifth
critical value merges the component created by the second critical
value with the one created by the first, and is therefore paired with
the second value. The component created first is never destroyed
and its life-span is the half-infinite interval starting at the first crit-
ical value. Because the function in Figure 1 is one-dimensional,
the only interesting features in the sublevel sets are their connected
components, which correspond to classes in the 0-th homology
group, but persistence intervals can be defined similarly fork-th
homology groups, for arbitraryk. Also, they can be defined for
a large class of functions, including height functions on simplicial
complexes in addition to Morse functions on smooth manifolds [6].
In this more general setting, critical values are replaced byhomo-
logical critical valuesthat correspond to levels at which the homol-
ogy groups of the sublevel sets change.

Persistence diagrams. As shown in [4], the (multi-) set of all
persistence intervals of a function provides a rather complete de-
scription of the topological relationships between different sublevel
sets. For example, the image of the map fromHk(f

−1(−∞, x]) to
Hk(f

−1(−∞, y]) induced by inclusion onk-th homology groups
has dimension equal to the number of persistence intervals that
contain bothx andy. These numbers are calledpersistent Betti
numbersand we denote them byβk(x, y). To visualize them, we
represent each persistence interval[a1, a2) by the point(a1, a2)
in the plane, allowing infinite coordinates for unbounded intervals.
The (multi-) set of all such points, together with the diagonal,∆ =
{(x, x) | x ∈ R}, is thepersistence diagramof the function, which
we illustrate in Figure 1 on the right. For a given functionf , there
is of course one persistence diagram for each dimensionk, denoted
by Dk(f). We can now reformulate the above property of persis-
tent Betti numbers.

k-TRIANGLE LEMMA [9]. The persistent Betti numberβk(x, y)
is the total number of points inDk(f) contained in the quadrant
[−∞, x]× (y,+∞].

Another important property of topological persistence is its stabil-
ity under perturbation. We measure the distance between points in
the extended plane,̄R

2 = [−∞,∞]2, as‖a− a′‖∞ = max{|a1−
a′1|, |a2 − a′2|}. Given two multisets of pointsA andA′ in R̄

2, we
define theirbottleneck distanceas

dB(A,A′) = inf
γ

sup
a
‖a− γ(a)‖∞,

wherea ranges over all points ofA andγ ranges over all bijections
fromA toA′.

STABILITY THEOREM [6]. If f and g are sufficiently regular
real-valued functions defined over the same space, then

dB(Dk(f),Dk(g)) ≤ sup
p
|f(p)− g(p)|,

for all k ≥ 0.

In other words, persistence diagrams are stable under possibly ir-
regular perturbations of small amplitude, as illustrated in Figure 2.

Figure 2: Left: two close functions, one with many and the
other with just four critical values. Right: the persistence dia-
grams of the two functions, and the bijection between them.

Integral geometry for surfaces.Given a smoothly embedded sur-
faceS in R

3, we recall that the two principal curvatures at a point
p ∈ S are the maximum and minimum normal curvatures, denoted
asκ1(p) ≥ κ2(p). The total mean curvatureis the integral of the
mean curvature and thetotal absolute curvatureis the integral of
the absolute Gaussian curvature:

H(S) =
1

2

Z
S

(κ1(p) + κ2(p)) dp,

G(S) =

Z
S

|κ1(p)κ2(p)| dp.

The latter is also the total area swept by the normal vector and
measures the intuitive notion of bumpiness. For example, surfaces
with zero total absolute curvature are developable, that is, they are
everywhere locally isometric to the plane. To prove our results,
we will use the integral-geometric interpretation of total absolute
and total mean curvature, which we now recall. We assumeS is a
compact surface without boundary.

TOTAL ABSOLUTE CURVATURE INTERPRETATION[14]. The
total absolute curvature,G(S), equals2π times the average num-
ber of critical points of a height function on the surface, where the
direction is chosen uniformly at random fromS2.



One advantage of this interpretation is that it generalizes to piece-
wise-linear surfaces, for which there is a well-defined notion of
critical points for height functions [2]. These points are considered
with multiplicity, counting ani-fold saddles asi critical points. It
is not difficult to derive an elementary sum for the total absolute
curvature of a piecewise-linear surface in terms of face angles [17].
To state the integral-geometric interpretation of the total mean cur-
vature, we introduce the compact bodyS̄ ⊆ R

3 with boundaryS.

