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Abstract

Persistent homology has proven to be a useful tool in a vari-
ety of contexts, including the recognition and measurement
of shape characteristics of surfaces inR3. Persistence pairs
homology classes that are born and die in a filtration of
a topological space, but does not pair its actual homology
classes. For the sublevelset filtration of a surface inR3 per-
sistence has been extended to a pairing of essential classes
using Reeb graphs. In this paper, we give an algebraic for-
mulation that extends persistence to essential homology for
any filtered space, present an algorithm to calculate it, and
describe how it aids our ability to recognize shape features
for codimension1 submanifolds of Euclidean space. The
extension derives from Poincaré duality but generalizes to
non-manifold spaces. We prove stability for general triangu-
lated spaces and duality as well as symmetry for triangulated
manifolds.
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folds, duality, simplicial complexes, algorithms.

1 Introduction

Persistent homology was recently introduced to measure
and possibly remove topological features in continuous data.
This ability has broad applications in medical imaging, sci-
entific visualization, and other fields of human study. In this
paper, we extend persistence to essential homology classes.
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Motivation. Continuous functions have been used in a va-
riety of contexts to recognize and extract features of embed-
ded surfaces. Examples include local curvature approxima-
tion functions, used e.g. for protein docking [4] and global
alignment [7], and the mean geodesic distance, used for
shape matching and indexing [8]. Particularly relevant to this
paper is the elevation function introduced in [1] and applied
to coarse protein docking in [11]. To define the elevation at
a pointp of a surfaceS, we consider the directional height
function given by projectingS onto its normal line through
p, and pair up the critical points of that function using per-
sistence. The elevation atp is then the absolute directional
height difference betweenp and its paired point. To define
the function for all points ofS, [1] extends the persistence
pairing to essential cycles that represent the homology ofS
using a rule about forks and loops in the corresponding Reeb
graph [1]; see also Section 2. For all this to make sense,
the pairing needs to be symmetric so that we get consistent
values in opposite height directions.

A unique property of the elevation function is its inde-
pendence of scale. More precisely, the scale that enters in
the definition of the value at a point varies depending on the
scale of the feature this point is chosen to represent. The el-
evation function thus lies somewhere between the primarily
local curvature and curvature approximation functions and
the primarily global mean distance function.

Results and prior work. This paper gives an algebraic
justification for the choices made in [1], and it provides
the topological results needed to generalize elevation to
smoothly embeddedd-manifolds inRd+1. The main tech-
nical results are

(a) the extension of persistence to essential homology
classes using Poincaré and Lefschetz duality;

(b) a characterization of extended persistence in terms of
optimally local homology bases;

(c) an efficient algorithm to compute the pairs of critical
values that characterize extended persistence;

(d) a proof that these pairs of critical values are stable;



(e) a proof that for manifolds these pairs satisfy a duality
relation between dimensionsr andd− r;

(f) a proof that for manifolds these pairs are symmetric,
that is, the same for a function and its negative.

The concept of persistent homology has originally been de-
fined for modulo2 homology in [5] and has later been gen-
eralized to fields in [12]. In both formulations, persistence
does not measure essential homology classes, which is limit-
ing in some applications. Our result (a) overcomes this lim-
itation. Extended persistence has an intuitive interpretation
in terms of homology bases whose classes lexicographically
minimize thickness, providing the characterization (b). The
hallmark of the original work on persistence is an efficient
reduction algorithm, which we adapt to extended persistence
giving us (c). The stability result (d) is proved by reducing
it to the known stability of ordinary persistence [2]. This
reduction is to the combinatorial formulation given in [3]
and has the side-benefit of implying a linear-time algorithm
for maintaining the pairing under continuous changes of the
function. The duality result (e) is based on Lefschetz dual-
ity and breaks down for non-manifold spaces. Using duality,
we prove symmetry (f), again for manifolds. Both results are
new except for the2-manifold case [1].

Outline. Section 2 gives the idea behind extended persis-
tence. Section 3 presents background on filtrations and or-
dinary persistence. Section 4 extends ordinary persistence.
Section 5 proves that extended persistence selects optimally
local homology bases. Section 6 gives the algorithm for ex-
tended persistence and proves its stability. Section 7 proves
duality and symmetry for manifolds. Section 8 concludes the
paper.

2 Intuition
In this section, we describe persistence and its extension
intuitively, for a Morse function on a manifold. We hope
this prepares the reader for the formal treatment of the more
general case and conveys a feeling for the type of applica-
tions that can benefit from this concept. Throughout the pa-
per we will work with homology withZ/2Z coefficients,
so we will write Hr(X) = Hr(X, Z/2Z) and denote its
rank byβr(X), calling it ther-th Betti number. We point
out that this is not the normal usage in algebraic topology,
whereβr(X) denotes the rank of the homology ofX with
rational coefficients. The usual Betti numbers are generally
smaller than ours since, by the universal coefficient theorem
[9], Hr(X, Z/2Z) also includes2-torsion.

Birth and death. Let M be a manifold of dimensiond and
f : M → R a Morse function on the manifold. We can
imagine thatM is smoothly embedded inRd+1 andf maps
every point to its height above some hyperplane. Recall that
a Morse function has only non-degenerate critical points, all

of which have distinct critical values. We choose regular val-
uest0 < t1 < . . . < tm bracketing them critical values, and
let Mk = f−1(−∞, tk] be the sublevel set containing the
first k critical points. Morse theory tells us thatMk is homo-
topy equivalent to the result of attaching anr-dimensional
cell to Mk−1, wherer is the index of thek-th critical point.
Specifically,Mk is homeomorphic toMk−1 with anr-handle
attached. This means that eitherβr(Mk) = βr(Mk−1) + 1
or βr−1(Mk) = βr−1(Mk−1) − 1. To distinguish the two
cases, we call the critical point in the first casepositivesince
it increases the sum of Betti numbers and in the second case
negativesince it decreases the sum of Betti numbers.

Persistence gives a pairing between positive critical points
of index r and negative critical points of indexr + 1. To
be more specific, it introduces the idea of a homology class
coming into existence at a particular moment and leaving
again at some particular, later moment. To make sense of
this idea, we use the maps between homology groups in-
duced by the inclusionsMi ⊆ Mj wheneveri ≤ j. We
say a homology classα ∈ Hr(Mk) is born atMk if it does
not lie in the image of the map induced byMk−1 ⊆ Mk.
Furthermore, ifα is born atMk we say itdies enteringMℓ

if the image of the map induced byMk−1 ⊆ Mℓ−1 does not
contain the image ofα but the image of the map induced by
Mk−1 ⊆ Mℓ does. Ifα is born atMk and dies enteringMℓ

then we pair the corresponding critical points,pk andpℓ, and
say theirpersistenceis ℓ−k or f(pℓ)−f(pk), depending on
the application we have in mind. The latter is more common
because it measures size in terms of the function that gives
rise to the class in the first place. Homology classes that are
born atMk and do not die are not paired by this method. We
call these classes theessentialhomology classes ofM. They
represent interesting features so it would be useful to extend
the persistence pairing to include them. How to do this is the
topic of this paper.

