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Abstract Motivation. ~Continuous functions have been used in a va-
riety of contexts to recognize and extract features of embed
Persistent homology has proven to be a useful tool in a vari- ded surfaces. Examples include local curvature approxima-
ety of contexts, including the recognition and measurementtion functions, used e.g. for protein docking [4] and global
of shape characteristics of surfacesRih. Persistence pairs alignment [7], and the mean geodesic distance, used for
homology classes that are born and die in a filtration of shape matching andindexing [8]. Particularly relevanhts t
a topological space, but does not pair its actual homology paper is the elevation function introduced in [1] and amplie
classes. For the sublevelset filtration of a surfacRirper- to coarse protein docking in [11]. To define the elevation at
sistence has been extended to a pairing of essential classeg pointp of a surfaceS, we consider the directional height
using Reeb graphs. In this paper, we give an algebraic for- function given by projecting onto its normal line through
mulation that extends persistence to essential homolagy fo ; and pair up the critical points of that function using per-
any filtered space, present an algorithm to calculate it, andsjstence. The elevation atis then the absolute directional
describe how it aids our ability to recognize shape features height difference betweemand its paired point. To define
for codimensionl submanifolds of Euclidean space. The the function for all points of5, [1] extends the persistence
extension derives from Poincaré duality but generalizes t pairing to essential cycles that represent the homology of
non-manifold spaces. We prove stability for general triang  using a rule about forks and loops in the corresponding Reeb
lated spaces and duality as well as symmetry for triangdlate graph [1]; see also Section 2. For all this to make sense,
manifolds. the pairing needs to be symmetric so that we get consistent
values in opposite height directions.

A unique property of the elevation function is its inde-
pendence of scale. More precisely, the scale that enters in
the definition of the value at a point varies depending on the
scale of the feature this point is chosen to represent. The el
evation function thus lies somewhere between the primarily
local curvature and curvature approximation functions and
the primarily global mean distance function.
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1 Introduction _ . . :
Results and prior work. This paper gives an algebraic

Persistent homology was recently introduced to measurejustification for the choices made in [1], and it provides
and possibly remove topological features in continuoua.dat the topological results needed to generalize elevation to
This ability has broad applications in medical imaging; sci Smoothly embedded-manifolds inR?*!. The main tech-
entific visualization, and other fields of human study. Isthi nical results are

paper, we extend persistence to essential homology classes (a) the extension of persistence to essential homology
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grant HR0011-05-1-0007. Research by the second authosdspalrtially (b) a characterization of extended persistence in terms of
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magic, Research Triangle Park, North Carolina, USA. values that characterize extended persistence;
§Department of Mathematics and Center for Computationarie, En- ] -
gineering and Medicine, Duke University, Durham, North @iaa, USA. (d) a proof that these pairs of critical values are stable;




(e) a proof that for manifolds these pairs satisfy a duality of which have distinct critical values. We choose regulds va

relation between dimensiomsandd — r; uesty < t; < ... < t,,, bracketing then critical values, and
. . . — g1 ini
(f) a proof that for manifolds these pairs are symmetric, €t Mx = f~(—00, 4] be the sublevel set containing the
that is, the same for a function and its negative. first k critical points. Morse theory tells us this, is homo-

topy equivalent to the result of attaching amimensional
The concept of persistent homology has originally been de- cell to M;,_, wherer is the index of the-th critical point.
fined for modulo2 homology in [5] and has later been gen-  SpecificallyM;, is homeomorphic td1;_; with anr-handle
eralized to fields in [12]. In both formulations, persistenc attached. This means that eithg(My) = 3,(Mg_1) + 1
does not measure essential homology classes, which is limit or 3,_; (M) = 8,_1(My_1) — 1. To distinguish the two
ing in some applications. Our result (a) overcomes this lim- cases, we call the critical point in the first cam®sitivesince
itation. Extended persistence has an intuitive interpieta it increases the sum of Betti numbers and in the second case
in terms of homology bases whose classes lexicographicallynegativesince it decreases the sum of Betti numbers.
minimize thickness, providing the characterization (bheT Persistence gives a pairing between positive criticalgoin
hallmark of the original work on persistence is an efficient of jndex» and negative critical points of index+ 1. To
reduction algorithm, which we adapt to extended persigenc pe more specific, it introduces the idea of a homology class
giving us (c). The stability result (d) is proved by reducing ¢oming into existence at a particular moment and leaving
it to the known stability of ordinary persistence [2]. This again at some particular, later moment. To make sense of
reduction is to the combinatorial formulation given in [3] thjs idea, we use the maps between homology groups in-
and has the side-benefit of implying a linear-time algorithm qyced by the inclusiondl; C M, wheneveri < j. We
for maintaining the pairing under continuous changes of the say a homology class € H, (M) is born atMj, if it does
function. The duality result (e) is based on Lefschetz dual- pot Jie in the image of the map induced bfj,_; C M.
ity and breaks down for non-manifold spaces. Using duality, Fyrthermore, ifo is born atM;, we say itdies enteringVl,
we prove symmetry (f), again for manifolds. Both results are f the image of the map induced Byi,_; C M,_; does not
new except for the-manifold case [1]. contain the image of but the image of the map induced by