TOTAL MEAN CURVATURE INTERPRETATION[14]. Thetotal
mean curvature,H(S), equals the integral, over all planes, of the
Euler characteristic of the intersection of the plane withS̄.

For this interpretation to hold, we need a measure on the set of
planes that is invariant under rigid motions. This measure can be
defined by parametrizing the planes by the direction of the unit
normal and the distance from the origin. Using the same letter
for a unit vector,u ∈ S

2, and the dot product with that vector,
u : R

3 → R, we have

H(S) =
1

2

Z
S2

Z +∞

−∞
χ(S̄ ∩ u−1(z)) dzdu.

Again, this expression of total mean curvature extends directly to
the piecewise-linear case. Computations show that for a piecewise-
linear surface, the total mean curvature is a sum over all edges,
in which the contribution of an edge is its length times the signed
angle between the normals of the two incident triangles [7].

Integral geometry for curves. Similar formulas hold for piecewise-
linear or smooth curves, with or without self-intersections. We
write C : S

1 → R
n for a closed curveandC : [0, 1] → R

n

for anopen curve. Without causing any confusion, we will abuse
notation and useC to denote both the map and its image, which
is a geometric set. IfC is smooth, we can define itscurvature,
κ(s), at every pointp = C(s). Assuming a parametrization with
constant speedσ = ‖Ċ(s)‖, we haveκ(s) = ‖C̈(s)‖/σ2. The
total curvatureis the distance traveled by the unit tangent vector
or, equivalently, the integralK(C) =

R
κ(s) ds overS1 or [0, 1].

TOTAL CURVATURE INTERPRETATION[14]. Thetotal curva-
ture,K(C), of a closed curve equalsπ times the average number
of critical points ofu ◦ C : S

1 → R, whereu is chosen uniformly
at random fromS

n−1.

For open curves, we count only the interior critical points and not
the two endpoints. In the case of a piecewise-linear curve, this
integral-geometric quantity is still defined and coincides with what
we would expect, namely the sum of all unsigned bend angles at
the vertices. In lieu of the total mean curvature, we consider the
integral-geometric interpretation of the length.

LENGTH INTERPRETATION[14]. Thelength,L(C), of an open
or closed curve equalsπ over the volume ofSn times the integral,
over all hyperplanes, of the number of intersection points between
the curve and the hyperplane.

Using again the parametrization of the hyperplanes by direction and
distance from the origin, we can write this more formally using the
Cauchy-Crofton formula:

L(C) =
π

vol(Sn)

Z
Sn−1

Z +∞

−∞
]((u ◦ C)−1(z)) dzdu,

where ] counts the intersections betweenC and the hyperplane
u−1(z). By vol(Sn) we mean of course then-dimensional mea-
sure of then-dimensional unit sphere.

3. RESULTS
We now combine the Stability Theorem for topological persis-

tence with the integral-geometric interpretation of curvature and
length to compare geometric quantities associated with curves and
surfaces that are close under the Fréchet distance.

Surfaces.To state our result, we letS1 andS2 be two connected,
compact surfaces inR3, either smooth or piecewise-linear, bound-
ing homeomorphic subsets̄S1 andS̄2 of R

3. Let g be the common
genus ofS1 andS2. By definition, theFréchet distancebetween
the two bodies isdF (S̄1, S̄2) = infφ supp∈S̄1

‖p− φ(p)‖2, where
φ ranges over all homeomorphisms from̄S1 to S̄2. LettingHi and
Gi denote the total mean and total absolute curvatures ofSi, the
first result is an upper bound on the difference between the total
mean curvatures in terms of the total absolute curvatures and the
Fréchet distance.

TOTAL MEAN CURVATURE THEOREM. Given two connected,
compact surfacesS1 andS2 in R

3, we have

|H1 −H2| ≤ [G1 +G2 − 4π(1 + g)] dF (S̄1, S̄2).