Torus example. To get a feeling for the information cap-
tured by the pairs of critical points, we consider the example
illustrated in Figure 1. On the left, we see a torus (a sphere
with a tunnel) embedded inR3 such that its height function
has two minima, four saddles, and two maxima. On the right,
we see the Reeb graph of the height function [10]. Each point
of this graph represents a component of a level set. As we
sweep the torus from bottom to top, each minimum starts a
component, each saddle either splits a component into two or
merges two components into one, and each maximum ends a
component. The pairs of critical points are(b, B) for r = 0
and(d, D) for r = 1. Indeed, the minimumb gives birth to
a component of the sublevel set which dies whenB merges
this component with the other one given birth to earlier bya.
Similarly, the saddled gives birth to a1-dimensional homol-
ogy class which dies at the hand ofD. The remaining four
critical points,a, c, C, A, are not paired as they give birth to
the four essential homology classes of the torus. Our aim is
to find an algebraic justification for pairinga with A andc

2



a

A

b

A

c

b

B

d

C

D

C

D

d

c

B

a

Figure 1: Left: smoothly embedded torus with select level sets
bracketing the critical points of the height function. Right: Reeb
graph of the height function.

with C. The former pair represents the component that even-
tually grows into the entire surface as well as the2-cycle the
surface forms when complete. The latter pair represents the
tunnel, marking where it begins and where it ends if viewed
during the sweep of the height function.

Elementary rules for pairing the extra critical points have
been given in [1] and are easiest explained in terms of the
nodes in the Reeb graph. Each component of the2-manifold
corresponds to a component of the Reeb graph and we pair
the global minimum (the lowest node) with the global max-
imum (the highest node). Furthermore, each saddle corre-
sponds to a degree-3 node which either forks up or down. A
loop in the Reeb graph has the minimum at its lowest up-
fork and the maximum at its highest down-fork, and we say
the two forksspanthe loop. According to [1], each up-fork
is to be paired with the lowest down-fork that spans a loop
with it. It can be shown that every critical point belongs to
exactly one pair and that reversing the direction in which we
measure height gives the same pairing.

Cohomology and relative homology. In this paper, we ex-
tend persistence to essential homology using Poincaré dual-
ity, which provides an isomorphism between the dimension
r homology group and the dimensiond − r cohomology
group of ad-manifold,Hr(M) ∼= H

d−r(M). The inclusions
Mk ⊆ Mk+1 induce mapsHd−r(Mk+1) → Hd−r(Mk) so
we get an extended sequence

0 = Hr(M0) → . . .→ Hr(Mm)

→ H
d−r(Mm) → . . .→ H

d−r(M0) = 0,

whereM0 = ∅ andMm = M. Classes get born and die also
during the new, second half of the sequence. In particular,
each class born atMk that lives all the way to the end of the
first half now dies entering someMℓ in the second half. The

only problem with this definition is that to make good sense
of it requires that we understand persistence for cohomology.
While this can certainly be done [6], we instead use Lef-
schetz duality to replace cohomology by relative homology,
since it gives an isomorphismHd−r(Mk) ∼= Hr(Mk, ∂Mk)
[9]. Letting Mm−k = f−1[tk,∞) be the superlevel set con-
taining the lastm − k critical points, we use excision to get
an isomorphismHr(Mk, ∂Mk) ∼= Hr(M, Mm−k) [9] and
another version of the above sequence,

0 = Hr(M0) → . . .→ Hr(Mm)
→ Hr(M, M0) → . . .→ Hr(M, Mm) = 0,

whereM0 = M0 = ∅ andMm = Mm = M. This version
is not only easier to analyze algorithmically but also gener-
alizes naturally to simplicial complexes with a total ordering
on their vertices. The next sections elaborate on this idea.

Working with this sequence, we can understand extended
persistence in the following way. Suppose that passing from
Mk−1 to Mk gives birth to an essential,r-dimensional ho-
mology class. Descending through the superlevel sets, we
look for the firstMm−ℓ (the largestℓ) that contains a class
homologous inM to this essential class. This class then dies
enteringMm−ℓ and we pairpk with pℓ. For 2-manifolds,
this is precisely the elementary rule about forks and loops
in Reeb graphs given above. We define theextended persis-
tenceof this pair to be|k− ℓ| or |f(pk)− f(pℓ)|, depending
on the application.

3 Persistence
In this section, we formally introduce persistence for a nested
sequence of complexes. Two particularly useful such se-
quences mimic the sweep in the direction of increasing and
decreasing function values.

Pair groups. Let K be a simplicial complex of finite di-
mensiond. A filtration of K is a nested sequence of sub-
complexes that starts with the empty complex and ends with
the complete complex,

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K.

Intuitively, persistence is a measure of how long a homol-
ogy class lives in this filtration. Fix a dimensionr and let
Hi

r = Hr(Ki) be ther-dimensional homology group ofKi.
Letting hi,j

r : Hi
r → Hj

r be the homomorphism induced by
the inclusion ofKi in Kj , the image,im hi,j

r , consists of the
classes that live at least fromHi

r to H
j
r. For a particular class

α we can measure its persistence by tracking where it is born
and where it dies.

DEFINITION. A classα ∈ Hi
r − im hi−1,i

r is born at
Ki and it dies enteringKj if hi,j−1

r (α) 6∈ im hi−1,j−1
r but

hi,j
r (α) ∈ im hi−1,j

r . Thepersistenceof α is the number of
groups in which it lives, i.e.j − i.
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Note that each class born atKi forms a coset ofim hi−1,i
r in

Hi
r, so the set of new classes born corresponds to the quotient

groupHi
r/im hi−1,i

r . Furthermore, ifα is born atKi and dies
enteringKj then there exists another such classα̃ whose
image inH

j
r vanishes. More formally, there exists a class

α̃ ∈ Hi
r − im hi−1,i

r such that

• α̃− α ∈ im hi−1,i
r ,

• hi,j−1
r (α̃) 6∈ im hi−1,j−1

r , and

• hi,j
r (α̃) = 0.

This suggests that we introduce thepair groupof all classes
born atKi that vanish enteringKj :

P
i,j
r =

im hi,j−1
r ∩ ker hj−1,j

r

im h
i−1,j−1
r ∩ ker h

j−1,j
r

. (1)

Indeed, the numerator collects all classes that exist inHi
r and

vanish as we pass fromKj−1 to Kj. Some of these classes
are born atKi and others exist as images of classes inHi−1

r .
The denominator collects the latter and thus maps them to
zero in the quotient group.

Lower and upper stars and links. We have introduced
persistence for two rather different topological categories,
Morse functions on manifolds and filtrations of simplicial
complexes. We feel the need to relate the two and we prepare
this unification by introducing local substructures aroundthe
vertices in a simplicial complex. Thestar (sometimes called
theopen star) of a vertexu ∈ K is the set of simplices that
containu as a face, includingu itself, and thelink consists
of all faces of simplices in the star that do not belong to the
star:

Stu = {σ ∈ K | u ∈ σ},

Lku = {τ ∈ K − Stu | τ ⊆ σ ∈ Stu}.

The union of the star and the link is theclosed star, St u =
Stu ∪ Lk u.

Suppose we have an injective, real-valued functionf de-
fined on the vertex set. Imagining thatf measures height, we
sayx is lower thanu andu is higher thanx if f(x) < f(u).
The lower starof a vertexu consists of all simplices in the
star for whichu is the highest vertex, and thelower linkcon-
sists of all simplices in the link that are faces of the simplices
in the lower star:

St−u = {σ ∈ Stu | x ∈ σ ⇒ f(x) ≤ f(u)},

Lk−u = {τ ∈ Lku | τ ⊆ σ ∈ St−u}.

The union of the lower star and the lower link is theclosed
lower star, St−u = St−u ∪ Lk−u. Every simplex has a
unique highest vertex and thus belongs to the lower star of
a unique vertex. This implies that the lower stars of the
vertices partitionK. We also define theupper star, St+u,
the upper link, Lk+u, and theclosed upper star, St

+
u =

St+u ∪ Lk+u, in the analogous way. Similar to the lower
stars, the upper stars of the vertices partitionK.