My_1 € My does. Ifa is born atM, and dies enteringyl,
Outline. Section 2 gives the idea behind extended persis- then we pair the corresponding critical poinis,andp,, and
tence. Section 3 presents background on filtrations and or-say theimpersistencés ¢ — k or f(p;) — f(px), depending on
dinary persistence. Section 4 extends ordinary persistenc the application we have in mind. The latter is more common
Section 5 proves that extended persistence selects ofgtimal because it measures size in terms of the function that gives
local homology bases. Section 6 gives the algorithm for ex- rise to the class in the first place. Homology classes that are
tended persistence and proves its stability. Section 7gwov  born atM;, and do not die are not paired by this method. We
duality and symmetry for manifolds. Section 8 concludes the call these classes tlssentiahomology classes d¥l. They
paper. represent interesting features so it would be useful tornekte

the persistence pairing to include them. How to do this is the

.. topic of this paper.
2 Intuition P pap

In this section, we describe persistence and its extensionTgrys example. To get a feeling for the information cap-
intuitively, for a Morse function on a manifold. We hope red by the pairs of critical points, we consider the exampl
this prepares the reader for the formal treatment of the morejjstrated in Figure 1. On the left, we see a torus (a sphere
general case and conveys a feeling for the type of applica-yyith a tunnel) embedded iR? such that its height function
tions that can benefit from this concept. Throughout the pa- has two minima, four saddles, and two maxima. On the right,
per we will work with homology withZ/2Z coefficients, e see the Reeb graph of the height function [10]. Each point
so we will write H,(X) = H,(X,Z/2%) and denote its o this graph represents a component of a level set. As we
rank by 3.(X), calling it ther-th Betti number. We point  gyeep the torus from bottom to top, each minimum starts a
out that this is not the normal usage in algebraic topology, component, each saddle either splits a componentinto two or
where3.(X) denotes the rank of the homology &f with merges two components into one, and each maximum ends a
rational coefficients. The usual Betti numbers are generall component. The pairs of critical points &fe B) for r = 0
smaller than ours since, by the universal coefficient th@ore and(d, D) for r = 1. Indeed, the minimurh gives birth to
[9], H,(X,Z/2Z) also includeg-torsion. a component of the sublevel set which dies wiizmerges

this component with the other one given birth to earlienby
Birth and death. LetM be a manifold of dimensiod and Similarly, the saddl@ gives birth to al-dimensional homol-
f : M — R a Morse function on the manifold. We can ogy class which dies at the hand Bbf The remaining four
imagine thaiVl is smoothly embedded iR¢+! and f maps critical points,a, ¢, C, A, are not paired as they give birth to
every point to its height above some hyperplane. Recall thatthe four essential homology classes of the torus. Our aim is
a Morse function has only non-degenerate critical poitts, a to find an algebraic justification for pairingwith A andc



a

Figure 1: Left: smoothly embedded torus with select levas se
bracketing the critical points of the height function. RigReeb
graph of the height function.

only problem with this definition is that to make good sense
of it requires that we understand persistence for cohonyolog
While this can certainly be done [6], we instead use Lef-
schetz duality to replace cohomology by relative homology,
since it gives an isomorphisi?="(M;,) = H, (M, OMj,)

[9]. LettingM™~* = f=1[t; oo) be the superlevel set con-
taining the lastn — k critical points, we use excision to get
an isomorphisnmH,.(Mj,, 0My) = H,.(M, M™~%) [9] and
another version of the above sequence,

0 = H, (M) —...— H.(M,,)
— H.(M,M°) —...— H.(M,M™) = 0,

whereM, = M° = ¢ andM,,, = M™ = M. This version

is not only easier to analyze algorithmically but also gener

alizes naturally to simplicial complexes with a total oridegr

on their vertices. The next sections elaborate on this idea.
Working with this sequence, we can understand extended

persistence in the following way. Suppose that passing from

M1 to My, gives birth to an essentiat;dimensional ho-

mology class. Descending through the superlevel sets, we

with C. The former pair represents the component that even- 100k for the firstM™~ (the largest) that contains a class

tually grows into the entire surface as well as #heycle the

homologous ifM to this essential class. This class then dies

surface forms when complete. The latter pair represents theenteringM™—¢ and we pairp; with p,. For 2-manifolds,

tunnel, marking where it begins and where it ends if viewed
during the sweep of the height function.
Elementary rules for pairing the extra critical points have

been given in [1] and are easiest explained in terms of the

nodes in the Reeb graph. Each component o2theanifold

this is precisely the elementary rule about forks and loops
in Reeb graphs given above. We define ¢ixéended persis-
tenceof this pair to bek — ¢| or | f(pr) — f(pe)|, depending

on the application.

corresponds to a component of the Reeb graph and we pair3 Persistence

the global minimum (the lowest node) with the global max-

imum (the highest node). Furthermore, each saddle corre-In this section, we formally introduce persistence for aees
sponds to a degree-3 node which either forks up or down. A sequence of complexes. Two particularly useful such se-

loop in the Reeb graph has the minimum at its lowest up-

fork and the maximum at its highest down-fork, and we say
the two forksspanthe loop. According to [1], each up-fork
is to be paired with the lowest down-fork that spans a loop
with it. It can be shown that every critical point belongs to
exactly one pair and that reversing the direction in which we
measure height gives the same pairing.

Cohomology and relative homology. In this paper, we ex-

tend persistence to essential homology using Poincaré dua

guences mimic the sweep in the direction of increasing and
decreasing function values.

Pair groups. Let K be a simplicial complex of finite di-
mensiond. A filtration of K is a nested sequence of sub-
complexes that starts with the empty complex and ends with
the complete complex,

@:K()CKlC...CKn:K.

ity, which provides an isomorphism between the dimension Intuitively, persistence is a measure of how long a homol-

r homology group and the dimensiah— r» cohomology
group of ad-manifold,H,. (M) = HY="(M). The inclusions
My, C My induce mapsH?=" (M, 1) — H"(My) so
we get an extended sequence

0 = H,(Mp) . — Hy(M,,)
— H"(M,,) — ... — H¥™" (M)

— ..

