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ABSTRACT
Generalizing the concept of a Reeb graph, theReeb spaceof a mul-
tivariate continuous mapping identifies points of the domain that
belong to a common component of the preimage of a point in the
range. We study the local and global structure of this space for
generic, piecewise linear mappings on a combinatorial manifold.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete
structures, Geometrical problems and computations

General Terms
Algorithms, Theory

Keywords
Smooth and PL topology, combinatorial manifolds, Reeb spaces,
cone neighborhoods, triangulations, stratifications, algorithms.

1. INTRODUCTION
This paper advocates Reeb spaces for the structural analysis of

continuous, multivariate, scientific data.

Motivation. The current transformation of the physical sciences is
driven by the availability of ever larger and more detailed datasets.
In many cases, the data samples one or more continuous functions.
We model this situation mathematically as a mappingf : M → R

k,
whereM is the domain and the components off are the multi-
ple real-valued functions. Commonly asked questions concern the
identification of correlated and uncorrelated components and the
construction of a small basis that preserves all or most of the infor-
mation contained inf . The size of the data motivates the extraction
of the essential information and their summary. A powerful tool in
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this context is theReeb graph, which is defined whenk = 1. It
compresses the components of the level sets to points and expresses
their relationship by forming a1-dimensional space. The situation
for k > 1 is significantly more complicated and the topic of this
paper. The central question is how to pack the Reeb graphs of the
k components into a single structure. Preferably, this structure re-
flects the properties of the mapping and is invariant under different
choices of basis components. Not surprisingly, the singularities of
the mapping play a crucial role, which will become clear whenwe
see how the Jacobi set of the mapping relates to the Reeb space, the
proposed single structure.

Beyond summarizing, we are also interested in simplifying the
data and its derivatives, in particular the Jacobi set and the Reeb
space. While there have been major advances in measuring thesize
of features [7], the translation of this understanding intoeffective
simplification methods has been slow. Particularly unsuccessful
was the attempt to simplify the Jacobi set. Indeed, our original mo-
tivation for the study of Reeb spaces was exactly that: to understand
the structural constraints that guide the simplification ofthe Jacobi
set. While we feel that this paper is a step in the right direction, we
leave the completion of this task to future investigations.

Prior work and results. Because of the importance in visualiza-
tion, there has been a great deal of work on Reeb graphs of real-
valued functions [18]. Motivated by the absence of loops forfunc-
tions on topologically simple domains, these graphs are sometimes
referred to ascontour trees[1]. The simplification of these trees
was discussed in [3]. There is significantly less prior work on the
extension of Reeb graphs to Reeb spaces. The existing work is
limited to bivariate, generic, smooth mappings.

• Burlet and de Rham study smooth, bivariate mappings on
orientable3-manifolds [2]. Under the assumption that every
point of the Jacobi set is definite (appears as a minimum for
some linear combination of the two components), they es-
tablish relationships between the topology of the3-manifold
and that of the Reeb space. Porto and Furuya extend this
work to orientabled-manifolds ford ≥ 3 [17].

• Motivated by the study of immersions of3-manifolds inR
4,

Levine and coauthors give a complete local classification of
points in the Reeb space of bivariate, generic, smooth map-
pings on orientable as well as non-orientable3-manifolds
[12, 13]. Furuya extends this work to orientable4-manifolds
[9] and Kobayashi and Saeki extend it further tod-manifolds
for d ≥ 3 [11].

In the piecewise linear literature we find only one paper thatgoes
beyond Reeb graphs [6]. Using the Jacobi curves for piecewise
linear mappings introduced in [5], it gives a dynamic algorithm for



maintaining the Reeb graph in time. The result may be interpreted
as sweeping out the Reeb space of a bivariate mapping in which
one of the components is time.

In this paper, we consider generic, piecewise linear mappings
from a combinatoriald-manifold to R

k. Following the work on
generic, smooth mappings, we characterize points of the Reeb space,
proving that their neighborhoods are cones over Reeb spacesof one
lower dimension. Complementing the local analysis, we showthat
Reeb spaces have triangulations and coarsest stratifications. Their
existence is established constructively. In the case of thetriangula-
tion this leads to a polynomial-time algorithm while the construc-
tion of the coarsest stratification contains an undecidablesubprob-
lem and leads to algorithms only fork ≤ 4.

Outline. Section 2 provides background from topology. Section
3 introduces Reeb spaces for piecewise linear mappings on combi-
natoriald-manifolds. Section 4 gives the proof of the local char-
acterization of points of the Reeb space. Section 5 constructs the
triangulations and the coarsest stratifications. Section 6illustrates
the results by studying bivariate piecewise linear mappings on ori-
entable3-manifolds that are generic and simple. Section 7 con-
cludes this paper.

2. BACKGROUND
In this section, we introduce the necessary background on sim-

plicial complexes, piecewise linear functions, and Jacobisets. For
further material on the first two topics we refer the reader toMunkres
[16] and, on the last topic, to [5].

Simplicial complexes. An i-simplexσ is the convex hull ofi +
1 affinely independent points in some Euclidean space. Letting
u0, u1, . . . , ui be the points,σ is the set ofconvex combinations,
that is, points

P

sjuj with
P

sj = 1 andsj ≥ 0 for all 0 ≤ j ≤ i.
The interior of σ consists of the convex combinations for which
all the sj are strictly positive. Thedimensionof the simplex is
dimσ = i, which is at most the dimension of the ambient Eu-
clidean space. Afaceof σ is spanned by a non-empty subset of
the i+ 1 points. All faces areproperexcept forσ which is anim-
proper face of itself. Theboundaryof the simplex, denoted as∂σ,
consists of all its proper faces. Ifτ andυ are two disjoint faces of
σ with dim τ + dimυ = dimσ − 1 thenσ is thejoin of the two,
σ = τ ∗ υ, meaning it is the union of line segments connecting
points ofτ with points ofυ. Any two of these line segments are
either equal, disjoint or meet at a common endpoint.

