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Abstract

The Reeb graph is a useful tool in visualizing real-valued data obtained from computational

simulations of physical processes. We characterize the evolution of the Reeb graph of a time-

varying continuous function defined in three-dimensional space. We show how to maintain the

Reeb graph over time and compress the entire sequence of Reeb graphs into a single, partially

persistent data structure, and augment this data structure with Betti numbers to describe

the topology of level sets and with path seeds to assist in the fast extraction of level sets for

visualization.

1 Introduction

Physical processes that are measured over time, or modeled and simulated on a computer, can

produce large amounts of data that must be interpreted with the assistance of computational

tools. Such data arises in a wide variety of studies, including computational fluid dynamics [8],

oceanography [5], and climate modeling [17]. The data typically consists of finitely many points

in space-time and a measured value for each. We can connect these points into a mesh and

interpolate the values to obtain a continuous function over the entire domain. Piecewise linear

interpolation is common for large amounts of data, because of its relative ease; multi-linear

interpolation is also used for regular grids.

∗Research of the first author is partially supported by NSF under grants EIA-99-72879 and CCR-00-86013. Re-
search of the second author is partially supported by NSF under grant DMS-01-07621. Research of the third author
is partially supported by NSF under grant 0128426 and by sub-contracts from Lawrence Livermore National Labs.
Portions of this work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

†Department of Computer Science and Mathematics, Duke University, Durham, and Raindrop Geomagic, Research
Triangle Park, North Carolina.

‡Department of Mathematics and Computer Science, Duke University, Durham, North Carolina.
§Center for Applied Scientific Computing, Lawrence Livermore National Labs, Livermore, California.
¶Center for Applied Scientific Computing, Lawrence Livermore National Labs, Livermore, California.
‖Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

1



Graphical visualization, often through level sets or iso-surfaces of a continuous function, is

useful for interpreting the data. A level set consists of all points in the domain whose function

values are equal to a chosen real number s. In R
3, the level set is generically a surface that

can be interactively visualized on a graphical display. By varying s, we can study the variation

in the data. Topological features of the level sets, such as connected components, handles, and

voids, can be important aids in interpreting the data. The Reeb graph encodes the evolution

of these features and compactly represents topological information of all level sets. As we vary

time, the Reeb graph goes through an evolution of its own, undergoing structural changes at

birth-death points and at interchanges of critical points. The evolution of the Reeb graph thus

represents a 2-parameter family of level sets. We suggest that this 2-parameter family, encoded

in a compact data structure, is a useful representation of space-time data.

In this paper, we study how the Reeb graph of a smooth function on three-dimensional space

evolves over time. It will be convenient to compactify the space to a closed manifold, which

we do by adding the point at infinity, effectively creating the topology of the 3-sphere, denoted

by S
3. Our first contribution, described in Section 3, is a complete enumeration of the type of

combinatorial changes the Reeb graph experiences:

• nodes disappear in pairs, contracting arcs to points (inversely, node appear in pairs, anti-

contracting arcs);

• nodes swap their positions along the arcs of the graph.

The second type of change falls into more sub-types and is algorithmically more difficult to

handle than the first type. Based on this classification, we develop an algorithm that maintains

the Reeb graph through time and stores the evolution in a partially persistent data structure.

The size of this data structure is proportional to the size of the initial Reeb graph at time

zero, plus the number of changes it experiences through time. We describe the algorithm in an

abstract setting in Section 4 and provide a concrete implementation for the piecewise linear case

in Section 5. We also show how to augment the evolving Reeb graph with the Betti numbers

of the level set components in Section 6, and with path seeds for efficient level set extraction in

Section 7.

Related prior work. In the interactive exploration of scientific data, Reeb graphs are used

to select meaningful level sets [3] and to efficiently compute them [15]. An extensive discussion

of Reeb graphs and related structures in geometric modeling and visualization applications can

be found in [14].

All published algorithms for computing Reeb graphs take as input a function defined on a

triangulated manifold. We express their running times as functions of n, the number of simplices

in the triangulation. The first algorithm for functions on 2-manifolds due to Shinagawa and

Kunii [22] takes time O(n2) in the worst case. Cole-McLaughlin et al. [9] give tight bounds on

the number of loops in Reeb graphs of functions on 2-manifolds and describe an O(n log n) time

algorithm to construct them.
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Loop-free Reeb graphs, also known as contour trees, arise in simply-connected domains.

They have received special attention because of the practical importance of these domains, and

because the algorithms to compute them are simpler. An algorithm that constructs contour

trees of functions on simply-connected manifolds of constant dimension in time O(n log n) has

been suggested in [6]. For the case of 3-manifolds, this algorithm has been extended to include

information about the genus of the level surfaces [20].

There has been some recent work on Reeb graphs of time-varying functions. Bajaj and

Sohn [23] study the change in topology of level sets over time by computing the correspondence

between contour trees of successive time steps. They assume that the function can change

unpredictably between two successive time steps, and define temporal correspondence between

the contour tree arcs using a notion of an overlap between level set components at time t with

those at time t+1. They compute this correspondence, and use it to track level set components

and their topology over time. Szymczak [24] employs sub-domain aware contour trees to compute

a mapping between contour trees of functions at two successive time-steps. Unlike the approach

taken in this paper both Bajaj et al. and Szymczak ignore the individual structural changes

to the trees in between the time-steps, but instead consider the cumulative effect of all these

changes.

2 Mathematical Background

We need some background from Morse theory [16, 18] and from combinatorial and algebraic

topology [2, 19].