0,

whereM, = () andM,,, = M. Classes get born and die also

during the new, second half of the sequence. In particular,

each class born &fl; that lives all the way to the end of the
first half now dies entering sonid, in the second half. The

ogy class lives in this filtration. Fix a dimensienand let

Hi. = H,.(K;) be ther-dimensional homology group df;.
Letting hi:/ : H. — HJ be the homomorphism induced by
the inclusion ofK; in K, the imagejm h%7, consists of the
classes that live at least froH{. to H7.. For a particular class

« We can measure its persistence by tracking where it is born
and where it dies.

DEFINITION. A classa € H: — imhi~1? is born at
K; and itdies enteringK; if hi:7=1(a) ¢ imhi=17=1 but
hid(a) € imhi~1J. Thepersistencef « is the number of
groups in which it lives, i.ej — i.



Note that each class born &t forms a coset ofm hi~1:% in
H¢, so the set of new classes born corresponds to the quotien
groupH: /im hi~%%. Furthermore, ity is born atk; and dies
entering K; then there exists another such classvhose
image inH/ vanishes. More formally, there exists a class
& € Hi — im hi~1% such that

e & —a€imhi~t,

e hiv=1(a) ¢ imhi~%~1 and

e hiv(a)=0.
This suggests that we introduce th&ir groupof all classes
born atk; that vanish entering;:

im h&3 =t N ker hi—1J
imhi " A kerhd—H
Indeed, the numerator collects all classes that exidt.iand
vanish as we pass froifi;_; to K;. Some of these classes
are born atk; and others exist as images of classelin®.

The denominator collects the latter and thus maps them to
zero in the quotient group.

Py ®

Lower and upper stars and links. We have introduced
persistence for two rather different topological categsri
Morse functions on manifolds and filtrations of simplicial

Vertex ordering filtrations. Assuming an injective, real-
valued functionf on the vertex set, as before, we order the
vertices asf(u1) < f(ug) < ... < f(un). LetK; be

the subcomplex of¢ spanned by the firgtvertices. Hence,

K is obtained fromi;_; by adding the lower star af; or,
more precisely, by attaching the closed lower star along the
lower link of u;. Similarly, letL,, _; be the subcomplex ot
spanned by the last — i vertices, sd_,,_; is obtained from
L,_;—1 by adding the upper star af; ;. The K; form an
ascending filtration and the; form a descending filtration,

l=KyCcK,C...CK, =K,

0= LyCcLiC...CL, =K,

where the words ‘ascending’ and ‘descending’ refer to the
ordering of the vertices as they enter the filtrations. We wil
use the ascending filtration to compute persistence, and the
two filtrations together to define extended persistence. To
compute the persistence pairing, it is convenient to tptah

der the simplices and not just the lower and the upper stars.
We do this by listing the lower stars in order and listing
the simplices within each lower star by dimension, break-
ing the remaining ties arbitrarily. We write;, ks, ..., km

for the resulting ascending sequence, wherns the number

of simplices inK. We follow the analogous rule in turn-

complexes. We feel the need to relate the two and we preparqng the ordering of upper stars into a total order, and write

this unification by introducing local substructures arotm
vertices in a simplicial complex. Thatar (sometimes called
theopen staj of a vertexu € K is the set of simplices that
containu as a face, including itself, and thdink consists

of all faces of simplices in the star that do not belong to the
star:

Stu
Lku

{oc € K |uced},
{re K—Stu|r Coe€Stu}.

The union of the star and the link is tistosed staySt u =
Stu U Lk u.

Suppose we have an injective, real-valued functfae-
fined on the vertex set. Imagining thétmeasures height, we
sayz is lower thanu andu is higher thanz if f(z) < f(u).
Thelower starof a vertexu consists of all simplices in the
star for whichu is the highest vertex, and thawer link con-
sists of all simplices in the link that are faces of the sirvgdi
in the lower star:

St_u
Lk_u

{oeStu|zeo= flz) < flu)},
{r€eLlku]| 7T Coe€St_u}.

The union of the lower star and the lower link is ttesed
lower star, St_u = St_u U Lk_u. Every simplex has a
unigue highest vertex and thus belongs to the lower star of
a unique vertex. This implies that the lower stars of the
vertices partitionk. We also define thepper star St*u,

the upper link Lk*«, and theclosed upper star§+u
StTu U Lk*u, in the analogous way. Similar to the lower
stars, the upper stars of the vertices partition

A1, A2, ..
plices.
By adding simplices one at a time, we obtain alternative,
finer filtrations of K which can be used to compute persis-
tence. To insure that the answer is independent of the choice
of order within the lower and upper stars, however, we use
the indices or function values of the vertices to define per-
sistence. Classes that are born and then die within a single
lower or upper star will therefore have zero persistence.

., Am for the resulting descending sequence of sim-

Induced partition. The complexed(; andL,,_; partition
the vertices but they do not necessarily contain all singglic
of K. Let J; be the part ofK’ contained in neitheK; nor
L, _; and note that/; contains the simplices that connect
vertices from the two sets, but has no vertices itself. In sit

Figure 2: The sef/; consists of the shaded triangles and thick edges
that connect the vertices d@f; below and vertices of.,,_; above

the belt they form. The dotted edges indicate the stafslifk of
some of the vertices ift,, ;.

uations in which it is more convenient to work with a cover,



we may subdivide the simplices and add halfipfo K; and
the other half tal.,,_;. More formally, we construct the first
barycentric subdivisiorfd K of K, and letK’; be the union
of closed stars irbd K of the vertices ink;. DefineL; _,
similarly. The following lemma is not difficult to prove.

PARTITION LEMMA. For each, K; is homotopy equiva-
lent to K}, L,,_; is homotopy equivalenttd? ., andJ; is

homotopy equivalent to the intersectiéff N L}

n—i*

This latter intersection is simultaneously the boundark ¢f
and of L} _,. Note that whenk is a triangulation of al-
manifold, then/} andL _, ared-manifolds with boundary
K:nL:_,.