A simplicial complexis a finite set of simplicesK such that every
face of a simplex inK belongs toK and the intersection of any two
simplices inK is either empty or a face of both. We callK a d-
complexandd thedimensionof K if the largest dimension of any
of its simplices isd. Theunderlying spaceof K is the union of the
simplices,|K| =

S

σ∈K σ, together with the subspace topology
inherited from the ambient space. Avoiding any possible confusion
we will sometimes blur the distinction between a complex andits
underlying space. Asubcomplexis a simplicial complexL ⊆ K.
L is calledfull if it contains every simplex ofK whose vertices lie
in L. For every non-negative integeri ≤ d, thei-skeleton, denoted
asK(i), is the largest subcomplex of dimensioni; it consists of
all simplices of dimensioni or less inK. The0-skeleton is often
referred to as thevertex set, VertK = K(0). Thestar of a simplex
σ, denoted asStσ, is the set of simplices inK that haveσ as a
face. We get theclosed starif we add all faces of simplices in the
star. Thelink of σ, denoted asLk σ, consists of all simplices in the
closed star that have an empty intersection withσ. Note that the
closed star and the link are complexes while the star is generally

not a complex. Extending the notion of underlying space to subsets
L ⊆ K we write|L| for the union of interiors of the simplices in the
subset. Asubdivisionof K is a simplicial complex with the same
underlying space for which every simplex is contained in a simplex
in K. Particularly useful is thebarycentric subdivisionwhich we
denote asSdK. To describe it we recall that thebarycenterof an
i-simplex is the average of itsi + 1 vertices. The barycenters of
the simplices inK form the vertex set ofSdK and a subset of the
barycenters spans a simplex iff the corresponding simplices inK
form a chain in which every simplex is a face of the next in the
sequence.

We sayK triangulatesa topological space homeomorphic to its
underlying space. IfK triangulates ad-manifold then every point
of |K| has a neighborhood homeomorphic toR

d. However, this
does not imply that the link of everyi-simplex triangulates a sphere
of dimensiond− i− 1. A counterexample to this seemingly plau-
sible property can be found in Edwards [8], see also [19]. We call
K a combinatoriald-manifold if it satisfies this stronger property,
that is, the link of every vertex triangulates the(d− 1)-sphere and
is itself a combinatorial(d− 1)-manifold. Equivalently, the star of
every vertex is isomorphic to the star of a vertex in a subdivision of
thed-simplex.

PL mappings and height functions. Let u1, u2, . . . , un be the
vertices of a simplicial complexK, σ a simplex inK, anda a
point ofσ. We recall thata is a unique convex combination of the
vertices ofσ so we can writea =

Pn
j=1 sjuj with

Pn
j=1 sj = 1,

sj ≥ 0 for all j, andsj = 0 unlessuj is a vertex ofσ. Thesj
are unique and are called thebarycentric coordinatesof a. We use
them to extend a vertex map̂f : VertK → R

k by piecewise linear
interpolation to apiecewise linearor PL mappingf : |K| → R

k

defined by

f(a) =

n
X

j=1

sj f̂(uj).

By construction, the restriction off to a simplex ofK is linear. We
may think off as a way to drawK in R

k. Clearly,f is contin-
uous but it is generally not injective. In particular,f restricted to
a simplex of dimension beyondk cannot be injective. We callf a
generic PL mappingif the images of the vertices have no structural
properties that can be removed by arbitrarily small perturbations of
the vertex map. In particular, we will make use of the following
consequence of this general assumption.

I. The restrictions off to simplices of dimensionk or less are
injective, that is, the image of every simplex of dimension
i ≤ k is ani-simplex.

Supposeh : |K| → R is a generic PL function onK. By Property I
we haveh(ui) 6= h(uj) wheneverui anduj are the two endpoints
of an edge inK. We define thelower link of a vertexuj as the
collection of simplices in the link whose vertices all have smaller
function value thanuj . Symmetrically, theupper link is the col-
lection of simplices in the link whose vertices have larger function
value:

Lk−uj = {σ ∈ Lkuj | a ∈ σ ⇒ h(a) < h(uj)};

Lk+uj = {τ ∈ Lk uj | a ∈ τ ⇒ h(a) > h(uj)}.

AssumingK is a combinatoriald-manifold, the link ofuj is a tri-
angulation of the(d−1)-dimensional sphere,Sd−1. The lower and
upper links are full subcomplexes of this triangulation. Note that
their union is not all of the link as there are simplices that have some
of their vertices with higher value, and some with lower value.



We measure the way the lower link is connected using reduced
homology withZ/2Z coefficients. Following the usual conven-
tion, we writeβ̃i for the rank of the dimensioni reduced homology
group. Denoting the ranks of the non-reduced homology groups
by βi we haveβ̃i = βi unlessi < 1. Furthermoreβ̃0 = β0 − 1
andβ̃−1 = 0 unless the lower link is empty in which case we have
β̃0 = β0 = 0 and β̃−1 = 1. All β̃i are non-negative integers.
We call uj a regular vertexof h if all reduced Betti numbers of
its lower link vanish and acritical vertex, otherwise. It is asimple
critical vertex if

P

β̃i = 1. Simple critical points are conveniently
classified by theindexthat exceeds the dimension of the non-zero
reduced homology group by one; see Table 1. Ford = 3 it is com-
mon to refer to simple critical points of index0, 1, 2, 3 asminima,
1-saddles, 2-saddles, maxima.

type index β̃−1 β̃0 β̃1 β̃2

regular 0 0 0 0

minimum 0 1 0 0 0

1-saddle 1 0 1 0 0

2-saddle 2 0 0 1 0

maximum 3 0 0 0 1

Table 1: A simple critical point of index i is characterized by
β̃i−1 = 1 and β̃j = 0 for all j 6= i− 1.