Smooth maps on manifolds. Let M be a smooth, compact d-manifold without boundary

and f : M → R a smooth map. Assuming a local coordinate system in its neighborhood, x ∈ M

is a critical point of f if all partial derivatives vanish at x. If x is a critical point, f(x) is a critical

value. Non-critical points and non-critical values are called regular points and regular values,

respectively. The Hessian at x is the matrix of second-order partial derivatives. A critical point

x is non-degenerate if the Hessian at x is non-singular. The index of a critical point x, denoted

by index x, is the number of negative eigenvalues of the Hessian. Intuitively, it is the number

of mutually orthogonal directions at x along which f decreases. For d = 3 there are four types

of non-degenerate critical points: the minima with index 0, the 1-saddles with index 1, the

2-saddles with index 2, and the maxima with index 3. A function f is Morse if

I. all critical points are non-degenerate;

II. f(x) 6= f(y) whenever x 6= y are critical.

We refer to I and II as Genericity Conditions as they prevent certain non-generic configurations

of the critical points. This is so because Morse functions are dense in C∞(M), the class of smooth

functions on the manifold. In other words, for every smooth function there is an arbitrarily small

perturbation that makes it a Morse function.
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The critical points of a Morse function and their indices capture information about the

manifold on which the function is defined. For example, the Euler characteristic of the manifold

M equals the alternating sum of critical points, χ(M) =
∑

x
(−1)index x. Another useful tool

in the study of manifolds is the incremental construction by adding one cell at a time. Call a

space homeomorphic to the k-dimensional ball a k-cell. Let f : M → R be a Morse function and

define Ms = f−1(−∞, s]. The boundary of Ms is the level set, f−1(s), defined by s ∈ R. If s

is a regular value then f−1(s) is a (d − 1)-manifold. For positive ε consider Ms+ε and assume

that f has a single critical point with function value in (s, s + ε]. If the index of that critical

point is k then Ms+ε is homotopy equivalent to Ms with a single k-cell attached.

Reeb graph. A level set of f is not necessarily connected. We call two points x, y ∈ M

equivalent when f(x) = f(y) and x and y both belong to the same component of the level set.

We obtain the Reeb graph as the quotient space in which every equivalence class is represented

by a point and connectivity is defined in terms of the quotient topology [21]. Figure 1 illustrates

the definition for a 2-manifold of genus two. We call a point on the Reeb graph a node if the

Figure 1: The Reeb graph of the function f on a 2-manifold, which maps every point of the double torus to
its distance above a horizontal plane below the surface.

corresponding level set component passes through a critical point of f . The rest of the Reeb

graph consists of arcs connecting the nodes. The degree of a node is the number of arcs incident

to the node. A minimum creates and a maximum destroys a level set component and both

correspond to degree-1 nodes. A saddle that splits one level set component in two or merges

two to one corresponds to a degree-3 node. There are also saddles that alter the genus but do

not affect the number of components, and they correspond to degree-2 nodes in the Reeb graph.

Nodes of degree higher than three occur only for non-Morse functions.

In mathematics, the Reeb graph is often used to study the manifold M that forms the domain

of the function. For example, the Reeb graph in Figure 1 reveals that the function is defined on

a double torus, assuming we know it is an orientable 2-manifold without boundary. In contrast,

we use the Reeb graph to study the behavior of functions. The domain of interest is R
3 but it

is convenient to compactify it and consider functions on the 3-sphere, S
3. All our Reeb graphs

reveal the (un-exciting) connectivity of S
3 by being trees, but the structure of the tree tells us
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something about the chosen function f .

Jacobi curves. We use Reeb graphs to understand a function at moments in time, and

Jacobi curves, as introduced in [12], to help track the evolution of the Reeb graphs through time.

We define Jacobi curves of two Morse functions, f, g : M → R, then specialize this definition to

a time-varying function on the 3-sphere.

For a regular value t ∈ R, we have the level set g−1(t) and the restriction of f to this level

set, ft : g−1(t) → R. The Jacobi curve of f and g is the closure of the set of critical points of the

functions ft, for all t ∈ R. The closure operation adds the critical points of f restricted to level

sets at critical values, as well as the critical points of g, which form singularities in these level

sets. Figure 2 illustrates the definition by showing the Jacobi curve of two smooth functions on

a piece of the two-dimensional plane.

Figure 2: The functions f and g are represented by their dotted and solid level curves. The Jacobi curve is
drawn in bold solid lines. The birth-death points and the critical points of the two functions are marked by
white and shaded dots, respectively.

We can now specialize the definition of Jacobi sets to a time-varying function. Consider

a 1-parameter family of Morse functions on the 3-sphere, f : S
3 × R → R, where the extra

dimension in the domain is time. We can use the general definition of Jacobi sets described

above by introducing an auxiliary function g : S
3 × R → R defined by g(x, t) = t. A level

set has the form g−1(t) = S
3 × t, and the restriction of f to this level set is ft : S

3 × t → R.

Generically, the function ft is Morse, but there are discrete values of t at which it violates one

or both Genericity conditions of Morse functions. In the next section, we will see that the Reeb

graph of ft undergoes combinatorial changes at these values. The Jacobi curve of f and g may

consist of several components, and in the assumed generic case each is a closed 1-manifold.