4 Extension

In this section, we review the definitions of Poincaré anfi Le

schetz duality and show how they can be used to define ex-
tended persistence. For manifolds, we prove a duality resul
which we then use to prove that both ordinary and extended

persistence are symmetric.

Non-degenerate pairings. We find it convenient to ex-
press topological duality results in terms of pairings kegw

exhausts all vectors il which contradicts that the original
pairing was non-degenerate. Symmetrically, for each non-
zerov € Vj there exists, € Uy with (u,v) = 1. By induc-
tion, there are bases @f, andV} for which (,) induces a
perfect matching. We add, andv, and get bases @&f and

V, again with an induced perfect matching.

Poincaré and Lefschetz duality. Let M be a triangulated
manifold of dimensiond. Since we work withZ, coeffi-
cients, we do not need to assume tiais orientable. When

M has no boundary, Poincaré duality provides an isomor-
phism between the dimensierhomology group and the di-
mensiond — r cohomology group oM, for eachr. An
alternative formulation that does not use cohomology state
that there is a non-degenerate pairing

()

given by counting intersections of cycleslii. What this
means is the following. Suppose that € H,.(M) and

B € Hy_.(M). Then we can find cycles andb repre-
sentinga and 8 in, say, the first barycentric subdivision
of M that intersect transversally. Since they have comple-
mentary dimensionsg and b intersect in a finite number

H,. (M) x Hy—-(M) — Zs

homology groups over fields, which are vector spaces. Let- of points. The pairing is then obtained by counting inter-

ting U andV be two finite-dimensional vector spaces, a bi-
linear and symmetric mag) : U x V. — Zy is anon-
degenerate pairingf for every non-zerou € U there is
av € V with (u,v) = 1 and, symmetrically, for every
non-zerov € V thereis au € U with (u,v) = 1. Im-
portantly, a non-degenerate pairing induces a perfectimatc

sections{«, 3) = card (aNb) (mod 2). A standard result
is that this pairing is well-defined, bilinear, symmetriada
non-degenerate.

When M has non-empty bounda@M, Poincaré dual-
ity is replaced by Lefschetz duality, which provides a non-
degenerate pairing

ing between well-chosen bases. Since there are usually no

canonical bases and no canonical perfect matchings between

(,): H(M,0M) x Hy_.(M) — Zq

given bases, non-degenerate pairings provide a convenient

language to talk about them without making choices.

PAIRING LEMMA. For any non-degenerate pairing of two

also defined by counting intersections. Note that the pgirin
withoutoM is still well-defined, but it is degenerate. A sim-
ple example is the annuldg = S! x [0,1], drawn as the

finite-dimensional vector spaces there are bases for which|qer portion of a torus in Figure 3. The dimension of the

the pairing induces a perfect matching.

PROOFE We construct the two bases that satisfy the claim
inductively, starting with a non-zeng, € U andvy € V that
satisfiegug, v9) = 1. To continue the construction, consider
the orthogonal subspaces,

Uo
W

{u e U | {u,vy) = 0},

= {ve V]| (ug,v) =0}
Note thatU is the union ofU, and the set/; of vectors
u € U with (u,v9) = 1. This implies thatU is isomorphic
to the direct sunl/y @ span (up), where the latter is the line
spanned by,y. Similarly, V' is isomorphic toVy @ span (vg).

To prove that the restriction of ) to Uy andVj is again
non-degenerate, we take a non-zere Uj. If (u,v) =0
for everyv € Vj then{u,v + vg) = 0 by linearity. But this

annulus isd = 2 so forr = 1 we haved — r = 1. Both

Hi (M) andH; (M, OM) are rank one. The self-intersection
of the generator of; (M) is zero, since the cycle$' x 0
andS! x 1 both represent the generator yet do not intersect.
Thus the pairing is degenerate. A generatoHefM, 0M)
intersects every representative of the generatdt,gM) in

one point, modul®. So the pairing betweeH; (M, 0M)
andH; (M) is non-degenerate.

Extended persistence. Suppose now thak’ is a triangu-
lation of M and f is an injective, real-valued function on
the vertex set. As in Section 3, we order the vertices as
flur) < flue) < ... < f(u,) and we construct the as-
cending and the descending filtrations by lettikig be the
subcomplex spanned by the fiistertices and.,,_; the sub-
complex spanned by the last- i vertices. The sequence of



- - induced by the inclusion&,_; C K; C K in turn induce
O @,

maps between the kernels and the cokernels. To simplify
the discussion, we drop subscripts and superscripts arel wri
ka: KT} — Ki_, andcy : Ci-! — Ci for these maps. In
going fromi — 1 to i, we getK; by addingk; to K;_1, and

we distinguish between three types of events.

Case A.1 The mapk 4 has a non-trivial kerneker k4 # 0.
This means there is a non-trivial classHfi"} that goes
to zero inH!_,. This class dies, the dimension- 1
Figure 3: The circle aro_und the ann_ulus gengréﬂe@w) and in- homology group decreases in rank by one, apnds a
tersects the arc generatifig (M, 9M) in one point. negativer-simplex in the ascending filtration that gets
paired with an earlier, positive: — 1)-simplex.

homology group$i,.(K;), for0 < i < n,can be usedtode- Case A.2 The same mapk,, has a non-trivial cokernel,
fine persistence of the homology classes that die before the coker k4 # 0. This means there is a new classHh_,
sequence ends. To extend persistence to all classes, we con-  that is inessential irf{. This class is born af;, the
tinue the sequence using the Poincaré duality isomorphism dimensionr — 1 homology group increases in rank by
H,(K) — H " (K): one, andx; is a positive(r — 1)-simplex that will get
paired with a negative-simplex later.
Case A.3The mapc4 has a non-trivial kernekerc4 # 0.
This means there is a new clasdHpthat is essential in
K. This class is born ak’;, the dimensiom homology
group increases in rank by one, argdis a positiver-
simplex that will not get paired within the ascending
0 = H.(Ky) —...— H.(K,) filtration.
— H,.(K,Ly) —...— H.(K,L,) = 0.