Jacobi sets.We now return to a multivariate generic PL mapping
f : |K| → R

k. Following [5], we consider all linear combinations
of the components off . Equivalently, we let~u be a unit vector in
S
k−1 and consider the PL functionh~u : |K| → R defined by

h~u(a) = 〈f(a), ~u〉,

the height of the image of the pointa in the direction~u. Assuming
h~u is constant on a simplexτ inK we can define itslower link the
same way as for a vertex, namely as the collection of simplices in
the link whose vertices have function value less than the points of
τ . Theupper linkof τ is similarly defined. Assuming the upper and
lower links exhaust all vertices ofLk τ , we use the reduced homol-
ogy of the lower link to decide whetherτ is regular or critical for
h~u, and if it is critical whether or not it issimple. If τ is a(k − 1)-
simplex then there are exactly two unit vectors for which theheight
functions they define are constant onτ , namely the unit normals~u
and−~u of the image ofτ in R

k. The lower link ofτ under one
height function is its upper link under the other, which implies that
τ is critical for h~u iff it is critical for h−~u. In other words,τ has
only one chance to be critical. Finally, we define theJacobi setof
f as the collection of critical(k − 1)-simplices together with their
faces. These simplices form a subcomplex ofK which we denote
asJf .

Property I is needed to unambiguously define the Jacobi set, but
it does not imply that this subcomplex has a structure that isas
simple as the Jacobi set of a generic smooth mapping. We therefore
introduce a second requirement and callf : |K| → R

k a simple,
generic PL mappingif

II. every (k − 1)-simplex inJf is a simple critical simplex.

Even property II falls short of implying that the underlyingspace
of Jf is a manifold, but this would be asking too much since even
Jacobi sets of generic, smooth mappings are not necessarilymani-
folds unlessk is very small [10].

We will not need the simplicity property until section 6 whenwe
deal with the specific case whenK has dimension3.

3. REEB SPACES
In this section, we introduce the main concept studied in this

paper, the Reeb space of a piecewise linear mapping.

Generic preimages. Let K be a combinatoriald-manifold and
f : |K| → R

k a generic PL mapping. We are interested in the
preimage of a pointc ∈ R

k. By Property I,f−1(c) meets every
simplex of dimensioni ≤ k in at most a single point. This im-
plies that it meets every simplex of dimensionk ≤ i ≤ d either in
the empty set, a point, or an(i− k)-dimensional convex polytope,
namely the intersection of thei-simplex with an(i− k)-plane con-
tained in the affine hull of thei-simplex. For most pointsc these
polytopes fit together to form a manifold, as we now prove.

GENERIC PREIMAGE LEMMA . LetK be a combinatoriald-manifold,
f : |K| → R

k a generic PL mapping, andc a point inR
k not in

the image of the(k − 1)-skeleton. Thenf−1(c) is either empty or
a manifold of dimensiond− k.

PROOF. For d < k the preimage ofc is empty and ford = k
it is either empty or a finite set of points. In both cases thereis
nothing left to show. We therefore assumed > k for the remainder
of this proof.

Let σ be ani-simplex inK. SinceK is a combinatoriald-
manifold, the link ofσ triangulates a sphere of dimensiond− i−1.
Lettingu be the barycenter ofσ, we constructBσ = u ∗ |Lk σ| by
drawing a line segment fromu to every point in the link. Clearly,
Bσ is a PL ball of dimensiond− i. We further draw a line segment
between every point ofBσ and every point of the boundary ofσ,
as sketched in Figure 1. Any two of these line segments are either

Figure 1: We see a vertical edge and the corresponding1-ball
obtained by connecting its midpoint to the respective thirdver-
tices of the two triangles in the star. Connecting every point of
the 1-ball to the endpoints of the edge gives a decomposition of
the closed star. Pieces of the decomposing line segments form a
homeomorphism between the1-ball and a portion of the preim-
agef−1(c).

disjoint or meet at a common endpoint, which is either inBσ or in
∂σ. Together, the line segments decompose the closed star ofσ.

Next we show that fori = k the portion off−1(c) inside the
closed star ofσ is homeomorphic toBσ . Equivalently, every ver-
tex of the preimage has a neighborhood homeomorphic toR

d−k.
This implies thatf−1(c) is indeed a(d − k)-manifold. Letσ be
a k-simplex inK that contains a pointuσ with f(uσ) = c. Be-
causef−1(c) avoids the(k − 1)-skeleton ofK, uσ belongs to the
interior of σ. Let τ ∈ Stσ and letυ be its maximal face disjoint
from σ. Henceσ ∗ υ = τ andu ∗ υ is the contribution ofτ toBσ .
Letting j be the dimension ofτ we havedimυ = j − k − 1 and
dim (u ∗ υ) = j − k. Furthermore,f−1(c) intersectsτ in a poly-
tope of dimensionj − k. The line segments in the decomposition
of Bσ ∗ ∂σ define a piecewise linear homeomorphism fromu ∗ υ



to this polytope; see Figure 1. The collection of such then gives
a homeomorphism fromBσ to the intersection off−1(c) with the
closed star ofσ.

Quotient space. Intuitively, the Reeb space off parameterizes
the set of components of preimages of pointsc ∈ R

k, we need to
describe its topology. By the Generic Preimage Lemma, all but a
measure zero subset of these components are manifolds of dimen-
siond−k. As we varyc without crossing the image of the(k−1)-
skeleton these manifolds vary without changing their topological
type. Sincec hask degrees of freedom this variation has locally
the structure of ak-manifold. Only whenc belongs to the image of
the(k − 1)-skeleton can we have violations of the manifold prop-
erty and get shapes that appear as transitions between manifolds of
possibly different global connectivity. In summary, we mayexpect
the Reeb space to have the structure of a collection ofk-manifolds
that are glued to each other in possibly complicated ways. The re-
mainder of this paper show that this is indeed the right intuition.
It does this by first formally introducing the Reeb space and then
studying its local and global topological properties.