PROOF. We prove the inequality in four steps. First, we trans-
form the integral-geometric interpretation of the total mean curva-
ture from level sets to sublevel sets of height functions. Second, we
express the integral of Euler characteristics of sublevel sets in terms
of points in persistence diagrams. Third, we use the Stability The-
orem to bound the difference between the expressions for the two
surfaces. Fourth, we integrate this difference over all directions
u ∈ S

2 to get the claimed inequality.
For the first step, letR be large enough such thatS1 andS2 are

contained in the ball of radiusR centered at the origin. Denoting
byui : S̄i → R the restriction ofu to S̄i, the Total Mean Curvature
Interpretation can be written as

Hi =
1

2

Z
S2

Z R

−R
χ(u−1

i (z)) dzdu. (1)

If Si is piecewise linear orui is a Morse function onSi then
χ(u−1

i (−∞, z]) + χ(u−1
i [z,∞)) = χ(u−1

i (z)) + χ(S̄i) by addi-
tivity of the Euler characteristic. Since almost all height functions
are Morse, we can use this formula within the integral and get

Hi =

Z
S2

Z R

−R
χ(u−1

i (−∞, z]) dzdu

−1

2

Z
S2

Z R

−R
χ(S̄i) dzdu,

because the integral ofχ(u−1
i (−∞, z]) is the same as that of

χ(u−1
i [z,∞)). We note that the second term is equal to4πRχ(S̄i).

For the second step, we choose a directionu ∈ S
2 that satisfies

the above condition for both surfaces, that isui is Morse ifSi is
smooth and there is no restriction ifSi is piecewise-linear. We fo-
cus on the termχi(z) = χ(u−1

i (−∞, z]). By definition,χi(z)
is the alternating sum of Betti numbers ofu−1

i (−∞, z]. By thek-
Triangle Lemma, thek-th Betti number is the total number of points
of Dk(ui) within the quadrant[−∞, z] × (z,∞]. For any point
a = (x, y) ∈ R̄

2, we write1a : R → R for the indicator function
defined by1a(z) = 1 if x ≤ z < y and1a(z) = 0, otherwise. Us-
ing this notation, we haveβk(u−1

i (−∞, z]) =
P
a∈Dk(ui)

1a(z).
Hence,

χi(z) =
X

a∈D(ui)

(−1)ka1a(z),



whereD(ui) is the union of theDk(ui) andka is the integer such
thata ∈ Dka(ui).

In the third step, we compare the integrals overz of χ1(z) and
χ2(z). Let ε = dF (S̄1, S̄2). By definition of Fŕechet distance,
for any δ > 0, there is a homeomorphismφ : S̄1 → S̄2 that
moves points by at mostε + δ. Hence‖u1 − u2 ◦ φ‖∞ ≤ ε + δ.
Persistence diagrams are invariant under change of variables, that
is, Dk(u2 ◦ φ) = Dk(u2). Thus by the Stability Theorem, the
bottleneck distance betweenDk(u1) andDk(u2) is at mostε+ δ.
We thus get a bijectionψ : D(u1) → D(u2) that moves points
by at mostε + δ in theL∞ metric and such thatkψ(a) = ka. As
a consequence, the difference between the integrals overz of the
Euler characteristics can be written as

X = |
Z R

−R
(χ1(z)− χ2(z)) dz|

= |
X

a∈D(u1)

(−1)ka

Z R

−R
(1a(z)− 1ψ(a)(z)) dz|

≤
X

a∈D(u1)

Z ∞

−∞
|1a(z)− 1ψ(a)(z)| dz.

Each term in the above sum is 0, if botha andψ(a) lie on the
diagonal, at mostε + δ, if a andψ(a) are both off-diagonal and
have one infinite coordinate each, and at most2(ε + δ), if a or
ψ(a) or both are off-diagonal with two finite coordinates each. In
other words, we payε + δ for every finite coordinate, except if
two such coordinates belong to corresponding off-diagonal points,
in which case we payε + δ for only one. The total number of
finite coordinates of off-diagonal points is at most the number of
homological critical values ofu1 andu2, counted with multiplicity
in the piecewise linear case. To get an upper bound on the sum,
we assume every off-diagonal point with two finite coordinates is
mapped to a diagonal point in the other diagram. The off-diagonal
points with one infinite coordinate are necessarily mapped to each
other. By thek-Triangle Lemma, their number is the sum of Betti
numbersβk(x, x) of S̄1, for sufficiently largex, which is also the
sum of Betti numbers of̄S1, namely1 + g. Denoting the number
of critical points ofui by ci, we thus getX ≤ ε(c1 + c2 − 1− g)
sinceδ can be chosen arbitrarily small.