0 = H.(Ky) —...— H.(K,)
— H"(K,) —...— H""(Ky) = 0.

Using excision and Lefschetz duality, we can replace all co-
homology groups by relative homology groups and get

There is no fourth case becausegis necessarily surjective
To express this more compactly, we identify, with and thus cannot have a non-trivial cokernel. Note that this
(K,,0) and write K,,,; = (K, L;), for0 < i < n. Fur- same analysis applies also to the descending filtrationeof th

thermore we writeH? = H,.(K;), where this is of course ;- To relate the change in the homology of thg to that
ordinary homology fof < j < n and relative homology for of the paws(K, L;), we consider the long exact sequence of
n < j < 2n. Using this notation, we rewrite the extended the pair,

sequence of homology groups as e o Ho (L) = Ho () — Hy (K, L) — Hy 1 (L) — ..

_ o n 2n __ . .
O=H, —...=>H —... = H"=0 Reusing the notation for kernels and cokernels, but now de-
fined for the descending complexes, we wHtefor the ker-
nel ofH,.(L;) — H,(K) andC! for the cokernel of the same

map. With this notation, we get the short exact sequence

Since every class eventually dies, we simply adapt the defi-
nition above. Specifically, a class that is borrfgtor K, ;

and dies enteringd(; or K., for 0 < 4,5 < n, hasex-
tended persistendg — i| or | f(u;) — f(u;)|, depending on 0—Cl —H(K,Lj) - K_, —0.

the application. Although Poincaré and Lefschetz dualdy

not extend to general simplicial complexes, the extended se Since we are working witt¥, coefficients, this sequence
guence of homology groups does. splits to give an isomorphisnH,. (K, L;) = C. @ K/_,.

As before, the inclusiong;_; C L; € K induce maps
between the corresponding homology groups which, in turn,
induce maps between kernels and cokernels. These maps
make the diagram

Case analysis. Itis useful to know what happens when we
go from one homology group to the next is this extended
sequence. To simplify the analysis, we consider the finer

filtration in which we add one simplex at a time, so we index 0— C' S H(K, L) — K- -0
the homology groups fronil® to H™ and further toH?™, lep l Lkp
wherem is the number of simplices ik, as usual. We j _ j
e ; S > 0—- ¢ — H(K,L;) - K._; —0
begin with the ascending filtration and consider the kernels
Ki = kerh%™ and the cokernel€: = H,.(K)/imh%™ of commute. This diagram helps us relate the changes be-

the maps into the homology group of the full complex. The tween absolute and relative homology groups. In going from
kernel consists of all inessential cyclesh, the ones that  (K,L;_1) to (K, L;) we getL, by adding); to L;_;. We

are trivial in K. The cokernel represents all new essential again distinguish between three cases, in strict analotfy wi
cyclesink, the ones that have no preimagdin. The maps  the ascending filtration.



Case D.1kerkp # 0. Similar to Case A.1); is a nega-
tive r-simplex in the descending filtration and the ab-
solute dimension — 1 homology group decreases in
rank by one. The diagram implies the same for the di-
mensiornr relative homology groupank H,. (K, L;) =
rankH,. (K, L;_1) — 1.

Case D.2cokerkp # 0. Similar to Case A.2}; is a posi-
tive (r — 1)-simplex in the descending filtration and the
absolute dimension — 1 homology group increases in
rank by one. The diagram implies the same for the di-
mensiorr relative homology groupank H,. (K, L;) =
rank HT(K, Ljfl) + 1.

Case D.3kercp # 0, Similar to Case A.3); is a positive
r-simplex in the descending filtration and the absolute
dimensionr homology group increases in rank by one,
with an essential class. The diagram implies the oppo-
site change for the relative homology group of the same
dimensionrank H, (K, L;) = rankH, (K, L,;_1) — 1.

As before there is no fourth case becausds surjective.

5 Locality

In practical situations, it can be useful to find the most lo-

SincelI’ C Iand.J’ C J, the classe € H,.(M) is the
image of classeg € H,(M’) andy € H,(M’). Because
the second map in the Mayer-Vietoris sequence is induced
by taking the difference of the two inclusior(si, v) lies in

its kernel. By exactness, this implies that there is a class
§ € H,(M!"7) whose images itl,.(M!) andH,. (M) are3
and~. It follows that the image of in H,.(M) is «. Hence
I'nJ' =1InJeI(a),asclaimed.

We call the common intersection of the intervalsZifw)
theminimal supporof «, I(a) = (Z(«). Thethicknesof
« is either the length of this interval or zero, depending on
the type of the class,

{

In the horizontal casef(«) contains two disjoint intervals
and we can chooseso one is contained if+-oo, 2] and the
other in[z, 00). Applying the same argument as we used in
the proof of the Intersection Lemma, we see that the degen-
erate intervalz, z] is in Z(«) so that a representative cycle
is supported in a single level set, thus the name horizontal.
Note that this level set is not unique. Notice also that in the
vertical case, we can havg(a) = 0 in which case there is

a unique level sef ! () supportingy andI(«a) = [z, z].

()]
0

if «is vertical

th(a) if « is horizontal

cal basis of the homology of a given space. There are many
ways to measure locality and we choose thickness, which Relation to extended persistence. Suppose a class is

we define below. This will lead to a new interpretation of ex-
tended persistence as selecting a lexicographically #sinn
homology basis.