Call two pointsa and b in |K| equivalent, denoted bya ∼ b,
if f(a) = f(b) anda andb belong to the same component of the
preimagef−1(f(a)) = f−1(f(b)). TheReeb spaceis the quotient
space obtained by identifying equivalent points,Wf = |K|/ ∼,
together with the quotient topology inherited from|K|. We already
have a map from|K| to R

k, namelyf , and one from|K| to Wf ,
which we call thequotient map, qf . TheStein factorizationadds
another mapg from Wf to R

k such that the triangle commutes:

|K|
f

−→ R
k

qf
ց րg

Wf .

Sincef is generic PL, the dimension of the Reeb space isd− (d−
k) = k, the same as the image off . Furthermore, it is not difficult
to prove that the Reeb space is Hausdorff, that is, any two different
points inWf have neighborhoods that are disjoint.

An example. We illustrate the definitions with a mapping from
a 3-manifold to the plane. It is convenient to describe the case
of a smooth mapping, the extra details that appear in the caseof
a PL approximation are not difficult. We also note that our ex-
ample is not compact, so should treated as local since we always
assume in the PL case that we have a finite simplicial complex.
Considerf : R

3 → R
2 defined by its two component functions

f1(x1, x2, x3) = x3
2 − x1x2 + x2

3 andf2(x1, x2, x3) = x1. The
preimage of a pointc = (s, t) is the intersection of two level sur-
faces,f−1

1 (s) ∩ f−1
2 (t). Setting the two components tos and t

we getx1 = t andx2
3 = γ(x2) whereγ(x2) = s − x3

2 + tx2.
For t > 0, γ has a minimum and a maximum, fort = 0 it has
a single degenerate critical point, and fort < 0 it has no critical
points. We are interested in the number of roots and in particular
the values ofx2 for which γ(x2) ≥ 0 since only for those do we
get a solution tox2

3 = γ(x2). The odd degree polynomialγ has ei-
ther1 or 3 roots except whereγ and its derivative have a common
zero, which occurs along the fold27s2 = 4t3. As illustrated in
Figure 2, this curve decomposes the(s, t) plane into two regions,
γ has three roots above, two roots on, and one root below the fold.
Accordingly, f−1(c) has two components above and one compo-
nent below the fold. It consists of a curve and an isolated point for
c on the left branch and of two touching curves forc on the right

s

t

Figure 2: Above the fold the function γ has three roots and
thus two intervals in which it is positive. Below the foldγ has
one root and only one interval in which it is positive.

branch of the fold. It should be clear how these cases transition
between each other as we varyc in the plane. The fold is of course
the image of the Jacobi set under the mappingf .

We can re-interpret Figure 2 as a picture of the Reeb space off .
Indeed, it is the image ofWf under the mapg in the Stein factor-
ization. The region above the fold is covered twice and the region
below is covered once. Correspondingly, the Reeb space consists
of two sheets, one covering the entire plane and the other covering
the region above the fold. The latter connects to the former along
the right branch of the fold, which is where the two components
of f−1(c) come together to merge into a single component. The
left branch of the fold is the image of a boundary piece of the sec-
ond sheet and has nothing to do with the first sheet. In summary,
the Reeb space consist of the plane with another two-dimensional
sheet attached to it, like a fin sticking out of a fish as in Figure 6,
left.

4. LOCAL STRUCTURE
In this section, we prove that every point of the Reeb space has a

neighborhood that is a cone over a Reeb space of dimension one
less. In stating and proving this result, we follow the work on
generic, smooth mappings in [11].

Tubes, cores, and cones.As usual we letK be a combinatorial
d-manifold andf : |K| → R

k a generic PL mapping. We shed
light on the neighborhood structure of a point in the Reeb space by
considering its preimage. To be specific, letx be a point ofWf

andc = g(x) its image inR
k. LetB be a closed ball centered at

c that is sufficiently small so it intersects the image of a simplex
iff this image includesc. Considering the preimages ofc and of
B, we are interested in the componentC of f−1(c) whose image
under the quotient map isx and in the componentT of f−1(B)
that containsC. We callT a tubeandC its core. For example,
the core in Figure 5 is a circle and the tube is a solid torus. Define
the boundary∂T of the tubeT to be the intersection ofT with
f−1(∂B), and letr = f(a) : ∂T → R

k be the restriction off .
The corresponding restrictionqr of qf maps∂T to Wr ⊂ Wf , a
subspace whose dimension is(d− 1) − (d− k) = k− 1, one less
than the dimension ofWf . SinceK is finite, |K| is compact. This
implies that∂T is compact and so isWr. The (closed) coneover
Wr is the space

cone(Wr) = (Wr × [0, 1])/(Wr × 1)



and itscone pointis (Wr×1)/(Wr×1). We are now ready to state
the first structural result of this paper.

CONE NEIGHBORHOODTHEOREM. Let K be a combinatorial
d-manifold, f : |K| → R

k a generic PL mapping, andWf the
Reeb space off . Then each pointx ∈ Wf has a homeomorphism
from cone(Wr) to a closed neighborhood that maps the cone point
to x.

To prove this theorem we use that the cone overWr is compact and
thatWf is Hausdorff. Every continuous injection from a compact
to a Hausdorff space is an embedding [15, page 167]. This means
that the compact space and its image are homeomorphic. It thus
suffices to construct a continuous injectionη : cone(Wr) → Wf

that maps the cone point tox. The next paragraph does exactly that.