We can identify the birth-death points where the level sets of f and g and the Jacobi curve

have a common normal direction. To understand these points, imagine a level set in the form of

a (two-dimensional) sphere deforming, sprouting a bud, as we go forward in time. The bud has

two critical points, one a maximum and the other a 2-saddle. At the time when the bud just
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starts sprouting there is a point on the sphere, a birth point, where both these critical points are

born. Run this in reverse order to understand a death point. We decompose the Jacobi curve

into segments by cutting it at the birth-death points. The index of the critical point tracing a

segment is the same everywhere along the segment. The indices within two segments that meet

at a birth-death point differ by one:

Index Lemma. Let f : M × R → R be a 1-parameter family of Morse functions. The indices

of two critical points created or destroyed at a birth-death point differ by exactly one.

Proof. At time t, let ft have a single birth point. We can choose a small positive ε such that

there are no other birth-death points with time in [t−ε, t+ε]. Denote by x and y the two newly

created critical points in ft+ε and let k = index x ≤ index y. The point x either destroys a

homology class of dimension k− 1 or it introduces one of dimension k. The former case is ruled

out as index y ≥ k, and a cell of dimension larger than or equal to k cannot compensate for the

destroyed dimension k−1 class. In the latter case, when x creates a homology class of dimension

k, we need a (k + 1)-cell to cancel the homology class, which implies that index y = k + 1. The

claim follows.

Piecewise linear functions. A triangulation of a manifold M is a simplicial complex, K,

whose underlying space is homeomorphic to M [2]. Given values at the vertices, we obtain a

continuous function on M by linear interpolation over the simplices of the triangulation. We

need some definitions to talk about the local structure of the triangulation and the function.

The star of a vertex u consists of all simplices that share u, including u itself, and the link

consists of all faces of simplices in the star that are disjoint from u. The lower link is the subset

of the link induced by vertices with function value less than u:

Stu = {σ ∈ K | u ⊆ σ},

Lku = {τ ∈ K | τ ⊆ σ ∈ St u, u 6∈ τ},

Lk−u = {τ ∈ Lku | v ∈ τ ⇒ f(v) ≤ f(u)}.

Critical points of piecewise linear functions have been introduced by Banchoff [4] as the vertices

whose lower links have Euler characteristic different from 1. Our classification is finer than

Banchoff’s and based on the reduced Betti numbers of the lower link. The k-th reduced Betti

number, denoted as β̃k, is the rank of the k-th reduced homology group of the lower link:

β̃k = rank H̃k. The reduced Betti numbers are the same as the usual (un-reduced) Betti numbers,

except that β̃0 = β0−1 for non-empty lower links, and β̃−1 = 1 for empty lower links [19]. When

the link is a 2-sphere only β̃−1 through β̃2 can be non-zero. Simple critical points have exactly

one non-zero reduced Betti number, which is equal to 1; see Table 1. The first case in which

this definition differs from Banchoff’s is a double saddle obtained by combining a 1- and a 2-

saddle into a single vertex. The Euler characteristic of the lower link is unity, which implies that
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β̃−1 β̃0 β̃1 β̃2

regular 0 0 0 0
minimum 1 0 0 0
1-saddle 0 1 0 0
2-saddle 0 0 1 0

maximum 0 0 0 1

Table 1: Classification of vertices into regular and simple critical points using the reduced Betti numbers of
the lower link.

Banchoff’s definition does not recognize it as critical. A multiple saddle is a critical point that

falls outside the classification of Table 1 and therefore satisfies β̃−1 = β̃2 = 0 and β̃0 + β̃1 ≥ 2.

It can be unfolded into simple 1-saddles and 2-saddles by modifying the simplicial complex, as

explained in [13, 6].

3 Time-varying Reeb Graphs

In this section, we characterize how the Reeb graph of a function changes with time. Specifically,

we give a complete enumeration of the combinatorial changes that occur for a Morse function

on S
3.

Jacobi curves connect Reeb graphs. Let Rt be the Reeb graph of ft, the function on

S
3 at time t. The nodes of Rt correspond to the critical points of ft, and as we vary t, they trace

out the segments of the Jacobi curve. The segments connect the family through time, giving us

a mechanism for identifying nodes in different Reeb graphs. We illustrate this idea in Figure 3.

x x
y

y
x

y

Figure 3: Reeb graphs at three moments in time whose nodes are connected by two segments of the Jacobi
curve.

Generically, the function ft is Morse. However, there are discrete moments in time at which

ft violates one or both Genericity Conditions of Morse functions and the Reeb graph of ft

experiences a combinatorial change. Since we have only one varying parameter, namely time,

we may assume that there is only a single violation of the Genericity Conditions at any of
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these discrete moments, and there are no violations at all other times. Condition I is violated

whenever ft has a birth-death point at which a cancellation annihilates two converging critical

points or an anti-cancellation gives birth to two diverging critical points. Condition II is violated

whenever ft has two critical points x 6= y with ft(x) = ft(y) that form an interchange. The two

critical points may be independent and have no effect on the Reeb graph, or they may belong to

the same level set component of ft and correspond to two nodes that swap their positions along

the Reeb graph. We now analyze the changes caused by birth-death points and by interchanges

in detail. We refer to the moments in time when these changes occur as birth-death events and

interchange events, respectively.

Nodes appear and disappear. When time passes the moment of a birth point, we get

two new critical points and correspondingly two new nodes connected by an arc in the Reeb

graph. By the Index Lemma, the indices of the two critical points differ by one, leaving three

possibilities: 0-1, 1-2, and 2-3. Consider first the 0-1 case in which a minimum and a 1-saddle

are born; see Figure 4. In the Reeb graph, we get a new degree-1 node that starts an arc ending

at a new degree-3 node. In other words, the Reeb graph sprouts a new arc downward from an

existing branch. The 2-3 case is upside-down symmetric to the 0-1 case, with the Reeb graph

sprouting a new arc upward from an existing branch.