Thickness of a homology class. It is convenientto assume
a Morse functionf : M — R on a manifold, although the
arguments in this section also work for filtrations of gen-
eral simplicial complexes. For any interva] we define
M! = f~Y(I). Given a classx € H,(M), we letZ(«)
be the set of closed intervalssuch thatx lies in the image
of H,. (M) in H,.(M) by inclusion. In other wordsyI’ sup-
ports a representative cycle af We begin by proving that
the intersection of two intervals ifi(«) is either empty or
again belongs t@(«). We distinguish two kinds of homol-
ogy classes, calling horizontalif Z(«/) contains at least two
non-empty disjoint intervals angertical otherwise.

INTERSECTIONLEMMA. For verticala, Z(«) is closed
under intersection.

PROOF LetI’ = [w,y] andJ’ = [z, z] be two intervals in
Z(a). Sincea is vertical, their intersection is non-empty.
If they are nested thed’ N .J’ belongs toZ(«) for trivial
reasons. If not, we assume < z < y < z and letl =
(—o0,y] andJ = [z, 00). The Mayer-Vietoris sequence for
the two corresponding preimages is

o= H(MIYY = H.(MD) @ (M) — H (M) — ..

born aty in the upward pass and dies enterinip the down-
ward pass. Thefl—oo, y] and [z, co) both belong tdZ(«).
Furthermorex < y implies « is vertical andz > y im-
plies « is horizontal. To shed additional light on the rela-
tion between thickness and extended persistence, we prove
a statement about sums of essential cycles. Call a vertical
classa € H,(M) decomposablé it can be written as a sum

of classes whose minimal supports are strict subsefsof

This includes the possibility that is the sum of horizontal
classes.

DECOMPOSITIONLEMMA. Leta € H,.(M) be a vertical
class. The endpoints df«) are paired by extended persis-
tence iffa is not decomposable.

PROOF LetI(«a) = [z,y] with < y. Since the class is ver-
tical, « is born aty in the upward pass and dies enterinm
the downward pass. Suppose thas paired withy’. Since
« is supported ifz, y|, the image ofx in H,.(M, M[*>)) is
zero, which impliest < y’. The claim is therefore equiv-
alent tox = 3’ if « is non-decomposable and< 3/ if «
is decomposable. In the remainder of this proof we simplify
notation by writingM, = M(~=>¥] andM” = Ml*>) for
the sub- and superlevel sets.

To prove the first implication we show that< 3’ implies
« is decomposable. As mentioned in Section 3, there is a
classi that is born ayy in the upward pass and dies entering
y’ in the downward pass. [# is horizontal it has a represen-
tative cycle in a level set abovg, and if it is vertical then



I(B) C [¢, y] is a non-empty proper subinterval bf«). By
assumption off being Morse, there is a sufficiently small
e > 0 such that the only difference in Betti numbersyat
andy — e is 3,(M,) = 5,(M,_.) + 1. Hence, the rela-
tive groupH,.(M,, M,,_.) has rank one, which implies that
« and 3 have the same image there. This means the differ-
encea — (3 goes to zero. It follows that — 5 € H,. (M)
is the image of a clasg € H,(M,_.). If v is vertical then
I(vy) C [z,y — €] is a proper subinterval af(«). It follows
thata is decomposable.

To prove the second implication, we show thatlecom-
posable implies: < y'. We may writea = 3 + +, whereg
is supported iV, _. and~ is supported ifV[**<, for small
enougle > 0. Note thatg is already alive ay — ¢ and that
the images ofx and 3 in H,.(M, M**¢) are the same. By
definition of pair groupg is therefore already dead att ¢.
Hencer andy are not paired.

Moreover, for any extended persistence pa@irz) with
x < y there is a class with minimal suppdt, y]. Indeed,
there is a clasa € H,. (M) that is born aiy and maps to zero
for the first time inH,. (M, M”). Hencex is supported iV,
as well as inM*. By the Intersection Lemmd{«) C [z, y]
and strict inclusion would lead to a contradiction.

Most local bases. Letn = (1;)i=1...» andyp = (¢;) i=1..n

be two bases offl,.(M) and assume that basis elements are
sorted by non-decreasing thickness. Wes&gthinnerthan

@ if th(n;) < th(yp;) for the smallest integej for which
th(n;) # th(y;). Thisis, of course, lexicographic ordering
by thickness. Obviously, this order on bases admits at least
one global optimum. It can be constructed greedily by tak-
ing thei-th element to have the smallest thickness among the
classes that are linearly independent of the first basis el-
ements. We claim that extended persistence gives optimally
local bases.

THIN BASIS THEOREM. In an optimally thin basis, the
minimal supports of the basis elements with positive thick-
ness are the intervals, y] for which (y, z) is an extended
persistence pair.

PROOF Letn = (1;)i=1..» be an optimally thin basis of
H..(M), sorting basis elements in the order of non-decreasing
thickness, as usual. Lgj be the first basis element with pos-
itive thickness and let < y be the endpoints of its minimal
support,I(n;) = [z,y]. Then(y,z) is an extended persis-
tence pair, else); would be a sum of classes with strictly
smaller thickness, contradicting the optimality spf Simi-
larly, we prove that foi > j, n; corresponds to the extended
persistence pair witk — j + 1)-st smallest value of — z.
Finally, all extended persistence pafs =) with « < y cor-
respond to basis elements.

Indeed, if such a paify, z) is not a basis element, we
could form a new basis by adjoining it to the list@f with
smaller persistence and extending to a full basis. This new

basis would be strictly thinner, contradicting our assuompt
thaty is the thinnest.

6 Algorithm

In this section, we adapt the algorithm of [5] to extended per
sistence. We phrase the algorithm in the language of column
operations on boundary matrices, prove its correctness, an
show that the diagrams it produces are stable.