Constructing an embedding.We begin by constructing the barycen-
tric subdivision ofK, slightly modified by placing the new vertices
not always at the barycenters of the simplices. The connecting
simplices are the same as in the standard definition. Specifically,
if C intersects the interior of a simplexσ in K then we choose
a pointuσ ∈ C ∩ intσ as the vertex inSdK that representsσ.
If C does not intersect the interior ofσ then we choose a point
uσ = intσ − T , which exists becauseB is sufficiently small. By
construction, there is a subcomplexL of SdK whose underlying
space is the core,|L| = C; as illustrated in Figure 3. It is not dif-

Figure 3: A piece of the barycentric subdivision ofK. The
white dots mark the vertices ofK and the black and shaded
dots mark the new vertices ofSdK. The shaded path is a piece
of the core which is subdivided by the subcomplexL of SdK.
The corridor along the path is a piece of the tube which is con-
tained in StL.

ficult to prove thatL is a full subcomplex. Extending the concept
of a star we writeStL for the set of simplices inSdK that have a
face inL. The tube is covered in its entirety by the interiors of the
simplices inStL.

We first use the barycentric subdivision to establish a continuous
map from∂T × [0, 1] to T whose restriction to∂T × [0, 1) is a
homeomorphism ontoT −C. Letτ be a simplex inStL but not in
L and letσ be the maximal face ofτ that belongs toL. We observe
thatσ is unique becauseL is full. Let υ be the maximal face of
τ that is disjoint fromσ and note thatτ = σ ∗ υ, the join of its
two faces. Writing all simplicesτ as joins we get a decomposition
of the closed star ofL into line segments. As usual, any two line
segments in this decomposition are either disjoint or meet at a com-
mon endpoint. Each point of the core is an endpoint of a collection
of line segments. In contrast, a pointa of the boundary of the tube
belongs to exactly one line segment. Lettingb be the endpoint of
this line segment in the core we letλa : [0, 1] → T be the straight
line mappingλa(t) = (1− t)a+ tb. Combining the mapsλa over
all a ∈ ∂T gives the mapλ : ∂T × [0, 1] → T . As anticipated,
the restriction ofλ to ∂T × [0, 1) → T − C is a homeomorphism

andλ itself is continuous. Finally, defineγ : ∂T × [0, 1] → Wf ,
by settingγ = qf ◦ λ. The new mapγ takes∂T × 1 to the point
x. The preimage of every other pointy in the image ofγ is of the
form U × t, whereU is the preimage of a point inWr andt is in
[0, 1).

Next we map∂T × [0, 1] to the cone overWr. Recall thatr :
∂T → R

k is the restriction off to the boundary of the tube and
qr : ∂T → Wr is the corresponding restriction ofqf . We extend
qr to a map from∂T × [0, 1] to Wr × [0, 1] by taking the product
with the identity on the unit interval. Composing this product map
with the quotient mapWr × [0, 1] → cone(Wr), we getq : ∂T ×
[0, 1] → cone(Wr), which maps∂T × 1 to the cone point. The
preimage of every other pointy in cone(Wr) is of the formU × t,
whereU is the preimage of a point inWr and t is in [0, 1), as
before. This finally induces a unique map,η, from the cone to the
Reeb space that makes the triangle commute:

∂T × [0, 1]

ւ q γց

cone(Wr)
η

−→ Wf .

To finish the proof of the Cone Neighborhood Theorem we just
need to realize thatη has the two required properties. It is continu-
ous because bothγ andq are continuous and it is injective because
the preimages of points in the images ofq and ofγ are the same
setsU × t.

5. GLOBAL STRUCTURE
In this section, we show that Reeb spaces have canonical strati-

fications into manifolds. We give a construction in two steps, first
triangulating the Reeb space and second by grouping simplices to
form the strata.

Refining arrangement. As before we letK be a combinatorial
d-manifold andf : |K| → R

k a generic PL function. We also
assumek < d, otherwiseK is itself a triangulation of the Reeb
space. To prepare the construction of a triangulation, we refineK
by decomposing its simplices into prisms aligned with the fibers
of f . Specifically, we take the images of the(k − 1)-simplices of
K in R

k, dissect space with their affine hulls, and decompose the
simplices using the preimage of the dissection. By assumption of
genericity, the image of every(k− 1)-simplexσ ∈ K is a(k− 1)-
simplex and its affine hull is a(k−1)-dimensional plane inRk. The
collection of such planes dissectsR

k into closed chambers, each a
convex polyhedron of dimensionk. We call this thearrangement
defined by the planes [4]. To refineK, we take each simplexτ and
decompose it into sets of points that map into a common chamber
or a common intersection of chambers. For ak-simplexτ these
sets arek-dimensional convex polytopes, the same as the chambers.
For a(k + 1)-simplexτ these sets are(k + 1)-dimensional prisms
each uniquely determined by its top and bottom faces of dimension
k. It is allowed that the top and bottom faces touch each other
along a common face, generating a partially degenerate prism in
between. We show that it is not necessary to study decompositions
of simplices of dimension beyondk + 1.

SKELETON LEMMA . The Reeb space off : |K| → R
k is home-

omorphic to the Reeb space of the restriction off to the(k + 1)-
skeleton ofK.

PROOF. Let e : |K(k+1)| → R
k be the restriction off to the

(k + 1)-skeleton and recall that pointsa and b are equivalent if



they map to the same image,e(a) = e(b) = c ∈ R
k, and be-

long to the same component of the preimage,e−1(c). By assump-
tion of genericity, this preimage is a complex whose maximalel-
ements are edges, each a line intersecting a(k + 1)-simplex. In
contrast,f−1(c) is a complex whose maximal elements are(d−k)-
dimensional convex polytopes, each the intersection of a(d − k)-
dimensional plane with ad-simplex. Sincee−1(c) is the1-skeleton
of f−1(c), there is a bijection between the components of the two
preimages. Hence there is a bijection betweenWe and Wf . Fi-
nally, we observe that the quotient topologies are equivalent imply-
ing that the bijection is a homeomorphism between the two Reeb
spaces.