Vertex ordering filtrations. Assuming an injective, real-
valued functionf on the vertex set, as before, we order the
vertices asf(u1) < f(u2) < . . . < f(un). Let Ki be
the subcomplex ofK spanned by the firsti vertices. Hence,
Ki is obtained fromKi−1 by adding the lower star ofui or,
more precisely, by attaching the closed lower star along the
lower link of ui. Similarly, letLn−i be the subcomplex ofK
spanned by the lastn− i vertices, soLn−i is obtained from
Ln−i−1 by adding the upper star ofui+1. TheKi form an
ascending filtration and theLj form a descending filtration,

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,

∅ = L0 ⊂ L1 ⊂ . . . ⊂ Ln = K,

where the words ‘ascending’ and ‘descending’ refer to the
ordering of the vertices as they enter the filtrations. We will
use the ascending filtration to compute persistence, and the
two filtrations together to define extended persistence. To
compute the persistence pairing, it is convenient to totally or-
der the simplices and not just the lower and the upper stars.
We do this by listing the lower stars in order and listing
the simplices within each lower star by dimension, break-
ing the remaining ties arbitrarily. We writeκ1, κ2, . . . , κm

for the resulting ascending sequence, wherem is the number
of simplices inK. We follow the analogous rule in turn-
ing the ordering of upper stars into a total order, and write
λ1, λ2, . . . , λm for the resulting descending sequence of sim-
plices.

By adding simplices one at a time, we obtain alternative,
finer filtrations ofK which can be used to compute persis-
tence. To insure that the answer is independent of the choice
of order within the lower and upper stars, however, we use
the indices or function values of the vertices to define per-
sistence. Classes that are born and then die within a single
lower or upper star will therefore have zero persistence.

Induced partition. The complexesKi andLn−i partition
the vertices but they do not necessarily contain all simplices
of K. Let Ji be the part ofK contained in neitherKi nor
Ln−i and note thatJi contains the simplices that connect
vertices from the two sets, but has no vertices itself. In sit-

Figure 2: The setJi consists of the shaded triangles and thick edges
that connect the vertices ofKi below and vertices ofLn−i above
the belt they form. The dotted edges indicate the stars inSdK of
some of the vertices inLn−i.

uations in which it is more convenient to work with a cover,
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we may subdivide the simplices and add half ofJi to Ki and
the other half toLn−i. More formally, we construct the first
barycentric subdivision,SdK of K, and letK∗

i be the union
of closed stars inSdK of the vertices inKi. DefineL∗

n−i

similarly. The following lemma is not difficult to prove.

PARTITION LEMMA . For eachi, Ki is homotopy equiva-
lent toK∗

i , Ln−i is homotopy equivalent toL∗
n−i, andJi is

homotopy equivalent to the intersectionK∗
i ∩ L∗

n−i.

This latter intersection is simultaneously the boundary ofK∗
i

and ofL∗
n−i. Note that whenK is a triangulation of ad-

manifold, thenK∗
i andL∗

n−i ared-manifolds with boundary
K∗

i ∩ L∗
n−i.

4 Extension
In this section, we review the definitions of Poincaré and Lef-
schetz duality and show how they can be used to define ex-
tended persistence. For manifolds, we prove a duality result
which we then use to prove that both ordinary and extended
persistence are symmetric.

Non-degenerate pairings. We find it convenient to ex-
press topological duality results in terms of pairings between
homology groups over fields, which are vector spaces. Let-
ting U andV be two finite-dimensional vector spaces, a bi-
linear and symmetric map〈, 〉 : U × V → Z2 is a non-
degenerate pairingif for every non-zerou ∈ U there is
a v ∈ V with 〈u, v〉 = 1 and, symmetrically, for every
non-zerov ∈ V there is au ∈ U with 〈u, v〉 = 1. Im-
portantly, a non-degenerate pairing induces a perfect match-
ing between well-chosen bases. Since there are usually no
canonical bases and no canonical perfect matchings between
given bases, non-degenerate pairings provide a convenient
language to talk about them without making choices.

PAIRING LEMMA . For any non-degenerate pairing of two
finite-dimensional vector spaces there are bases for which
the pairing induces a perfect matching.

PROOF. We construct the two bases that satisfy the claim
inductively, starting with a non-zerou0 ∈ U andv0 ∈ V that
satisfies〈u0, v0〉 = 1. To continue the construction, consider
the orthogonal subspaces,

U0 = {u ∈ U | 〈u, v0〉 = 0},

V0 = {v ∈ V | 〈u0, v〉 = 0}.

Note thatU is the union ofU0 and the setU1 of vectors
u ∈ U with 〈u, v0〉 = 1. This implies thatU is isomorphic
to the direct sumU0 ⊕ span (u0), where the latter is the line
spanned byu0. Similarly,V is isomorphic toV0⊕span (v0).

To prove that the restriction of〈, 〉 to U0 andV0 is again
non-degenerate, we take a non-zerou ∈ U0. If 〈u, v〉 = 0
for everyv ∈ V0 then〈u, v + v0〉 = 0 by linearity. But this

exhausts all vectors inV which contradicts that the original
pairing was non-degenerate. Symmetrically, for each non-
zerov ∈ V0 there existsu ∈ U0 with 〈u, v〉 = 1. By induc-
tion, there are bases ofU0 andV0 for which 〈, 〉 induces a
perfect matching. We addu0 andv0 and get bases ofU and
V , again with an induced perfect matching.

Poincaré and Lefschetz duality. Let M be a triangulated
manifold of dimensiond. Since we work withZ2 coeffi-
cients, we do not need to assume thatM is orientable. When
M has no boundary, Poincaré duality provides an isomor-
phism between the dimensionr homology group and the di-
mensiond − r cohomology group ofM, for eachr. An
alternative formulation that does not use cohomology states
that there is a non-degenerate pairing

〈, 〉 : Hr(M)× Hd−r(M)→ Z2

given by counting intersections of cycles inM. What this
means is the following. Suppose thatα ∈ Hr(M) and
β ∈ Hd−r(M). Then we can find cyclesa and b repre-
sentingα and β in, say, the first barycentric subdivision
of M that intersect transversally. Since they have comple-
mentary dimensions,a and b intersect in a finite number
of points. The pairing is then obtained by counting inter-
sections,〈α, β〉 = card (a ∩ b) (mod 2). A standard result
is that this pairing is well-defined, bilinear, symmetric, and
non-degenerate.

When M has non-empty boundary∂M, Poincaré dual-
ity is replaced by Lefschetz duality, which provides a non-
degenerate pairing

〈, 〉 : Hr(M, ∂M)× Hd−r(M)→ Z2

also defined by counting intersections. Note that the pairing
without∂M is still well-defined, but it is degenerate. A sim-
ple example is the annulusM = S1 × [0, 1], drawn as the
lower portion of a torus in Figure 3. The dimension of the
annulus isd = 2 so for r = 1 we haved − r = 1. Both
H1(M) andH1(M, ∂M) are rank one. The self-intersection
of the generator ofH1(M) is zero, since the cyclesS1 × 0
andS1 × 1 both represent the generator yet do not intersect.
Thus the pairing is degenerate. A generator ofH1(M, ∂M)
intersects every representative of the generator ofH1(M) in
one point, modulo2. So the pairing betweenH1(M, ∂M)
andH1(M) is non-degenerate.

Extended persistence. Suppose now thatK is a triangu-
lation of M and f is an injective, real-valued function on
the vertex set. As in Section 3, we order the vertices as
f(u1) < f(u2) < . . . < f(un) and we construct the as-
cending and the descending filtrations by lettingKi be the
subcomplex spanned by the firsti vertices andLn−i the sub-
complex spanned by the lastn− i vertices. The sequence of
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Figure 3: The circle around the annulus generatesH1(M) and in-
tersects the arc generatingH1(M, ∂M) in one point.

homology groupsHr(Ki), for 0 ≤ i ≤ n, can be used to de-
fine persistence of the homology classes that die before the
sequence ends. To extend persistence to all classes, we con-
tinue the sequence using the Poincaré duality isomorphism
Hr(K)→ Hd−r(K):

0 = Hr(K0) → . . .→ Hr(Kn)

→ H
d−r(Kn) → . . .→ H

d−r(K0) = 0.