Matrix reduction.  The definition of extended persistence
suggests a multi-phase algorithm, sweeping the comfglex
first in ascending and then in descending order. By setting
up the data structure appropriately, the seemingly differe
actions during the phases become the same and we can ex-
press the algorithm without making a distinction. This data
structure is 2m-by-2m zero-one matrix

|

where A represents the ascending filtratioD, represents
the descending filtration, angt stores the permutation that
connects the two sequences of simplices. Recall that the
ascending filtration is given by the sequence of simplices
K1,K2,...,Kkm. The rows and columns od correspond to
the simplices in this order and we hayéi, j] = 1 iff x; is
a co-dimension one face af;. The descending filtration is
given by the sequence of simplicas, A2, ..., A, and we
haveD[i, j] = 1iff A; is a co-dimension one face of.
FinaIIy, P[Z,]] =1iff k; = )\j.

The matrixM may be interpreted as the boundary matrix
of a new complexK,, = w - K, obtained by conind< from
a new vertexv, but withw removed. Indeedd is a bound-
ary matrix of K and so isD. The permutation matrix adds
a single1 above each column aob effectively increasing
the dimension of the represented simplex by one. Specifi-
cally, the j-th column ofD represents the simplek; and
the correspondingyn + j)-th column of M represents the
conew; = w - ;. By construction, every complek;; in the
ascending filtration corresponds to an upper-left squdbe su
matrix of M, and since it has: or fewer rows and columns,
this is also a submatrix ofl. The relative homology of the
pair (K, L;) in the extended sequence is the same as that of
(K Uw- Lj,w). Again by construction, the latter pair corre-
sponds to an upper-left square submatrixdéf which now
contains and extends beyond With this set-up, we can
compute the pairing by reducing the matdx using col-
umn operations. To describe what this meansidet;) be
the maximum row index for which M[é, j] = 1. If the
columnj is zero therlow(j) is undefined. We call/ re-
ducedif low(j) # low(k) wheneverj # k are two non-zero
columns. Following [3], the algorithm reducég from left

A P
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to right, modifying each column by adding columns on its

1
left, if necessary.
>
for j=1to2mdo o 3 ° =
. . o A <€ S p =
whi | e 3k < j with low(k) = low(j) do N3 s 5
add columrk to columnj
endwhi | e m
endf or.
Each column operation moves the lowésip until it is ei- o §
ther not preceded by another lowdstn the same row or 0 e D %
the entire column is zero, which happens after fewer than a
2m steps. Each step takes time at mostrQ( Similar to

Gaussian elimination, the algorithm takes a total of at most zm
O(m?) steps and is therefore guaranteed to finish within time

O(m?). In practice, one saves space and time using a sparsé:>
matrix representation af/ similar to the ones described in

igure 4: The matrix\ after Phases | and Il but before Phase .
ositive simplices give rise to zero columns and negativgpbtes

to non-zero columns storing boundaries. Without redudigve
[3] or [5]. get cycles and chains whose boundaries are storédbelow P.

Interpretation. In an effort to relate the algorithm to the
algebra of the preceding sections, we interpret the columns
generated by the algorithm in terms of chains, cycles, and
boundaries. We distinguish three phases, respectivelicred
ing A, D, andP. Phase | corresponds o< ;7 < m and
Phases Il and Ill correspond to < j < 2m but are inter-
mingled in the algorithm. Phase | affects only matdxand

is precisely the algorithm in [5] executed on the ascending
filtration. It distinguishes between positive simplices$iigh

may get paired or remain unpaired, and negative simplices, Correctness. We argue correctness in two steps, first mak-

M and note that its upper half, columrof P, stores a cy-
cle, namely the cycle whose zero boundary is stored below
itin D. To this column we add boundaries frofnand other
cycles fromP. The reduction ends when the lowest 1 in the
column is in a unique row, with indekx= low(m + j), or

the column becomes zero. In the former case, the column
stores an essential cycle and we paiwith ;.

which necessarily get paired. ing sure that all simplices are paired, and second that the
pairs agree with the algebraic definition of extended persis
¢ \We recognizes; as apositive simplexf column j of A tence. For the first step, we add a new first row and a new
is zero, after reduction. The simplex is pairedif row first column representing to M. The reduction of the re-

j of A contains a lowest 1. The corresponding column sulting matrix is precisely the algorithm in [5] executed on
stores a inessential cycle arglis its youngest simplex,  the filtration of K, defined by the sequence of simplices
in the sense of being introduced last in the ascending w, 1, ..., km, w1, ...,wn,. SinceK, consists of a single
filtration. The simplexs; is unpairedif row j does not connected component and has otherwise no non-trivial ho-
contain a lowest 1. In this case, the columns used to mology,w is the only unpaired simplex, after reduction. This
zero out columry form an essential cycle and is its implies that the addition of the new first row and column does
youngest simplex. not affect the result and we get the same pairs with or without

e We recognize:; as anegative simplei column j of A this addition.