0 1 0 1

0 1 0 1
0

1

0
10 1

0 1
10 0

1

Figure 4: Level sets and Reeb graphs around a 0-1 birth point. Time increases from left to right and the
level set parameter, indicated by a rectangular slider bar, increases from bottom to top. Going forward in
time, we see the sprouting of a bud, while going backward in time we see its retraction.

Consider second the 1-2 case in which a 1-saddle and a 2-saddle are born. As illustrated

in Figure 5, this event corresponds to the appearance of a short-lived handle in the evolution

of level sets. In the Reeb graph we get two new degree-2 nodes that effectively refine an arc
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by decomposing it into three arcs. Turning the picture upside-down does not change anything,

which shows that the case is symmetric to itself. We have three similar cases when time passes

1 2

1 2 1 2 1
2

1 2 1 2 1
2

21 1
2

Figure 5: Level sets and Reeb graphs around a 1-2 birth point. Time increases from left to right and the
level set parameter increases from bottom to top. Going forward in time, we see a refinement of an arc in
the Reeb graph and going backward we see a coarsening.

the moment of a death point. Two critical points of ft converge and annihilate when they

collide, and correspondingly an arc of the Reeb graph contracts to a point, effectively removing

its two nodes. The 0-1 and 2-3 cases are illustrated in Figure 4, which we now read from right

to left, and the 1-2 case is illustrated in Figure 5, which we also read backward, from right to

left.

Nodes swap. Reeb graph nodes swap position in the Reeb graph when the corresponding

critical points, x and y, form an interchange and, at that moment, belong to the same level set

component. Assume without loss of generality that ft−ε(x) < ft−ε(y) and ft+ε(x) > ft+ε(y).

We have four choices for each of x and y depending on whether they add or remove a handle,

merge two level set components or split a level set component. This gives a total of sixteen

configurations. We analyze possible before and after combinations and pair them, giving us the

cases illustrated in Figure 6. It is convenient to group the cases with similar starting configu-

rations together. We use +,−,M,S to denote ‘handle addition’, ‘handle deletion’, ‘component

merge’, and ‘component split’, respectively, for each of x and y.

Case 1 (++,+−,−+,−−) Both x and y change the genus and their corresponding nodes simply

swap their positions in the Reeb graph. [We pair ++ with itself to get Case 1a, +− with

−+ to get Case 1b, and −− with itself to get Case 1c].

Case 2 (+M,M+,−M,M−) We consider two sub-cases.
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(M+) Before the swap, x merges two components and y adds a handle. Either y involves

the two components that were merged by x, so x and y just swap, or y involves only

one of the two components, so y goes down one of the branches at x. [In the first

configuration, we pair M+ with itself to get Case 2a, and in the second we pair M+

with +M to get Case 2b.]

(M−) Before the swap, x merges two components and y removes a handle. After the swap,

y moves down one of the branches at x. [We pair M− with −M to get Case 2c].

Case 3 (−S,S−,+S,S+) We consider two sub-cases.

(−S) Before the swap, x deletes a handle and y splits the component. Either y breaks a

handle and x splits the component into two, so the nodes x and y swap, or x involves

only one of the two components split by y, so node x goes up one of the branches at

node y. [In the first configuration, we pair −S with itself to get Case 3a, and in the

second we pair −S with S− to get Case 3b.]

(+S) Before the swap, x adds a handle and y splits the component. After the swap, x

moves up one of the branches at y. [We pair +S with S+ to get Case 3c].

Case 4 (MM) Three components merge into one, and the only change between before and after

is the order of merging. [We pair MM with itself.]

Case 5 (MS,SM) Before the swap, x merges two components and y splits the merged compo-

nent. After the swap, y splits one of the components which merge at x before the swap,

and x merges one of the split components with the remaining component. [We pair MS

with SM.]

Case 6 (SS) A component splits into three, and the only change between before and after is

the order of splitting. [We pair SS with itself.]

The pairing of cases indicates a symmetry between before and after configurations. There is also

the symmetry we observe when we exchange inside with outside. Equivalently, we substitute −f

for f , which turns the Reeb graph upside-down, exchanging minima with maxima and 1-saddles

with 2-saddles.

4 Algorithm for Time-varying Reeb Graphs

In this section, we introduce an algorithm for maintaining a Reeb graph through time. The

algorithm is explained at the abstract level without going into implementation details. Section

5 will describe an adaptation of the algorithm to the piecewise linear case.

Data types. We represent time by a conventional priority queue storing birth-death and

interchange events prioritized by the moments in time they occur. At a given moment, t, the

time data type supports the following operations:

Insert(e) : add the future event e (it occurs after time t);
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Figure 6: On the left, Reeb graph portions before and after the interchange x and y. On the right, level sets
at a value just below the function value of x and y. In each case, the index of a critical point can be inferred
from whether the level set merges (index 1) or splits (index 2) locally at the critical point.
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NextEvent : return the earliest, top priority event and delete it from the queue;

Delete(e) : delete the event e from the queue.

We maintain the Reeb graph as a collection of nodes, and arcs that connect the nodes. Each

node knows about its incident arcs and about the segment of the Jacobi curve that contains the

corresponding critical point. Each arc knows its start-node and end-node and the time when

they will die at a death point or swap at an interchange. At a given moment in time, t, the

Reeb graph data type supports the following operations:

Segment(x) : return the segment of the Jacobi curve that contains the critical point that

corresponds to node x;

Nodes(a) : return the start-node and the end-node of arc a;

RemoveArc(a) : remove the arc a from the Reeb graph;

AddArc(x, y) : add an arc connecting the nodes x and y in the Reeb graph.