Using excision and Lefschetz duality, we can replace all co-
homology groups by relative homology groups and get

0 = Hr(K0) → . . .→ Hr(Kn)
→ Hr(K, L0) → . . .→ Hr(K, Ln) = 0.

To express this more compactly, we identifyKn with
(Kn, ∅) and writeKn+i = (K, Li), for 0 ≤ i ≤ n. Fur-
thermore we writeHj

r = Hr(Kj), where this is of course
ordinary homology for0 ≤ j ≤ n and relative homology for
n < j ≤ 2n. Using this notation, we rewrite the extended
sequence of homology groups as

0 = H
0
r → . . .→ H

n
r → . . .→ H

2n
r = 0.

Since every class eventually dies, we simply adapt the defi-
nition above. Specifically, a class that is born atKi or Kn+i

and dies enteringKj or Kn+j, for 0 < i, j ≤ n, hasex-
tended persistence|j − i| or |f(uj) − f(ui)|, depending on
the application. Although Poincaré and Lefschetz dualitydo
not extend to general simplicial complexes, the extended se-
quence of homology groups does.

Case analysis. It is useful to know what happens when we
go from one homology group to the next is this extended
sequence. To simplify the analysis, we consider the finer
filtration in which we add one simplex at a time, so we index
the homology groups fromH0

r to H
m
r and further toH

2m
r ,

wherem is the number of simplices inK, as usual. We
begin with the ascending filtration and consider the kernels
Ki

r = ker hi,m
r and the cokernelsCi

r = Hr(K)/im hi,m
r of

the maps into the homology group of the full complex. The
kernel consists of all inessential cycles inKi, the ones that
are trivial in K. The cokernel represents all new essential
cycles inK, the ones that have no preimage inKi. The maps

induced by the inclusionsKi−1 ⊆ Ki ⊆ K in turn induce
maps between the kernels and the cokernels. To simplify
the discussion, we drop subscripts and superscripts and write
kA : K

i−1
r−1 → Ki

r−1 andcA : Ci−1
r → Ci

r for these maps. In
going fromi − 1 to i, we getKi by addingκi to Ki−1, and
we distinguish between three types of events.

Case A.1 The mapkA has a non-trivial kernel,ker kA 6= 0.
This means there is a non-trivial class inH

i−1
r−1 that goes

to zero inHi
r−1. This class dies, the dimensionr − 1

homology group decreases in rank by one, andκi is a
negativer-simplex in the ascending filtration that gets
paired with an earlier, positive(r − 1)-simplex.

Case A.2 The same map,kA, has a non-trivial cokernel,
coker kA 6= 0. This means there is a new class inHi

r−1

that is inessential inK. This class is born atKi, the
dimensionr − 1 homology group increases in rank by
one, andκi is a positive(r − 1)-simplex that will get
paired with a negativer-simplex later.

Case A.3 The mapcA has a non-trivial kernel,ker cA 6= 0.
This means there is a new class inHi

r that is essential in
K. This class is born atKi, the dimensionr homology
group increases in rank by one, andκi is a positiver-
simplex that will not get paired within the ascending
filtration.

There is no fourth case becausecA is necessarily surjective
and thus cannot have a non-trivial cokernel. Note that this
same analysis applies also to the descending filtration of the
Lj. To relate the change in the homology of theLj to that
of the pairs(K, Lj), we consider the long exact sequence of
the pair,

. . .→Hr(Lj)→Hr(K)→Hr(K, Lj)→Hr−1(Lj)→ . . .

Reusing the notation for kernels and cokernels, but now de-
fined for the descending complexes, we writeKj

r for the ker-
nel ofHr(Lj)→ Hr(K) andC

j
r for the cokernel of the same

map. With this notation, we get the short exact sequence

0→ C
j
r → Hr(K, Lj)→ K

j
r−1 → 0.

Since we are working withZ2 coefficients, this sequence
splits to give an isomorphism,Hr(K, Lj) ∼= Cj

r ⊕ K
j
r−1.

As before, the inclusionsLj−1 ⊆ Lj ⊆ K induce maps
between the corresponding homology groups which, in turn,
induce maps between kernels and cokernels. These maps
make the diagram

0 → C
j−1
r → Hr(K, Lj−1) → K

j−1
r−1 → 0

↓cD ↓ ↓kD

0 → C
j
r → Hr(K, Lj) → K

j
r−1 → 0

commute. This diagram helps us relate the changes be-
tween absolute and relative homology groups. In going from
(K, Lj−1) to (K, Lj) we getLj by addingλj to Lj−1. We
again distinguish between three cases, in strict analogy with
the ascending filtration.
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Case D.1ker kD 6= 0. Similar to Case A.1,λj is a nega-
tive r-simplex in the descending filtration and the ab-
solute dimensionr − 1 homology group decreases in
rank by one. The diagram implies the same for the di-
mensionr relative homology group,rankHr(K, Lj) =
rankHr(K, Lj−1)− 1.

Case D.2 coker kD 6= 0. Similar to Case A.2,λj is a posi-
tive (r− 1)-simplex in the descending filtration and the
absolute dimensionr − 1 homology group increases in
rank by one. The diagram implies the same for the di-
mensionr relative homology group,rankHr(K, Lj) =
rankHr(K, Lj−1) + 1.

Case D.3ker cD 6= 0, Similar to Case A.3,λj is a positive
r-simplex in the descending filtration and the absolute
dimensionr homology group increases in rank by one,
with an essential class. The diagram implies the oppo-
site change for the relative homology group of the same
dimension,rankHr(K, Lj) = rankHr(K, Lj−1)− 1.

As before there is no fourth case becausecD is surjective.

5 Locality

In practical situations, it can be useful to find the most lo-
cal basis of the homology of a given space. There are many
ways to measure locality and we choose thickness, which
we define below. This will lead to a new interpretation of ex-
tended persistence as selecting a lexicographically thinnest
homology basis.

Thickness of a homology class. It is convenient to assume
a Morse functionf : M → R on a manifold, although the
arguments in this section also work for filtrations of gen-
eral simplicial complexes. For any intervalI, we define
MI = f−1(I). Given a classα ∈ Hr(M), we let I(α)
be the set of closed intervalsI such thatα lies in the image
of Hr(M

I) in Hr(M) by inclusion. In other words,MI sup-
ports a representative cycle ofα. We begin by proving that
the intersection of two intervals inI(α) is either empty or
again belongs toI(α). We distinguish two kinds of homol-
ogy classes, callingα horizontalif I(α) contains at least two
non-empty disjoint intervals andverticalotherwise.

INTERSECTIONLEMMA . For verticalα, I(α) is closed
under intersection.

PROOF. Let I ′ = [w, y] andJ ′ = [x, z] be two intervals in
I(α). Sinceα is vertical, their intersection is non-empty.
If they are nested thenI ′ ∩ J ′ belongs toI(α) for trivial
reasons. If not, we assumew ≤ x ≤ y ≤ z and letI =
(−∞, y] andJ = [x,∞). The Mayer-Vietoris sequence for
the two corresponding preimages is

· · · → Hr(M
I∩J )→ Hr(M

I)⊕ Hr(M
J )→ Hr(M)→ . . .

SinceI ′ ⊆ I and J ′ ⊆ J , the classα ∈ Hr(M) is the
image of classesβ ∈ Hr(M

I) andγ ∈ Hr(M
J ). Because

the second map in the Mayer-Vietoris sequence is induced
by taking the difference of the two inclusions,(β, γ) lies in
its kernel. By exactness, this implies that there is a class
δ ∈ Hr(M

I∩J ) whose images inHr(M
I) andHr(M

J ) areβ
andγ. It follows that the image ofδ in Hr(M) is α. Hence
I ′ ∩ J ′ = I ∩ J ∈ I(α), as claimed.