We are ready for the fourth and last step. Recalling the definition
of X, we plug the inequality forX into Equation (1) and get

|H1 −H2| ≤ ε

Z
S2

(c1 + c2 − 1− g) du.

The right hand side is4πε times the expected number of homolog-
ical critical values of a random height function ofS̄1 plus the same
for S̄2, minus4π(1 + g)ε. But the expected number of homolog-
ical critical values of a height function on̄Si is half the expected
number of homological critical values of the same height function
restricted to the boundary,Si. Indeed, each pointx of Si gives rise
to a homological critical value of exactly one height function onS̄i,
namelyui, whereu is the inward normal atx. But if one consid-
ers restrictions of height functions toSi, thenx is critical both in
the directionu and the direction−u. As a consequence,4πε times
the expected number of critical points of a random height function
of S̄i is εGi, by the Total Absolute Curvature Interpretation. The
claimed inequality follows.

A consequence of the Total Mean Curvature Theorem is that the
total mean curvature of a smooth surface can be estimated from a
piecewise-linear approximation, provided the approximation is not
too bumpy. The advantage of this result over the one proved in

[5] is that it does not involve a bound on the angle between the
normals to the two surfaces. The closeness between the normals
is only controlled indirectly, through the total absolute curvature of
the piecewise-linear approximation. Indeed, an approximation with
highly inaccurate normals is likely to have large total absolute cur-
vature. However, this is not necessarily the case. For instance, ap-
plying a “stair-like” perturbation on part of the surface can change
its normals by almost90◦ without substantially increasing its total
absolute curvature. We also see that the accuracy of the estimate
can possibly be improved by reducing the total absolute curvature
of the piecewise-linear approximation, for instance using the edge-
flip algorithm described in [17].

Curves. Following the pattern of the proof of the Total Mean Cur-
vature Theorem, we now prove a similar inequality for the length
difference between two curves. LetC1, C2 : S

1 → R
n be two

closed curves, with or without self-intersections, which may be
smooth or piecewise linear. The Fréchet distance between them
is dF (C1, C2) = infφ sups ‖C1(s)− C2(φ(s))‖2, which agrees
with the definition of Fŕechet distance between curves given in [1],
except that we do not assume thatφ preserves the orientation of
the circle. Observe that the Fréchet distance does not depend on
the parameterizations of the curves. WritingLi = L(Ci) for the
length andKi = K(Ci) for the total curvature ofCi, we can now
state and prove the result.

LENGTH THEOREM. Given two closed curvesC1 andC2 in R
n,

we have

|L1 − L2| ≤ 2vol(Sn−1)

vol(Sn)
[K1 +K2 − 2π] dF (C1, C2).

PROOF. The proof follows the same four steps as the proof of
the Total Mean Curvature Theorem. We will therefore take short-
cuts and focus on the differences, which are few.

First, we transform the integral-geometric interpretation of the
length from level sets to sublevel sets of height functions. Fix-
ing u ∈ S

n−1, we write ui = u ◦ Ci, for i = 1, 2. Almost
all level sets of the formu−1

i (z) consist of an even number of
points. These points decomposeCi into arcs, half of which belong
to u−1

i (−∞, z]. Hence,
Z ∞

−∞
](u−1

i (z)) dz = 2

Z ∞

−∞
χi(z) dz,

whereχi(z) = χ(u−1
i (−∞, z]).

Second, we recall that for curves, the Euler characteristic of a
sublevel set,χi(z), is the number of components minus the number
of loops. Equivalently,χi(z) is the number of points ofD0(ui)
within the quadrant[−∞, z]× (z,∞] minus the number of points
of D1(ui) within the same quadrant. Using the indicator function
1a(z), we can rewrite this number as

χi(z) =
X

a∈D0(ui)

1a(z)−
X

a∈D1(ui)

1a(z).