Triangulation. We use the decompositions of the skeleta ofK to
construct a triangulation of the Reeb space. LetQ be the collec-
tion of preimages of chambers decomposing thek-skeleton ofK
and call two of these polytopesincident if they share a common
(k − 1)-dimensional face. LetP be the collection of prisms de-
composing the(k + 1)-skeleton and recall that eachϕ ∈ P has
two k-dimensional faces inQ, its top faceϕt and itsbottom face
ϕb. The algorithm partitionsQ into blocks, starting with the parti-
tion into singletons,Q = {{ψ} | ψ ∈ Q}. We writeQψ for the
block that containsψ.

for each prismϕ ∈ P do
ifQϕt 6= Qϕb

then
merge the two blocks into one

endif
endfor.

When we merge two blocks we remove both fromQ and add their
union as a new block toQ. By construction, all polytopes in a
block are preimages of the same chamber in the arrangement. We
say two blocksQψ andQψ′ areincidentif ψ andψ′ are preimages
of different but incident chambers in the arrangement and there are
at least two preimages, one in each block, that are incident.

A complex representing the Reeb space off is readily obtained
from the partition into blocks. Specifically, for each blockQψ in
Q we take a copy of the chamberf(ψ) and we glue these copies
along shared(k − 1)-faces to reflect the incidence relation among
the blocks. We further decompose each polytope into simplices
and thus finally get a simplicial complex which we denote asWf .
In summary, we have an algorithm that triangulates the Reeb space
of a generic PL mappingf from a combinatoriald-manifold to
R
k. Assumingd is a constant, the size of the triangulation and the

running time of the algorithm are both polynomial in the sizeof the
combinatorial manifold.

Stratification. In generalWf will be significantly finer than neces-
sary to represent the Reeb space. In a first step towards coarsening
the representation, we group simplices to form manifolds. The re-
sult will be astratificationof Wf , that is, a filtration

∅ = W−1 ⊆W 0 ⊆ . . . ⊆W k = Wf

such that eachW j is a subcomplex ofWf andSj = W j −W j−1

is either empty or aj-manifold. We callSj the j-stratumof the
stratification and each of its components aj-dimensional piece. In
addition to being aj-manifold, we require that all points of a piece
are topologically equivalent. By this we mean that any two points
x andy of a piece have closed neighborhoodsN(x) andN(y) in
|Wf | and a homeomorphism from one to the other that mapsx to
y and whose restriction to the piece is again a homeomorphism.
By the Cone Neighborhood Theorem the closed neighborhoods are

cones over(k − 1)-dimensional Reeb spaces. The requirement of
topological equivalence can therefore be reformulated in terms of
these spaces. Consider the2-dimensional Reeb space described
in the example of section 3. Its2-stratum consists of two sheets
(mapping to the plane and to the fin), its1-stratum consists of two
curves (mapping to the two branches of the fold), and its0-stratum
is one point (mapping to the origin).

We construct the stratification in the order of decreasing dimen-
sion. At the top dimension we initializeSk to the set ofk-simplices,
each a piece by itself. Then we add simplices of lower dimen-
sion effectively merging and enlarging the pieces. For thiswe use
a boolean subroutineDOESBLEND that decides whether or not a
simplex fits into a piece or between pieces of the current stratum.
We will prove shortly that each iteration starts with a complexW j

of dimension at mostj. Following the same pattern as before we
can therefore construct thej-stratum ofWf as the top dimension
stratum ofW j .

SetW k = Wf ;
for j = k downto 0 do

initializeW j−1 to the(j − 1)-skeleton ofW j

andSj toW j −W j−1;
for i = j − 1 downto 0 do
for eachi-simplexζ ∈ W j−1 do
if DOESBLEND(ζ,Sj) then

addζ to Sj and remove it fromW j−1

endif
endfor

endfor
endfor.

Note thatSj = W j −W j−1 is maintained throughout the algo-
rithm. We still need to establish that the algorithm constructs what
we promise but this depends primarily on the boolean subroutine
that decides upon which simplices to add to a stratum.

Recognition. According to the definition of a stratification, we
need to satisfy two conditions when we add ani-simplexζ to the
current setSj , the first guaranteeing that we have aj-manifold
and the second that points in the same piece have homeomorphic
neighborhoods. We formalize both conditions by considering the
second barycentric subdivision and comparing links of vertices in
this subdivision. Recall that the first barycentric subdivision con-
tains a vertex̂ξ for each simplexξ ∈ Wf . We refer to it as afirst
generationvertex ofSd2Wf = SdSdWf noting that all its neigh-
bors are second generation vertices inSd2Wf . The link of ξ̂ is a
model for the boundary of the closed neighborhood of any point in
the interior ofξ. Let Sd2Sj be the subset of simplices inSd2Wf
whose interiors are contained in|Sj |. We acceptζ as a new simplex
in thej-stratum if the following two conditions are satisfied.

1. The link ofζ̂ in Sd2Sj is a(j − 1)-sphere.

2. There is a homeomorphism that maps the link ofζ̂ to the
link of ξ̂ in SdWf , whereξ is already inSj and belongs
to the star ofζ. We also require that the restriction of this
homeomorphism toSd2Sj is a homeomorphism between the
two links which by Condition 1 are both(j − 1)-spheres.

It is clear that this implementation of the boolean subroutineDOES-
BLEND maintainsSj as aj-manifold. For the top dimension,
j = k, this implies that wheneverSk contains a simplex then it
also contains the simplices in its star. Symmetrically, whenever
W k−1 = W k−Sk contains a simplex it also contains its faces. In
other words,W k−1 is a complex. We can now use induction over



the dimension and prove thatW j is a complex for allj. Similarly,
wheneverSj contains a simplex then it also contains its star within
W j . Hence ifSj is non-empty then it is aj-manifold for eachj.
Finally, we notice that the result of the algorithm does not depend
on the order in which the simplices are processed. Indeed, the test
of the i-simplex ζ does not depend on whether or not any other
i-simplices belong to thej-stratum. We thus have a constructive
proof of a global property of the Reeb space.