We call the common intersection of the intervals inI(α)
theminimal supportof α, I(α) =

⋂

I(α). Thethicknessof
α is either the length of this interval or zero, depending on
the type of the class,

th(α) =

{

|I(α)| if α is vertical,
0 if α is horizontal.

In the horizontal case,I(α) contains two disjoint intervals
and we can choosex so one is contained in(−∞, x] and the
other in[x,∞). Applying the same argument as we used in
the proof of the Intersection Lemma, we see that the degen-
erate interval[x, x] is in I(α) so that a representative cycle
is supported in a single level set, thus the name horizontal.
Note that this level set is not unique. Notice also that in the
vertical case, we can haveth(α) = 0 in which case there is
a unique level setf−1(x) supportingα andI(α) = [x, x].

Relation to extended persistence. Suppose a classα is
born aty in the upward pass and dies enteringx in the down-
ward pass. Then(−∞, y] and[x,∞) both belong toI(α).
Furthermore,x ≤ y implies α is vertical andx > y im-
plies α is horizontal. To shed additional light on the rela-
tion between thickness and extended persistence, we prove
a statement about sums of essential cycles. Call a vertical
classα ∈ Hr(M) decomposableif it can be written as a sum
of classes whose minimal supports are strict subsets ofI(α).
This includes the possibility thatα is the sum of horizontal
classes.

DECOMPOSITIONLEMMA . Let α ∈ Hr(M) be a vertical
class. The endpoints ofI(α) are paired by extended persis-
tence iffα is not decomposable.

PROOF. Let I(α) = [x, y] with x ≤ y. Since the class is ver-
tical, α is born aty in the upward pass and dies enteringx in
the downward pass. Suppose thaty is paired withy′. Since
α is supported in[x, y], the image ofα in Hr(M, M[x,∞)) is
zero, which impliesx ≤ y′. The claim is therefore equiv-
alent tox = y′ if α is non-decomposable andx < y′ if α
is decomposable. In the remainder of this proof we simplify
notation by writingMy = M

(−∞,y] andM
x = M

[x,∞) for
the sub- and superlevel sets.

To prove the first implication we show thatx < y′ implies
α is decomposable. As mentioned in Section 3, there is a
classβ that is born aty in the upward pass and dies entering
y′ in the downward pass. Ifβ is horizontal it has a represen-
tative cycle in a level set abovey′, and if it is vertical then
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I(β) ⊆ [y′, y] is a non-empty proper subinterval ofI(α). By
assumption off being Morse, there is a sufficiently small
ε > 0 such that the only difference in Betti numbers aty
andy − ε is βr(My) = βr(My−ε) + 1. Hence, the rela-
tive groupHr(My, My−ε) has rank one, which implies that
α andβ have the same image there. This means the differ-
enceα − β goes to zero. It follows thatα − β ∈ Hr(M)
is the image of a classγ ∈ Hr(My−ε). If γ is vertical then
I(γ) ⊆ [x, y − ε] is a proper subinterval ofI(α). It follows
thatα is decomposable.

To prove the second implication, we show thatα decom-
posable impliesx < y′. We may writeα = β + γ, whereβ
is supported inMy−ε andγ is supported inMx+ε, for small
enoughε > 0. Note thatβ is already alive aty − ε and that
the images ofα andβ in Hr(M, Mx+ε) are the same. By
definition of pair group,α is therefore already dead atx + ε.
Hencex andy are not paired.

Moreover, for any extended persistence pair(y, x) with
x ≤ y there is a class with minimal support[x, y]. Indeed,
there is a classα ∈ Hr(M) that is born aty and maps to zero
for the first time inHr(M, Mx). Henceα is supported inMy

as well as inMx. By the Intersection Lemma,I(α) ⊆ [x, y]
and strict inclusion would lead to a contradiction.

Most local bases. Let η = (ηi) i=1..n andϕ = (ϕi) i=1..n

be two bases ofHr(M) and assume that basis elements are
sorted by non-decreasing thickness. We sayη is thinnerthan
ϕ if th(ηj) < th(ϕj) for the smallest integerj for which
th(ηj) 6= th(ϕj). This is, of course, lexicographic ordering
by thickness. Obviously, this order on bases admits at least
one global optimum. It can be constructed greedily by tak-
ing thei-th element to have the smallest thickness among the
classes that are linearly independent of the firsti−1 basis el-
ements. We claim that extended persistence gives optimally
local bases.

THIN BASIS THEOREM. In an optimally thin basis, the
minimal supports of the basis elements with positive thick-
ness are the intervals[x, y] for which (y, x) is an extended
persistence pair.

PROOF. Let η = (ηi) i=1..n be an optimally thin basis of
Hr(M), sorting basis elements in the order of non-decreasing
thickness, as usual. Letηj be the first basis element with pos-
itive thickness and letx < y be the endpoints of its minimal
support,I(ηj) = [x, y]. Then(y, x) is an extended persis-
tence pair, elseηj would be a sum of classes with strictly
smaller thickness, contradicting the optimality ofη. Simi-
larly, we prove that fori ≥ j, ηi corresponds to the extended
persistence pair with(i− j + 1)-st smallest value ofy − x.
Finally, all extended persistence pairs(y, x) with x < y cor-
respond to basis elements.

Indeed, if such a pair(y, x) is not a basis element, we
could form a new basis by adjoining it to the list ofηj with
smaller persistence and extending to a full basis. This new

basis would be strictly thinner, contradicting our assumption
thatη is the thinnest.

6 Algorithm
In this section, we adapt the algorithm of [5] to extended per-
sistence. We phrase the algorithm in the language of column
operations on boundary matrices, prove its correctness, and
show that the diagrams it produces are stable.

Matrix reduction. The definition of extended persistence
suggests a multi-phase algorithm, sweeping the complexK
first in ascending and then in descending order. By setting
up the data structure appropriately, the seemingly different
actions during the phases become the same and we can ex-
press the algorithm without making a distinction. This data
structure is a2m-by-2m zero-one matrix

M =

[

A P
0 D

]

,

whereA represents the ascending filtration,D represents
the descending filtration, andP stores the permutation that
connects the two sequences of simplices. Recall that the
ascending filtration is given by the sequence of simplices
κ1, κ2, . . . , κm. The rows and columns ofA correspond to
the simplices in this order and we haveA[i, j] = 1 iff κi is
a co-dimension one face ofκj . The descending filtration is
given by the sequence of simplicesλ1, λ2, . . . , λm and we
haveD[i, j] = 1 iff λi is a co-dimension one face ofλj .
Finally,P [i, j] = 1 iff κi = λj .

The matrixM may be interpreted as the boundary matrix
of a new complex,Kω = ω ·K, obtained by coningK from
a new vertexω, but withω removed. Indeed,A is a bound-
ary matrix ofK and so isD. The permutation matrix adds
a single1 above each column ofD effectively increasing
the dimension of the represented simplex by one. Specifi-
cally, thej-th column ofD represents the simplexλj and
the corresponding,(m + j)-th column ofM represents the
coneωj = ω · λj . By construction, every complexKi in the
ascending filtration corresponds to an upper-left square sub-
matrix ofM , and since it hasm or fewer rows and columns,
this is also a submatrix ofA. The relative homology of the
pair (K, Lj) in the extended sequence is the same as that of
(K ∪ ω ·Lj , ω). Again by construction, the latter pair corre-
sponds to an upper-left square submatrix ofM , which now
contains and extends beyondA. With this set-up, we can
compute the pairing by reducing the matrixM using col-
umn operations. To describe what this means, letlow(j) be
the maximum row indexi for which M [i, j] = 1. If the
columnj is zero thenlow(j) is undefined. We callM re-
ducedif low(j) 6= low(k) wheneverj 6= k are two non-zero
columns. Following [3], the algorithm reducesM from left
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to right, modifying each column by adding columns on its
left, if necessary.

for j = 1 to 2m do
while ∃k < j with low(k) = low(j) do

add columnk to columnj
endwhile

endfor.