We have similar operations for removing and adding nodes, which are invoked whenever we

remove or add arcs. The Jacobi curve is stored as a collection of segments joined at shared

birth-death points. Each segment knows its endpoints, the index of its critical point, and

the corresponding node in the Reeb graph, if any. Each birth-death point knows its incident

segments. At a given moment in time, t, the data type for the Jacobi curve supports the

following operations:

Node(γ) : return the node in the Reeb graph that corresponds to the critical point on the

segment γ;

NextXing(γ, γ′, t) : return the next interchange (after time t) of the critical points tracing the

segments γ and γ′.

Finally, the Jacobi curve data type supports the operation BDPoints that returns all birth-

death points of the function f .

Sweeping time. We use the operations provided by the various data types to maintain the

Reeb graph of ft through time. We assume that data is available in a finite range, from time

0 to 1. Starting with the Reeb graph R0 at time t = 0, we maintain Rt by sweeping forward

in time, using the Jacobi curve as a path for its nodes. The time data type is initialized by

inserting all birth-death points provided by BDPoints. Interchange events are inserted and

deleted as arcs appear and disappear in the Reeb graph. Events are processed in the order they

are returned by repeated execution of the NextEvent operation.

Case birth event. The type is 0-1, 1-2, or 2-3 and can be determined from the indices of the two

segments that meet at the birth point u on the Jacobi curve. Next, we determine the arc

a to modify. Arc a contains the representative point of the level set through birth point

u. We defer the description of how to determine this arc till the next section. Finally, for

cases 0-1, and 2-3 we refine a and sprout a bud, and for case 1-2 we refine a by decomposing

it into three arcs.
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Case death event. We retrieve the nodes in the Reeb graph that correspond to the two segments

γ and γ′ that share the death point on the Jacobi curve: x = Node(γ) and y = Node(γ ′).

Then we contract the arc connecting x and y to a point and finally delete this point by

removing three arcs and adding one.

Case interchange event. We swap the two nodes x and y that correspond to the critical points

of the interchange by removing and adding arcs as indicated in Figure 6. Determining

which arcs below x or above y to remove is equivalent to deciding between sub-cases of the

interchange event. Such a decision is needed in Cases 2 to 6 ; We defer the description of

how to make these decisions to the next section.

As mentioned earlier, each arc removal implies the deletion of an interchange event, and each

arc addition implies the insertion of one into the time data type. Determining arcs to modify

during birth events and interchange events requires global information on level set connectivity.

In the next section, we will use a PL mesh to specify the Path operation required to determine

these arcs.

5 PL Implementation

In this section, we describe how to implement the algorithm of Section 4 for a piecewise linear

function defined on a triangulation of the 3-sphere cross time.

Data structures. We can now describe specific data structures implementing the three

abstract data types: time, Reeb graph, and Jacobi curve. A standard implementation of the

priority queue, such as a binary heap, will do for time, and a standard graph representation will

do for the Reeb graph [1]. The Jacobi curve is represented by cyclic lists of edges in the input

triangulation, K. Each cycle is decomposed into segments of maximal linear lists of edges that

are monotonic in time.

Let Kt denote the three-dimensional slice at time t of the four-dimensional triangulation K.

The vertices of Kt are points on edges of K, the edges are slices of triangles, etc. We require the

following operation to determine arcs to modify during birth events and to distinguish between

the various configurations at an interchange event.

Path(u) : return a monotone path connecting leaves in the Reeb graph. The path contains the

point representing the level set component of ft passing through the vertex u, which is

either on the Jacobi curve or in the link of such a point.

To compute this path, we walk in the 1-skeleton of Kt, in the direction of increasing ft, until

we reach a critical vertex x. Similarly, we walk in the direction of decreasing ft until we reach

another critical vertex y. Observe that x and y are also nodes in the Reeb graph, Rt, and delimit

the desired path.
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Determining arcs to modify at birth and interchange events. A birth event

modifies an arc a which we can find on Path(u), where u is the birth point. Interchange events

have various subcases which we can distinguish using the Path operation in the following

manner: we consider Case 2 illustrated in Figure 6. we distinguish between Case 2a and 2b

using the Path operation; Case 2c can be distinguished using the index of y. In Kt, points x

and y have the same function value and the lower link of y has two components. Letting u and

v be a vertex in each, we compute Path(u) and Path(v). Next, we compute arc a in Path(u),

and arc b in Path(v), both arcs incident to and below x. We have Case 2a iff a 6= b. We

distinguish between Cases 2b and 2c using the index of y and identify a = b as the arc below

x to be refined by y in the new Reeb graph. Case 4 is similar, except that the only decision to

be made is which arc below x gets refined by y. Cases 3 and 6 are upside-down symmetric to

Cases 2 and 4 and are distinguished by calling Path for vertices in the upper link components

of x. Finally, Case 5 is slightly different and decided by calling Path for x and for y. We

determine arc a in Path(x) incident to and above y, and arc b in Path(y) incident to and below

x, to modify at the interchange.