STRATIFICATION THEOREM. LetK be a combinatoriald-manifold,
k ≥ 1, andf : |K| → R

k a generic PL mapping. Then the Reeb
spaceWf of f is a stratified space and theW j as constructed by
the algorithm form its coarsest stratification.

We note that the constructive proof is really only an algorithm for
k < 5. Otherwise, the boolean subroutine attempts to recognize
when two triangulated spaces of dimensionk − 1 ≥ 4 are homeo-
morphic, which is undecidable as proved by Markov [14].

6. THE ORIENTABLE 3-MANIFOLD CASE
We take a closer look at the Reeb spaces for PL mappings from

an orientable3-manifold to the plane. In particular, we give a com-
plete case analysis of local cones that arise for simple generic such
mappings. To do this we will finally employ the simplicity condi-
tion introduced at the end of section 2.

Genericity and simplicity. LetK be a compact combinatorial ori-
entable3-manifold without boundary andf : |K| → R

2 a PL
mapping. We assume thatf is generic and simple. Specifically, we
require that

I’. the intersection of a level set off with |K(1)| is empty, one
point, or two points each in the interior of an edge;

II’. the Jacobi set off is a1-manifold, that is, each edge ofJf
is a simple critical edge and each vertex ofJf is endpoint of
exactly two edges inJf .

Recall that to define the lower link of an edge we use the function
h~u : |K| → R which maps a pointa to the height off(a) in the
direction~u ∈ S

1 normal to the edge. A critical edge is simple iff
all reduced Betti numbers of this lower link vanish, except for one
which is equal to1. There are three possibilities, namelyβ̃−1 = 1
(the cross-section of the simplex is a minimum),β̃0 = 1 (a saddle),
andβ̃1 = 1 (a maximum); see Figure 4. Condition II’ implies that

Figure 4: From left to right: a regular edge and three simple
critical edges. Each edge is shown with its lower link and a
cross-section of its star.

Jf contains no duplicate edges and no duplicate vertices, where by
the latter we mean that each endpoint of an edge inJf belongs to
exactly one other edge inJf ; see also [5].

Walks and sheets.To enumerate the cones that may arise, we let
x ∈ Wf be a point of the Reeb space andB a small closed disk
with centerc = g(x) in the plane, as in section 4. Furthermore,

the core,C, is the component off−1(c) whose image underqf
is x, and the tube,T , is the component off−1(B) that contains
C. Recall thatr : ∂T → R

2 is the restriction off that maps the
boundary of the tube to the boundary of the disk and thatx has a
closed neighborhood inWf that is homeomorphic to the cone over
Wr = qf (∂T ). It thus suffices to understand the structure ofWr,
which we study by walking the circle in a counter-clockwise order
usingα : [0, 1] → R

2 with imα = ∂B. The walk begins and
ends at the pointp = α(0) = α(1). Letting q be the antipodal
point, we also walk the straight diameter usingβ : [0, 1] → R

2

with p = β(0), c = β( 1
2
), andq = β(1). Note that each point

of the two walks is the image of a curve in the tube. The two one-
parameter families sweep out the boundary of the tube and another
surface we refer to as thedivider, D = T ∩ f−1 ◦ β[0, 1]. To
describe the two sweeps we define

∂Ts = T ∩ f−1 ◦ α[0, s];

Ds = T ∩ f−1 ◦ β[0, s],

for each0 ≤ s ≤ 1. The simplest of all possible cases is illustrated
in Figure 5. There, none of the points in the diskB is critical.
Hence, the preimage of every point ofα[0, 1] is a closed curve, and
the same is true for the preimage of every point ofβ[0, 1]. It follows
that∂Ts is an annulus, for every0 < s < 1, that closes up to form
a torus whens reaches1. Similarly, Ds is an annulus, for every
0 < s < 1, and it remains one until the end. The divider,D, is
therefore an annulus bounded by two closed curves which it shares
with ∂T . SinceD also contains the core,C, the only possible
configuration is the one depicted in Figure 5. In this particular case,

qf

g

f

x

p q
c

β
im α

im

Figure 5: Left: the tube, its core, and the annulus that divides
the tube into two. Right: the closed neighborhood ofx in the
Reeb space and its image in the plane.

the pointx belongs to asheet, that is, a piece of the2-stratum of the
Reeb space. The points in the neighborhood correspond to closed
curves forming a fibration of the tube.

Choosing the walks. For the more complicated cases it will be
convenient to choose the two walks such thatp has a connected
preimage and both preimages avoid the1-skeleton of the barycen-
tric subdivision ofK. We use the curves sweeping out the divider
to prove that such pointsp andq exist.

ENDPOINT LEMMA . There exist antipodal pointsp andq of ∂B
such thatr−1(p) is connected andr−1(p) andr−1(q) both have
empty intersection with(SdK)(1).

PROOF. Each pair of antipodal points corresponds to a direc-
tion ~u ∈ S

1 such that~u is a positive multiple ofq − p. Let
β~u : [0, 1] → R

2 be the corresponding diagonal walk andD(~u)
the corresponding divider. Note that the dividers all sharethe core
but are otherwise disjoint.