Each column operation moves the lowest1 up until it is ei-
ther not preceded by another lowest1 in the same row or
the entire column is zero, which happens after fewer than
2m steps. Each step takes time at most O(m). Similar to
Gaussian elimination, the algorithm takes a total of at most
O(m2) steps and is therefore guaranteed to finish within time
O(m3). In practice, one saves space and time using a sparse
matrix representation ofM similar to the ones described in
[3] or [5].

Interpretation. In an effort to relate the algorithm to the
algebra of the preceding sections, we interpret the columns
generated by the algorithm in terms of chains, cycles, and
boundaries. We distinguish three phases, respectively reduc-
ing A, D, andP . Phase I corresponds to1 ≤ j ≤ m and
Phases II and III correspond tom < j ≤ 2m but are inter-
mingled in the algorithm. Phase I affects only matrixA and
is precisely the algorithm in [5] executed on the ascending
filtration. It distinguishes between positive simplices, which
may get paired or remain unpaired, and negative simplices,
which necessarily get paired.

• We recognizeκj as apositive simplexif columnj of A
is zero, after reduction. The simplexκj is paired if row
j of A contains a lowest 1. The corresponding column
stores a inessential cycle andκj is its youngest simplex,
in the sense of being introduced last in the ascending
filtration. The simplexκj is unpairedif row j does not
contain a lowest 1. In this case, the columns used to
zero out columnj form an essential cycle andκj is its
youngest simplex.

• We recognizeκj as anegative simplexif columnj of A
is non-zero, after reduction. The column corresponds to
a chain and stores its boundary, a trivial cycle. Further-
more,κj is paired withκi, wherei = low(j), andκi is
positive and the youngest simplex in that cycle.

Note that all cycles stored inA after reduction are bound-
aries, as indicated in Figure 4. Phase II consists of the actions
within m < j ≤ 2m that affect matrixD. It is precisely the
algorithm of [5] executed on the descending filtration. It thus
distinguishes between paired and unpaired positive simplices
and paired negative simplices as defined by the descending
filtration. Similar toA, all cycles stored inD after reduction
are boundaries. Phase III reducesP and thus completes the
reduction ofM . It modifies only columns ofP above zero
columns ofD. Let m + j be the index of such a column in

1

m1

A

0

P

D

bo
un

da
ry

cy
cl

e
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ai

n

ze
ro

ze
ro
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un

da
ry

m2

m

m 2

Figure 4: The matrixM after Phases I and II but before Phase III.
Positive simplices give rise to zero columns and negative simplices
to non-zero columns storing boundaries. Without reducingP , we
get cycles and chains whose boundaries are stored inD belowP .

M and note that its upper half, columnj of P , stores a cy-
cle, namely the cycle whose zero boundary is stored below
it in D. To this column we add boundaries fromA and other
cycles fromP . The reduction ends when the lowest 1 in the
column is in a unique row, with indexi = low(m + j), or
the column becomes zero. In the former case, the column
stores an essential cycle and we pairκi with λj .

Correctness. We argue correctness in two steps, first mak-
ing sure that all simplices are paired, and second that the
pairs agree with the algebraic definition of extended persis-
tence. For the first step, we add a new first row and a new
first column representingω to M . The reduction of the re-
sulting matrix is precisely the algorithm in [5] executed on
the filtration of Kω defined by the sequence of simplices
ω, κ1, . . . , κm, ω1, . . . , ωm. SinceKω consists of a single
connected component and has otherwise no non-trivial ho-
mology,ω is the only unpaired simplex, after reduction. This
implies that the addition of the new first row and column does
not affect the result and we get the same pairs with or without
this addition.

The pairs we get fromA are the ordinary persistence pairs
for the ascending filtration, simply because Phase I of our
algorithm is the same as the ordinary persistence algorithm
given in [5]. Similarly, the pairs we get fromD are the or-
dinary persistence pairs for the descending filtration. It re-
mains to show that the pairs we get fromP are the extended
persistence pairs as defined by the algebra. If(κi, λj) is such
a pair then columnm + j of M has a non-zero upper half
(columnj of P ) and a zero lower half (columnj of D), af-
ter reduction. It defines a cycle whose youngest simplex is
κi, with i = low(m + j). Since there is no column inA
with lowest 1 in rowi, the cycle is essential, and since no
column operation from the left can changelow(m + j), it is
not possible to push this essential cycle lower inK. In other
words,Ki is the first complex in the ascending filtration that
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contains the essential cycle. By construction,Lj is the first
complex in the descending filtration that contains it. It fol-
lows that(κi, λj) is an extended persistence pair as defined
by the algebra.

Stability. Following [2], we express the stability of ex-
tended persistence in terms of2-dimensional diagrams,
which we now define. Recall that a class inPi,j

r is born at
Ki and dies enteringKj . Encoding the birth and death using
coordinates, this class is represented by the point(fi, fj),
wherefi = f(ui) if i ≤ n andfi = f(u2n−i+1) if n < i,
and similarly forj. Collecting the points for all classes of
dimensionr and adding the points on the diagonal with in-
finite multiplicity, as in [2], we get thedimensionr per-
sistence diagramof f , which we denote asDgmr(f). It
is convenient to partitionDgmr(f) into the ordinary sub-
diagram, Ordr(f), for i ≤ j ≤ n, the extended sub-
diagram, Extr(f), for i ≤ n < j, and therelative sub-
diagram, Relr(f), for n < i ≤ j. Besides the diagonal
points, the ordinary sub-diagram has only points above the
diagonal, the extended sub-diagram has points on both sides,
and the relative sub-diagram has only points below the diag-
onal.

Let K be a simplicial complex, not necessarily a trian-
gulation of a manifold, and letf, g : K → R be obtained
by linear extension of two real-valued functions on the ver-
tex set. We compare the two functions using theL∞-norm
of their difference,‖f − g‖∞ = maxx |f(x) − g(x)|. We
compare their persistence diagrams using the bottleneck dis-
tance,

dB(Dgmr(f), Dgmr(g)) = inf
γ

sup
p
‖p− γ(p)‖∞,

wherep ∈ Dgmr(f) and γ : Dgmr(f) → Dgmr(g) is
a bijection. This is theL∞-length of the longest edge in the
best matching between the two multisets. Here we use points
on the diagonal to complete the matching, if necessary, or to
obtain a shorter longest edge, if possible.

STABILITY THEOREM. Lettingf andg be piecewise lin-
ear functions on a common simplicial complex, we have
dB(Dgmr(f), Dgmr(g)) ≤ ‖f − g‖∞, for all r.

PROOF. We use the reduction algorithm applied to the cone
complexKω = ω·K to generate the diagrams. The sequence
of the simplices isω, κ1, . . . , κm, ω1, . . . , ωm, as before. To
generate the diagrams forf we assign real numbers to the
simplices,

F (ω) = −∞,

F (κj) = max{f(u) | u ∈ κj},

F (ωj) = min{f(u) | ω 6= u ∈ ωj},

for 1 ≤ j ≤ m. All simplices of K in the lower star
of a vertexu get assigned the valuef(u), and so do all

cones over simplices ofK in the upper star ofu. The algo-
rithm matches up all simplices in pairs, except forω. Each
pair maps to a point in the persistence diagram whose di-
mension is that of the first simplex in the pair. We get
Dgmr(f) = Dgmr(F ), for all dimensionsr. Similarly,
we define the assignmentG for the functiong and con-
struct the diagramsDgmr(g) = Dgmr(G), for all r. As
proved in [3], the bottleneck distance betweenDgmr(F ) and
Dgmr(G) is bounded from above by the absolute difference
between the assigned values,dB(Dgmr(F ), Dgmr(G)) ≤
maxσ∈Kω

|F (σ) − G(σ)|. By construction, this maximum
absolute difference is‖f − g‖∞, which completes the proof.