Third, we compare the integrals ofχ1(z) andχ2(z). Let ε =
dF (C1, C2) be the Fŕechet distance andφ : S

1 → S
1 a homeomor-

phism such that the Euclidean distance between pointsC1(s) and
C2(φ(s)) is at mostε+δ. It follows that‖u1 − u2 ◦ φ‖∞ ≤ ε+δ.
The Stability Theorem implies that the bottleneck distance between
D0(u1) and D0(u2) is at mostε + δ, and the same is true for
D1(u1) andD1(u2). Letψ : D(u1) → D(u2) be the correspond-
ing bijection between the unions of the diagrams. The difference



between the integrals of the Euler characteristic is

X = |
Z ∞

−∞
χ1(z) dz −

Z ∞

−∞
χ2(z) dz|

≤
X

a∈D(u1)

Z ∞

−∞
|1a(z)− 1ψ(a)(z)| dz.

As before, this sum is at mostε+ δ times half the number of finite
coordinates of off-diagonal points that are mapped to each other
plus the number of finite coordinates of off-diagonal points that are
mapped to diagonal points in the other diagram. There are two
points with one infinite coordinate each, one inD0(u1) and the
other inD1(u1), and they both map to the corresponding points in
the two diagrams ofu2. This impliesX ≤ ε(c1 + c2 − 2).

Fourth, we plug the bound forX into the Cauchy-Crofton for-
mula and get

|L1 − L2| ≤ 2επ

vol(Sn)

Z
Sn−1

(c1 + c2 − 2) du.

The right hand side is2επvol(Sn−1)/vol(Sn) times the expected
number of critical point of a random height function ofC1 plus
the same forC2 minus 2. Using the Total Curvature Interpretation,
this is at most2εvol(Sn−1)/vol(Sn) timesK1 + K2 − 2π, as
claimed.

The Length Theorem can be viewed as a generalization of Fáry’s
theorem [10], which states that the length of a closed curve con-
tained in the unit disk cannot exceed its total curvature; see Figure
3. Indeed, ifC1 is such a curve andC2 is a circle of radiusδ

Figure 3: Left: our result compares the lengths of two curves
as a function of their Fréchet distance indicated by the arrow.
Right: Fáry’s theorem can be obtained from ours by taking one
of the curves to be a small circle centered at the origin.

centered at the origin, then the total curvature ofC2 is 2π and the
Fréchet distance betweenC1 andC2 is at most1+δ. Applying our
result and lettingδ go to zero gives the desired statement. Fáry’s
theorem has very short proofs [16], but none of them seem to ex-
tend to our more general case. On the other hand, Fáry’s theorem
holds in higher dimensions, but our methods only yields a weaker
result in dimension higher than two. More precisely, we get that
the length of a closed curve in the unit ball inR

n does not exceed
2vol (Sn−1)/vol (Sn) times its total curvature. The area ofS

2 is
4π and the volume ofS3 is 2π2 implying that inR

3 we get an extra
factor of4/π. It would be interesting to know whether these con-
stants are tight when the two curves are chosen without restriction
in our theorem.

The proof of the Length Theorem can be extended from closed
to open curves, for which we get

|L1 − L2| ≤ 2vol(Sn−1)

vol(Sn)
[K1 +K2 + π] dF (C1, C2).

Alternatively, we can prove this inequality by reduction to the closed
curve case. DoubleCi by adding a slightly shifted copy of itself
and connecting corresponding ends by sharp turns. The new length
is 2Li + δ, whereδ > 0 is arbitrarily small. The new total cur-
vature is2Ki + 2π, and the Fŕechet distance between the doubled
curves is at most that between the original curves plus an arbitrar-
ily small, positive amount. We get that|2L1 − 2L2| is at most
2vol(Sn−1)/vol(Sn) times[2K1 + 2K2 + 2π] dF (C1, C2) from
the Length Theorem. Dividing by two gives the claimed inequality.

4. DISCUSSION
In this paper, we derived simple geometric inequalities for the

curvature of curves and surfaces as consequences of the Stabil-
ity Theorem for topological persistence. Several questions remain
unanswered. First, is there a way to extend our result to the com-
parison of integrals of mean curvature on small regions of surfaces,
as in [7, 11]? Second, does a result similar to ours hold for the
integral of curvature tensors, as introduced in [7]? Finally, our re-
sult extends directly to the comparison of total mean curvatures of
hypersurfaces in higher dimension. But what about other Lipschitz-
Killing curvatures?
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