Initialization, sweep, and construction. We begin by constructing the Jacobi curve

as a collection of edges in K using the algorithm in [12]. This provides the collection of birth-

death points, which we use to initialize the priority queue representation of time. We also

construct the Reeb graph at time zero from scratch, using the algorithm in [6], which is similar

to the forward-backward sweep algorithm for computing Betti numbers in [10]. The latter

algorithm also detects when 1-cycles are created and destroyed, which is the information we

need to add the degree-2 nodes to the Reeb graph, which is not part of the former algorithm.

The last step in preparation for the sweep through time inserts the interchange events that

correspond to arcs in the Reeb graph into the priority queue. Specifically, for each arc a in R0,

we get (x, y) = Nodes(a), γ = Segment(x), γ ′ = Segment(y) and we insert the interchange

returned by NextXing(γ, γ′, 0) into the priority queue.

The sweep is now easy, repeatedly retrieving the next event, updating the Reeb graph, and

deleting and inserting interchange events as arcs are removed and added. We think of the

sequence as the evolution of a single Reeb graph. Following Driscoll et al.[11], we accumulate

the changes to form a single data structure representing the entire evolution, which we refer to

as the partially persistent Reeb graph. We adhere to the general recipe, using a constant number

of data fields and pointers per node and arc to store time information and keep track of the

changes caused by an update. In addition, we construct an array of access pointers that can be

used to retrieve the Reeb graph at any moment in time proportional to its size.

Analysis. The running time of the algorithm can be expressed in terms the following param-

eters

N = number of simplices in K, the triangulation of the space-time data;
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n = upper bound on the number of simplices in a slice Kt of K;

E = number of birth-death and interchange events;

k = number of edges of the Jacobi curve.

We have n ≤ N , k ≤ N , and E ≤ k2, assuming the triangulation is fine enough to resolve the

Jacobi curve as a disjoint collection of simple cycles. For typical input data, the left side will be

significantly smaller than the right side in all three inequalities. To construct the Jacobi curve,

we compute the reduced Betti numbers of the lower link of each edge in time O(`), where ` is

the size of the link. The total size of all links is proportional to N , which implies a running time

of O(N). The birth-death points are inserted into the priority queue in O(log n) time each. The

initial Reeb graph is constructed in time O(n log n), inserting the initial batch of interchange

events in time O(n log n) also. The sweep iterates through E events, each in time O(n) needed

to determine the after configuration of the event. In addition, we use time O(k) to move the

nodes of the Reeb graph along the chains of edges representing the segments of the Jacobi curve.

In total, the running time is O(N + En). We construct the partially persistent data structure

representing the evolution of the Reeb graph in the same time. The size of that data structure is

proportional to the size of the initial Reeb graph plus the number of events, which is O(n + E).

An obvious place to improve the running time is to improve the time needed to do a Path

operation. Is there a data structure that can return (the endpoints of a) path in time O(log n)?

If so then the total running time would improve to O(N + E log n).

6 Betti Numbers of Level Sets

The Betti numbers of a space count various topological features. For the level sets of regular

values of ft, which are 2-manifolds, β0 is the number of connected components, β1 is the number

of tunnels, and β2 is the number of voids. (For a d-dimensional space, only β0 through βd may

be non-zero.)

There is coherence for the set of Betti numbers along an arc of Rt. There is also coherence for

how these numbers change as the Reeb graph evolves over time. Because level set components

change topology only at critical points, all level set components in the family represented by

an open Reeb graph arc (excluding its end-nodes) of Rt have the same set of Betti numbers. If

we equip each arc of the time-varying Reeb graph with the set of Betti numbers of its family

of level set components, then we can obtain Betti numbers for any level set component at any

time. In other words, the Betti numbers can be parametrized by time t and level value s as

βi(s, t). The arc of Reeb graph Rt that represents a component of the level set at level value

s contains the set of Betti numbers for that component. We will however continue to use the

unparametrized notation βi for simplicity.

For a regular value of ft each level set component is a closed 2-manifold, giving β0 = β2 = 1

for each arc; only the value of β1 must be computed. Before we compute the value of β1 for

each arc of the time-varying Reeb graph, we first consider the function ft and classify the effect
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of its critical points on level sets, and their β1 value. We can then vary t and understand how

each birth-death, and interchange event that modifies the Reeb graph changes the β1 value of

its arcs.

Critical points change the β1 value of level set components. We study the action

of a critical point x on the topology of level set components as we sweep function value ft past

its value from below. This tells us how the β1 value of the arcs incident to and above x are

related to the β1 value of the arcs incident to and below x.

If x is a minimum it creates a new component homeomorphic to S
2; the arc incident to and

above it has Betti number β1 = 0.

If x has index-1 then it can merge two level set components into one, or add a handle to a

single level set component. When two level set components merge, we have the connected sum

of two 2-manifolds. We derive the relationship between their Betti numbers before and after

the merge.

Connected sum Lemma. The Betti number β1 of the connected sum of 2-manifolds M, and

N, without boundary, is the sum of their Betti number β1: βM#N

1 = βM
1 + βN

1 .

Proof. The Euler characteristic of the connected sum is χ(M#N) = χ(M)+χ(N)−2. Express-

ing each of the Euler characteristics in terms of Betti numbers, and noting that β0 = β1 = 1 for

a 2-manifold without boundary yields the formula βM#N

1 = βM
1 + βN

1 .

If x merges two components then according to the connected sum lemma the β1 value of the

arc incident to and above it is the sum of the β1 value of the arcs incident to and below it.

If x adds a handle we can understand the change in the β1 value using the relationship

between the value of β1 and the genus g: β1 = 2g. Adding a handle increases the value of β1

by 2; the β1 value of the arc incident to and above x is larger by 2 than the β1 value of the arc

incident to and below it.