7 Structure
In this section, we prove that in the case of ad-manifold,
both ordinary and extended persistence satisfy a duality re-
sult relating dimensionsr andd− r. We then use this result
to prove that extended persistence is symmetric.

Compatibility. Let K be a triangulation of ad-manifold
with a total order of its vertices. As usual,Ki is spanned
by the first i vertices andLn−i by the lastn − i vertices.
We recall thatHi

r = Hr(Ki) andH
2n−i
d−r = Hd−r(K, Ln−i),

for 0 ≤ i ≤ n. Using the Partition Lemma and excision,
we see that the latter, relative homology group is isomor-
phic toHd−r(K, L∗

n−i)
∼= Hd−r(K

∗
i , ∂K∗

i ), whereK∗
i and

L∗
n−i are the complementary subcomplexes of the barycen-

tric subdivision ofK introduced in Section 3. Lefschetz du-
ality therefore provides a non-degenerate pairing

〈, 〉 : H
i
r × H

2n−i
d−r → Z2

for each0 ≤ i ≤ n and each dimensionr, given by counting
intersections modulo2. By symmetry, such a pairing exists
for each0 ≤ i ≤ 2n. To prepare the proof of the duality
result, we show that the pairings given fori ≤ j are compat-
ible. By this we mean that ifα ∈ Hi

r andβ ∈ H
2n−j
d−r then we

get the same answer if we mapα forward toHj
r and compare

it with β or we mapβ backward toH2n−i
d−r and compare it

with α: 〈hi,j
r (α), β〉 = 〈α, h2n−j,2n−i

d−r (β)〉 = card (a ∩ b)
(mod 2), wherea andb are representatives ofα andβ that
intersect transversally. To see this, we need to check the
cases illustrated in Figure 5. In the casei ≤ j ≤ n on
the left,a is a cycle inKi, b is a relative cycle in(K, Ln−j),
and their intersection lies entirely inKi. We can usea as a
representative of the image ofα in Hj

r and we can useb as a
representative of the image ofβ in H

2n−i
d−r , so both pairings

are computed from the same number of intersections and are
therefore the same. The casen < i ≤ j on the right is simi-
lar. In the casei ≤ n < j in the middle,a is a cycle inKi and
b is a cycle inK2n−j , with intersection in the smaller of the
two complexes. Again we can use the same representations
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n−j2

b b
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a

Figure 5: From left to right: Cycles in closed and open sublevel sets
of the torus fori ≤ j ≤ n, i ≤ n < j, n < i ≤ j. The cyclea is
a representative of the homology classα of Ki as well as its image
in Kj . The cycleb is a representative of the homology classβ of
K2n−j as well as its image inK2n−i.

for the images and the number of intersections we count is
again the same.

Duality. As before, we assumeK is a triangulation of a
d-manifold and we use the notation for complexes, homol-
ogy groups, and induced homomorphisms introduced earlier.
With this notation, the definition of pair groups given in (1)
extends to0 ≤ i < j ≤ 2n.

DUALITY THEOREM (VERSION 1). A real-valued func-
tion on ad-manifold has non-degenerate pairings on the pair
groups,

P : P
i,j
r × P

2n−j+1,2n−i+1
d−r → Z2,

for all 0 ≤ i < j ≤ 2n and all dimensionsr.

PROOF. To simplify notation, we writek = 2n− i + 1 and
ℓ = 2n − j + 1 so that the second pair group in the non-
degenerate pairing isPℓ,k

d−r. The following diagram shows
all groups and maps needed to define the two pair groups
referred to in the claim:

H
i−1
r → H

i
r → H

j−1
r → H

j
r

× × × ×

H
k
d−r ← H

k−1
d−r ← H

ℓ
d−r ← H

ℓ−1
d−r

We may assume that both pair groups are non-trivial, else
there is nothing to prove. We define the pairingP in the
natural way, letting

γ ∈ im h
i,j−1
r ∩ ker h

j−1,j
r ⊆ H

j−1
r ,

δ ∈ im h
ℓ,k−1
d−r ∩ ker h

k−1,k
d−r ⊆ H

k−1
d−r

represent the non-zero classes[γ] ∈ Pi,j
r and [δ] ∈ P

ℓ,k
d−r.

Then chooseδ′ in Hℓ
d−r whose image inHk−1

d−r is δ and set

P ([γ], [δ]) = 〈γ, δ′〉.

By compatibility, the value does not depend on the choice
of δ′ and the pairing is therefore well-defined. Similarly, we

can see that the pairing is bilinear and symmetric. It remains
to prove that it is also non-degenerate. Since〈, 〉 is non-
degenerate for all vertically arranged pairs, we can chooseβ
in Hℓ

d−r such that〈γ, β〉 6= 0 and〈α, β〉 = 0 for all α in the
image ofhi−1,j−1

r . By compatibility, this latter condition im-
plies〈α′′, β′′〉 = 0 for all α′′ in Hi−1

r , whereβ′′ is the image
of β in Hk

d−r. Non-degeneracy thus leaves only the possibil-
ity thatβ′′ = 0. Hence, the imageβ′ of β in H

k−1
d−r represents

an element ofPℓ,k
d−r for which P ([γ], [β′]) 6= 0. This shows

thatP is non-degenerate and completes the proof.

Version 1 of the Duality Theorem implies relationships be-
tween the persistence diagrams, which we express by writing
DgmT for the reflection ofDgm along the main diagonal.
In other words,(x, y) ∈ Dgmr(f) iff (y, x) ∈ DgmT

r (f).
Similarly, we use a superscriptT to indicate reflections of
the three sub-diagrams. By duality, the ordinary dimensionr
persistent classes correspond to the dimensiond− r relative
persistent classes or, more formally,Ordr(f) = RelTd−r(f).
Indeed, if i ≤ j ≤ n then a class in the pair groupPi,j

r

is born by adding the lower star of the vertexui to Ki−1,
and it is killed by adding the lower star ofuj to Kj−1.
Symmetrically, a class inPℓ,k

d−r is born by adding the up-
per star ofu2n−ℓ+1 = uj to Ln−j, and it is killed by
adding the upper star ofu2n−k+1 = ui to Ln−i. Simi-
larly, Extr(f) = ExtT

d−r(f) andRelr(f) = OrdT
d−r(f).

We combine the three cases into one statement.

DUALITY THEOREM (VERSION 2). A real-valued func-
tion f on a d-manifold has persistence diagrams that are
reflections of each other,Dgmr(f) = DgmT

d−r(f), for all
dimensionsr.

Symmetry. As before,K is a triangulation of ad-manifold
andf is defined by a real-valued function on the vertex set.
We claim that duality implies that persistence is symmetric
in the sense thatf and−f give the same diagrams up to
reflections and dimensions. However, this time we use the
superscriptR to indicate reflection across the minor diago-
nal, mapping a point(x, y) to (−y,−x), and the superscript
0 to indicate reflection through the origin, mapping(x, y) to
(−x,−y).

SYMMETRY THEOREM. For a real-valued functionf on
ad-manifold, we have

Ordr(f) = OrdR
d−r−1(−f),

Extr(f) = Ext0d−r(−f),

Relr(f) = RelRd−r=1(−f),

for all dimensionsr.