Fixing a direction~u and a pointa in the core, we consider how
the curveT ∩ f−1 ◦β~u(s), which sweeps outD(~u) ass goes from
0 to 1, intersects a sufficiently small neighborhoodN(a) of a in
|K|. If a 6∈ |Jf | then the curve looks locally like a line that sweeps
overa, passing it ats = 1

2
. HenceN(a) intersects the curve in a

connected piece, if at all. Ifa ∈ |Jf | then a curve approachesa,
pinching off to a single point or recombines leavinga in two dif-
ferent directions. In the former case, we see a closed curve shrink-
ing to a point or the other way round. In the later case, locally
we see the usual saddle picture of two pieces that look like the
two branches of a hyperbola passing through its pair of asymptotic
lines. The two pieces are globally connected along a component of
the curve before meeting ata but are not connected after meeting
ata, or the other way round. There is an open semi-circle of direc-
tions~u such thatN(a) intersects a single component of the curve.
This semi-circle is determined by the image of the edge or edges in
Jf that contains the pointa. By Condition I’, there are at most two
points in the core that belong to|Jf | and by Condition II’ at most
two edges inJf are adjacent to a vertex in the Jacobi set. The cor-
responding two semi-circles are defined by the images of two dif-
ferent edges inJf . It follows that the two line segments intersect at
c and the corresponding semi-circles intersect in an arc of non-zero
length. Pickingp on this arc implies thatr−1 is connected. To sat-
isfy the second requirement of avoiding the1-skeleton ofSdK we
just need to choosep outside a measure zero subset of the arc.

Arcs. Beyond sheets, the next more complicated case is when the
boundary of the tube meets the Jacobi set in two points,a′ anda′′,
in the interior of a single edge or in the interior of two different
edges both edges of the same type. The core intersects|Jf | in a
single point,a. The pointsa′ anda′′ belong to different edges
whena is a vertex ofJf and in this case, we assume both edges
are definite or both indefinite. This implies two cases and in both
the pointx belongs to anarc, that is, a piece of the1-stratum. The
point a is the sole interior critical point ofβ−1 ◦ f : D → [0, 1]
and the pointsa′ anda′′ the sole interior critical points ofα−1 ◦f :
∂T → [0, 1).

CASE A.1. The edge(s) ofJf that containsa′ anda′′ is(are) def-
inite. The tube is a ball obtained by thickening the point
a. The divider,D, depends on the choice of the diameter
since the preimage ofq may be empty or one curve. Walking
along the circle, we start with a single curve that shrinks to
the pointa′ and then reappears from the pointa′′ sweeping
out a sphere. The Reeb space is locally a half-plane, like at a
point on the left branch of the fold in Figure 2.

CASE A.2. The edge(s) ofJf that containsa′ anda′′ is(are) indef-
inite. The tube is a solid double torus obtained by thickening
the figure-8 curve that crosses itself ata. The divider,D, de-
pends on the choice of the diameter since the preimage ofq
may consist of one or two curves. Walking around the circle,
we start with a single curve that splits into two ata′ that later
merges ata′′ to form again a single curve. The Reeb space
is locally a book with three pages, like at a point on the right
branch of the fold in Figure 2.

Nodes.Next we consider the case in which the core meetsJf at a
vertex,a, one of the incident edges ofJf is definite and the other
incident edge is indefinite. By Condition II’, the boundary of the
tube meets the Jacobi set in two pointsa′ anda′′. The pointa is the
sole interior critical point ofβ−1 ◦f : D → [0, 1] and the pointsa′

anda′′ are the sole interior critical points ofα−1◦f : ∂T → [0, 1).

CASE N.1. Assuminga′ belongs to the indefinite anda′′ to the
definite edge, the walk around the circle starts with a single
curve that splits into two ata′ of which one shrinks to a point
ata′′. The divider,D, depends on the choice of the diameter.
Specifically, the preimage of the endpointq may consist of
one or of two curves. In the former case we have one curve
that persists along the entire diameter and in the latter case
we start with one curve and get another expanding arounda.
In either case, the core is a single curve and the Reeb space
is locally a disk with a fin sticking out, like at the origin in
Figure 2; see also Figure 6, left. The pointx is anodeof the
Reeb space, that is, a piece of the0-stratum.

In the most complicated case the core meets the Jacobi set in two
points,a and b. Each of the two points lies in the interior of an
indefinite edge, else the core would be disconnected. The boundary
of the tube meets the Jacobi set in four points,a′, a′′, b′, andb′′.
Here,a andb are the sole interior critical points ofβ−1 ◦ f : D →
[0, 1] anda′, a′′, b′, b′′ are the sole interior critical points ofα−1 ◦
f : ∂T → [0, 1). There are two cases and in both the pointx is a
node.

a

a

b

a b

x

x x

Figure 6: From left to right: the local cone and the core for the
Cases N.1, N.2, N.3 at which the pointx is a node of the Reeb
space.

CASE N.2. Walking along the diameter, we start with a single curve
that gets pinched ata and atb with the net effect that it re-
mains a single curve. Knowing that the preimage ofq is a
single curve determines the boundary of the tube. Usingα
to walk the circle, we start with a single curve that splits into
two curves ata′ and then merges into a single curve atb′.
As we continue, the single curve splits into two curves ata′′

and once again it merges into a single curve atb′′. The core
consists of two circles that meet at two points,a andb, and
the tube is a solid triple torus; see Figure 6, middle.

CASE N.3. Walking along the diameter, we start with a single curve
that splits into three curves ata and b. Knowing that the
preimage ofq consists of three curves again determines the
boundary of the tube. As we walk along the circle, the single
curve splits into two ata′, one of the two splits into two at
b′, giving a total of three curves. As we continue, two of the
three curves merge ata′′ and the remaining two merge atb′′.
The core is a double figure-8 and the tube a solid triple torus;
see Figure 6, right.

7. DISCUSSION
The main contribution of this paper is the introduction of Reeb

spaces for multivariate, piecewise linear mappings on combinato-



rial manifolds and the analysis of their local and global structure.
There are several open questions that remain.

• The structural assumption that the domain is a combinatorial
manifold is critically used in the proof of the Generic Preim-
age Lemma. Which of our results are not true for general
triangulations of manifolds and which do extend? What can
be said about Reeb spaces of mappings on simplicial com-
plexes that do not triangulate manifolds?

• How can we effectively simplify the Reeb space of a multi-
variate mapping? How does this simplification interact with
the simplification of the Jacobi set?
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