If x is a maximum or an index-2 critical point its action on value of β1 is upside down

symmetric to that when it is a minimum, or an index-1 critical point respectively.

With this understanding of the action of critical points on the value of β1, we investigate

how to update the Reeb graph over time at birth-death and interchange events.

b
b

b
0 +

−

b

b+2

b

b

Figure 7: Updating the value of β1 at a birth-death event. As described in section 3, a ‘+’ means handle
addition, and a ‘−’ means handle deletion. For each picture time increases to the right. The β1 value of arcs
at a 0-1 birth event at left, and at a 1-2 birth event at right. A 2-3 birth is upside down symmetric to the
0-1 birth. Running in reverse gives us the corresponding death cases.
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The β1 value changes over time. At a 0-1 birth event, set the β1 value of the new arc

to 0 according to our classification; the β1 value of the other arcs incident to the new index-1

saddle are the same as that of the deleted arc. Handle a 2-3 birth similarly. Figure 7 shows β1

value at a 0-1 birth on the left; the 2-3 birth is upside down symmetric to it.

At a 1-2 birth event, set the β1 value of the new arc to the β1 value of the arc incident to

and below its index-1 node, and increment it by 2; the β1 value of the other arcs incident to the

new nodes are the same as that of the deleted arc. Figure 7 shows the β1 value at a 1-2 birth

on the right.

Handle a death event as if running the corresponding birth event in reverse. Set the β1 value

of the new arc to the β1 value of one of the deleted arcs that did not connect the destroyed pair

of nodes. Going backwards in time in Figure 7 shows the β1 value at death events.

We now consider updates during interchange events. We can analyze each interchange case

using the action of critical points on the value of β1 developed earlier, to yield the updates to

value of β1 shown in Figure 8.
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Figure 8: Updates to β1 value for each interchange case. As described in section 3, a ‘+’ means handle
addition, and a ‘−’ means handle deletion. For clarity, we omit the x, y labels of the interchanging nodes.
The letters b, c, d, e denote the β1 values of the arcs.

Consider case 1b in the Figure 8 and observe how the β1 value of the level set component

changes as we sweep up the level value from below. Before the interchange, node ‘+’ adds a

handle increasing the β1 value by 2, and node ‘−’ deletes a handle restoring the β1 value to the

start value. After the interchange, the effects are reversed; node ‘−’ deletes a handle, following

which node ‘+’ adds a handle. For a more complicated case, consider case 2b. Before the

interchange, the merge node first creates a connected sum of two components with their β1
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values summed, following which node ‘+’ adds a handle. After the interchange, because node

‘+’ slides down one of the arcs incident to the merge node, it adds a handle to one of the merging

components first, followed by the action of the merge node.

We also observe upside-down symmetry in several cases; case 1a with 1c, case 2 with 3,

and case 4 with 6.

We are now ready to compute the β1 value for each arc of the time-varying Reeb graph.

Computing the β1 value over time. We can compute β1 value for each arc during the

forward sweep in time that constructs the time-varying Reeb graph. Equip each arc of the Reeb

graph R0 at time t = 0 with its β1 value using the algorithm by Pascucci et al. [20]. Maintain β1

value for each arc of Rt during every birth-death and interchange event of the sweep according

to the update policy developed before.

7 Path Seeds over Time

Path seeds, developed by Carr et al. [7], can be used for fast level set extraction from a static

dataset; we wish to compute path seeds for fast level set extraction from time-varying data.

7.1 Static Path Seeds

We define static path seeds and compute them; our description enables us to define and compute

time-varying path seeds.

Definition 7.1 (Descending path) A descending path beginning at vertex u of the slice Kt

is an edge connected sequence of vertices with decreasing value of ft.

For the next definition, recall that each node x of the Reeb graph Rt maps to a critical point of

ft, which we also call x.

Definition 7.2 (Path seed) A path seed of an arc of Rt with upper node x is a vertex v ∈ Kt

such that every descending path which begins at x and contains u intersects all the level set

components that the arc represents.

This definition does not suggest either how such a vertex u may be found, or how such a

descending path that contains both x and u may be found. As will be explained soon, vertex u

turns out to be either x itself or a vertex in its lower link; finding a descending path through x

and u becomes straightforward.

Definition 7.3 (Seed edge) A seed edge of a level set component is an edge in Kt that inter-

sects it.
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If each arc of the Reeb graph is equipped with a path seed, we can find a seed edge for any

level set component it represents in any descending path which begins at its upper vertex x

and contains its path seed. This level set component can be extracted by visiting only those

simplices that intersect it, starting from the simplices incident to the seed edge.

A path seed maps an individual arc to its level sets’ component. In their flexible isosurface

interface, Carr et al. use this mapping to selectively extract user specified components for one,

or several level values. Thus path seeds have an advantage over conventional seed set methods

[15] as the latter do not maintain the required mapping.

Choosing path seeds. We describe how to choose a path seed for an arc a of a static Reeb

graph depending on the type of the arc’s upper node x.

Case S1: If x is a maximum, a split node, a ‘+’ node, or a ‘−’ node, it has one arc incident to

and below it; choose vertex x itself as the path seed for arc a because all descending paths

that begin at x intersect all level set components that arc a represents.

Case S2: If x is a merge node, it has two arcs incident to and below it, and vertex x has two

lower link components. A descending path that starts at x and contains a vertex u of

one of its lower link components intersects all the level set components represented by one

of the two arcs; a descending path from x that contains a vertex of the other lower link

component intersects all the level set components of the remaining arc; match a descending

path to its arc and use the lower link vertex in that path as the arc’s seed path. Thus

path seeds also map each lower link component of x to its two arcs below.