PROOF. To see this symmetry, we note that the vertex order-
ing defined by−f simply switchesKi andLn−i. There are
then three sets of equalities to consider.
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For the first set of equalities, let(fi, fj) be a point in the
ordinary sub-diagram,i ≤ j ≤ n. When a dimensionr ho-
mology class is born atKi and dies enteringKj , duality pro-
vides a dimensiond− r relative homology class that is born
atKℓ = (K, Ln−j+1) and dies enteringKk = (K, Ln−i+1).
This class is represented by the point(fj , fi) in Reld−r(f).
The relative class born atKℓ is Case D.2 in the classifica-
tion of the Section 4 so it is accompanied by the birth of a
dimensiond − r − 1 class inLn−j+1. Similarly, the rela-
tive class that dies enteringKk is Case D.1, so the dimen-
siond − r − 1 class born atLn−j+1 dies enteringLn−i+1.
This class is therefore represented by the point(−fj ,−fi)
in Ordd−r−1(−f), proving the first set of equalities.

For the second set of equalities, let(fi, fj) be a point in
the extended sub-diagram,i ≤ n < j. A dimensionr homol-
ogy class is born atKi and dies enteringKj = (K, Lj−n).
The Duality Theorem then provides a dimensiond − r rel-
ative homology class born atKℓ and dying enteringKk =
(K, Ln−i+1). We note that the class born atKℓ is Case D.3,
so it is accompanied by a dimensiond − r absolute homol-
ogy class and the same is true for the class that dies entering
Kk. This class is represented by the point(−fi,−fj) in
Extd−r(−f), thus proving the second set of inequalities.

The argument for the third set of equalities is the same,
and we have again a shift in dimension, same as in the first
case.

Morse function example. Assumingf is a Morse func-
tion, each critical point belongs to two pairs, one for the
ascending and one for the descending direction. The Du-
ality Theorem implies that the two pairs are the same, so
we have a perfect matching. The Symmetry Theorem im-
plies that−f gives the same perfect matching. We follow
up with an illustration of duality and symmetry, lettingM
be the2-manifold sketched in Figure 6 andf : M → R

measure height above a horizontal base plane. In the ex-
ample,f is Morse and has three minima, nine saddles, and
two maxima. SinceM is orientable, this implies its genus
is three. Hence, there are eight essential homology classes,
the component represented by the global minimum,a, six
1-cycles represented by the saddlesu, v, w, U, V, W , and
the 2-cycle represented by the global maximum,A. The
pairs formed by extended persistence define points mak-
ing up the extended sub-diagrams,(a, A) for dimension0,
(u, U), (v, V ), (w, W ), (W, w), (V, v), (U, u) for dimension
1, and(A, a) for dimension2. The remaining pairs corre-
spond to points in the other sub-diagrams,(b, B), (c, C) and
(d, D) for the ordinary sub-diagrams of dimensions0 and1,
and (C, c), (B, b) and (D, d) for the relative sub-diagrams
of dimensions2 and1. Figure 7 overlays the sub-diagrams
showing all fourteen points as circle-shaped dots in one pic-
ture. By the Duality Theorem, this picture is symmetric with
respect to the main diagonal. As we switch fromf to −f ,
minima become maxima, saddles remain saddles, and max-
ima become minima. By the Symmetry Theorem, the pairs
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Figure 6: Two Morse functions on a2-manifold, measuring height
above and below a base plane.

remain the same except the coordinates become negative and
switch their order. In other words, we get the diagrams of−f
by reflection along the minor diagonal. If we overlay the di-
agrams off and−f we get a picture that is symmetric with
respect to both diagonals, as in Figure 7. Note, however, that
the type of the sub-diagram and the dimension may change
as we reflect a point across the major or the minor diagonal.

8 Discussion
The main contributions of this paper is the extension of or-
dinary persistence to essential homology classes. In this sec-
tion, we briefly discuss the motivating application to eleva-
tion functions and list a few questions raised by the reported
work.

Elevation. We recall that the elevation function of a sur-
face embedded inR3 has been introduced and studied in
[1]. The local maxima of this function have been applied
to coarse protein docking in [11]. Here we briefly comment
on how the results of this paper can be used to generalize
elevation beyondR3.

Let M be a codimension1 submanifold ofRd+1, that is,
M is the smooth embedding of ad-manifold inRd+1. Each
point x ∈ M has two unit normals,ux and−ux. Letting
fu : M → R be the height function in directionu ∈ Sd,
the point is critical iffu is equal toux or to−ux. Assume
u = ux and lety ∈ M be the critical point offu that is
paired withx by (extended) persistence. By the Symmetry
Theorem,x andy are also paired foru = −ux. The function

Elevation : M→ R

defined byElevation(x) = |fu(x)− fu(y)| therefore makes
sense. Similar to the cased = 2, the function is smooth al-
most everywhere but there are measure-zero violations even
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Figure 7: Overlay of the persistence diagrams off and−f of all di-
mensions. We draw circles forf and squares for−f , color-coding
ordinary, extended, relative sub-diagrams white, gray, black, and
marking the dots by the dimension of their diagrams. The moments
of birth and death of points above the main diagonal are marked
by the corresponding critical points. We havef(a) = −f(A) and
therefore two double points on the minor diagonal.

for continuity. It is possible to do surgery onM to make
Elevation continuous so local maxima can be defined. For
every finite dimensiond, there are finitely many generic
cases, namely maxima determined by2 ≤ k + ℓ ≤ d + 2
points onM. Counting all possibilities that satisfy1 ≤ k ≤ ℓ
we get(d2 +4d+4)/4 cases for evend and(d2 +4d+3)/4
cases for oddd. For surfaces embedded inR3, elevation is
one of few known functions essentially different from vari-
ations of curvature that capture shape information. It would
be interesting to find applications in which the shape of codi-
mension1 submanifolds in Euclidean space of dimension be-
yond3 plays a role.

Open questions. The algorithm for computing extended
persistence applies to triangulated manifolds as well as to
general simplicial complexes, but the Duality and Symme-
try Theorems do not. As a consequence, the information we
get for general simplicial complexes is more difficult to in-
terpret. Already for the height function of the figure-8 space
shown in Figure 8, we have pairs defining a graph that is
more complicated than a matching.

• Is there a non-manifold counterexample to the weaker
version of the Symmetry Theorem that claims we get
the same collection of pairs forf and for−f?

• Can we quantify the extent to which a diagram violates
the Duality and Symmetry Theorems and this way mea-

A

B

C

Figure 8: The homology of the sublevel set changes at three values.
Extended persistence forms three pairs,(A,C), (C, B), (B, A).
We get the same three pairs, each in opposite order, if we measure
height from top to bottom.

sure how close a complex is to being a manifold?

The Stability Theorem can be strengthened to apply to the
three sub-diagrams individually. In particular, we have
dB(Extr(f), Extr(g)) ≤ ‖f − g‖∞, for each dimensionr.

• Can we extend this result to functionsf andg defined
on different spaces and use the bottleneck distance to
measure how similar or different these spaces are?

The extended sub-diagram needs to be interpreted differently
from the ordinary and the relative sub-diagrams. For in-
stance, we can have points on the diagonal representing non-
negligible topological features. An example is the projective
plane,RP 2, with β0 = β1 = β2 = 1. The essential dimen-
sion 1 homology class is born when we pass the saddle at
heightx in the upward pass and it dies again when we pass
the same saddle in the downward pass. It follows that(x, x)
is the only point in the dimension1 extended sub-diagram.
Another such example is provided byCP 2, an orientable4-
manifold. We may therefore reconsider the definition of bot-
tleneck distance as it applies to extended sub-diagrams, for
example by not adding extra points on the diagonal.
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