We can choose path seeds in case S2 using the Path operation described in Section 5 and

restated here.

Path(u) : return a monotone path connecting leaves in the Reeb graph. The path contains

the point representing the level set component of ft passing through the vertex u, which is either

on the Jacobi curve or in the link of such a point.

Letting u and v be a vertex in each lower link component of x, compute the arcs a and b

incident to and below x in Path(u) and Path(v); choose u as the path seed for a, and v as the

path seed for b.

7.2 Time-varying Path Seeds

We are ready to extend the definition of path seeds to time-varying Reeb graphs. Define the

lifespan of an arc in the time-varying Reeb graph as the time interval between its creation and

its deletion.

Definition 7.4 (Time-varying Path Seeds) A time-varying path seed of an arc a of the

time-varying Reeb graph is an edge in the triangulation K such that it contains a path seed for

arc a in every Reeb graph Rt in its lifespan.
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If we equip each arc of the time-varying Reeb graph with a time-varying path seed then,

we can find a seed edge for any level set component at any time. But first, we must choose

the time-varying path seed of an arc a depending on its upper node x just like we did in the

static case; we prove a lemma on the link structure of a vertex in the slice Kt to assist us in

our choice. This analysis enables us to choose the time-varying path seed of new arcs created at

birth-death and interchange events, and we can compute time-varying path seeds for each arc

of the time-varying Reeb graph.

x

y

u

t w

v

Figure 9: In slice Kt, vertex y belongs to the link of x.

Choosing time-varying path seeds. For the slice Kt shown in Figure 9, We analyze

the condition under which vertex y belongs to the lower link of vertex x. In the proof, recall

that the function g represents the time.

Lower Link Lemma. Let vertices x and y ∈ Kt lie on edges uv and uw ∈ K respectively.

Vertex y is in the lower link of critical vertex x whenever vertex w is in the lower link of

Jacobi edge uv.

Proof. Vertex y is in the lower link of x if and only if the following condition holds.

f(w) − f(u)

g(w) − g(u)
<

f(v) − f(u)

g(v) − g(u)

Letting λ = (f(u) − f(v))/(g(v) − g(u)), this reduces to f(w) + λg(w) < f(u) + λg(u). This is

exactly the condition for w to be in the lower link of uv when it is a Jacobi edge [12].

As described in the analysis next, this lemma helps us choose time-varying path seeds for

merge nodes.

Case T1: If x is a maximum node, a split node, a ‘+’ node, or a ‘−’ node, it has one arc

incident to and below it for its lifespan; choose the Jacobi edge traced by x itself as the

time-varying path seed for a because taking slices in its lifespan gives us case S1 discussed

before.

Case T2: If x is a merge node, we can use the lower link lemma to choose time-varying path

seeds for arcs incident to and below it. For the slice Kt shown in Figure 9, one vertex y

from each lower link component of x can be a path seed for each of its arcs in Rt according
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to case S2. The lower link lemma implies that vertex y is in the lower link of x for the time

interval (g(u), g(w)) spanned by edge uw. From each lower link component of uv choose

a vertex w and match edge uw to the arc incident to and below x if vertex y is a path

seed for that arc in any slice Kt in this time interval. (This matching can be computed as

explained in the static case using the Path operation). Edge wv is the time-varying path

seed for that arc for the time interval [g(w), g(v))

We can choose time-varying path seeds for each new arc created at a birth-death and inter-

change event; simply determine the case based on the upper node of the new arc and choose as

described.

Computing path seeds for the time-varying Reeb graph. We now describe how to

compute time-varying path seeds for every arc of the time-varying Reeb graph. The computation

is done during the forward sweep in time that constructs the time-varying Reeb graph. Equip

each arc of the Reeb graph R0 with a time-varying path seed according to case T1, or T2.

Update the time-varying path seeds of new arcs created at each birth-death and interchange

event as described before.

8 Conclusion

The main contribution of this paper is the classification of the combinatorial changes in the

evolution of the Reeb graph of a generic time-varying Morse function on S
3. We establish a

connection between the time-series of Reeb graphs and the Jacobi curve defined by the time-

varying function. Using this connection, we describe an algorithm that maintains the Reeb

graph for piecewise linear data. Letting n be the upper bound on the number of simplices in

the triangulation of S
3, this algorithm takes time O(n) per combinatorial change in the Reeb

graph. While maintaining the Reeb graph, we construct a partially persistent data structure of

size proportional to the initial Reeb graph plus the number of events that represent the entire

evolution. Given a moment in time, t, we can use this data structure to retrieve the Reeb graph

Rt in time logarithmic in the number of events plus linear in its size. We can also augment the

time-varying Reeb graph with the Betti numbers of level set components, and with path seeds

for fast level set extraction.

Both our case analysis of events and our algorithm are limited to S
3 and to a function on

S
3 that varies with time. It would be interesting to extend the analysis and the algorithm to

a time-varying function on a general 3-manifold, for which the Reeb graph may have loops.

Beyond this extension, it would be interesting to generalize the analysis and the algorithm to

a function f restricted to the level sets of another function g defined on the same 4-manifold.

Additional problems can be formulated by increasing the number of dimensions and the number

of functions. Future research includes algorithms to augment the time-varying Reeb graph with

quantitative information about level set geometry such as surface area and enclosed volume.
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