is non-zero, after reduction. The column correspondsto  The pairs we get from are the ordinary persistence pairs

a chain and stores its boundary, a trivial cycle. Further- for the ascending filtration, simply because Phase | of our

more,«; is paired withr;, wherei = low(j), andx; is algorithm is the same as the ordinary persistence algorithm

positive and the youngest simplex in that cycle. given in [5]. Similarly, the pairs we get from are the or-

dinary persistence pairs for the descending filtration.edt r

Note that all cycles stored id after reduction are bound- mains to show that the pairs we get fraPrare the extended
aries, asindicated in Figure 4. Phase Il consists of thersti  persistence pairs as defined by the algebrgsIf);) is such
within m < j < 2m that affect matrixD. It is precisely the a pair then colummn + j of M has a non-zero upper half
algorithm of [5] executed on the descending filtration. ttsh  (columnj of P) and a zero lower half (columpof D), af-
distinguishes between paired and unpaired positive st@pli  ter reduction. It defines a cycle whose youngest simplex is
and paired negative simplices as defined by the descendings;, with i = low(m + j). Since there is no column id
filtration. Similar to A, all cycles stored irD after reduction with lowest 1 in rows, the cycle is essential, and since no
are boundaries. Phase Ill redudesind thus completes the  column operation from the left can chariger(m + j), itis
reduction of M. It modifies only columns o’ above zero not possible to push this essential cycle lowekKinIn other
columns ofD. Letm + j be the index of such a columnin words, K is the first complex in the ascending filtration that



contains the essential cycle. By constructidn,is the first
complex in the descending filtration that contains it. Itfol
lows that(x;, A;) is an extended persistence pair as defined
by the algebra.

Stability. Following [2], we express the stability of ex-
tended persistence in terms @fdimensional diagrams,
which we now define. Recall that a classRf’ is born at
K; and dies entering(;. Encoding the birth and death using
coordinates, this class is represented by the p@intf;),
Wherefi f(ul) ifi<n andfi = f(ugn_i+1) if n <1,
and similarly forj. Collecting the points for all classes of
dimensionr and adding the points on the diagonal with in-
finite multiplicity, as in [2], we get thadimensionr per-
sistence diagranof f, which we denote a®gm,.(f). It

is convenient to partitiogm,.(f) into the ordinary sub-
diagram Ord,(f), for i < j < n, the extended sub-
diagram Ext,.(f), fori < n < j, and therelative sub-
diagram Rel,.(f), for n < ¢ < j. Besides the diagonal
points, the ordinary sub-diagram has only points above the

cones over simplices dk in the upper star of.. The algo-
rithm matches up all simplices in pairs, except dor Each
pair maps to a point in the persistence diagram whose di-
mension is that of the first simplex in the pair. We get
Dgm,.(f) = Dgm,(F), for all dimensionsr. Similarly,
we define the assignment for the functiong and con-
struct the diagram®gm,.(9) = Dgm,.(G), for all . As
proved in [3], the bottleneck distance betwé®nm,.(F) and
Dgm, (G) is bounded from above by the absolute difference
between the assigned valuelg (Dgm,.(F), Dgm,.(G)) <
maxyek, |[F(o) — G(o)|. By construction, this maximum
absolute difference if — g|| ., which completes the proof.

7 Structure

In this section, we prove that in the case ofi-aanifold,
both ordinary and extended persistence satisfy a duality re
sult relating dimensions andd — r. We then use this result

diagonal, the extended sub-diagram has points on both sidesto prove that extended persistence is symmetric.

and the relative sub-diagram has only points below the diag-
onal.

Let K be a simplicial complex, not necessarily a trian-
gulation of a manifold, and lef,g : K — R be obtained
by linear extension of two real-valued functions on the ver-
tex set. We compare the two functions using thg-norm
of their difference|| f — g|| ., = max, |f(z) — g(z)|. We
compare their persistence diagrams using the bottlensek di
tance,

dp(Dgm,.(f),Dgm,(g)) igf Sup lp = v(P)ll oo

wherep € Dgm,(f) andy : Dgm,(f) — Dgm,(g) is
a bijection. This is thd...-length of the longest edge in the

best matching between the two multisets. Here we use points

Compatibility. Let K be a triangulation of a-manifold
with a total order of its vertices. As usuak; is spanned
by the firsti vertices andL,,_; by the lastn — i vertices.
We recall thaH? = H,.(K;) andH2" " = Hy_ (K, L,,—;),

for 0 < ¢ < n. Using the Partition Lemma and excision,
we see that the latter, relative homology group is isomor-
phictoH,—,(K, L} _,) = Hq— (K}, 0K}), whereK and

L} _, are the complementary subcomplexes of the barycen-
tric subdivision of K introduced in Section 3. Lefschetz du-

ality therefore provides a non-degenerate pairing

)t HE X HYY = Zy
T d—r

for each0 < i < n and each dimension given by counting

on the diagonal to complete the matching, if necessary, or to Ntersections modula. By symmetry, such a pairing exists

obtain a shorter longest edge, if possible.

STABILITY THEOREM. Letting f andg be piecewise lin-
ear functions on a common simplicial complex, we have

dp(Dgm, (f),Dgm,(9)) < [|f — gl forallr.

PrROOFE We use the reduction algorithm applied to the cone
complexK, = w-K to generate the diagrams. The sequence
of the simplices isv, k1, . .., km, w1, - . ., wm, as before. To
generate the diagrams fgrwe assign real numbers to the
simplices,

F(w) —00,
F(k;) = max{f(u)|u€ k;},
F(wy) min{f(u) | w # u € w;},

forl < j < m.
of a vertexu get

All simplices of K in the lower star
assigned the valug(u), and so do all
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for each0 < i < 2n. To prepare the proof of the duality
result, we show that the pairings given fox j are compat-
ible. By this we mean thatif € H andj € H",” then we
get the same answer if we magforward toH? and compare

it with 3 or we map3 backward toH2"* and compare it

with a: (h%7(a), 8) = (a,h3"77?"7(8)) = card (a N b)
(mod 2), wherea andb are representatives of and 5 that
intersect transversally. To see this, we need to check the
cases illustrated in Figure 5. In the case< j < n on

the left,a is a cycle inKj;, b is a relative cycle i(K, L,,_,),

and their intersection lies entirely i;. We can use as a
representative of the image afin HZ and we can uskas a
representative of the image gfin Hf{:i, so both pairings

are computed from the same number of intersections and are
therefore the same. The case< ¢ < j on the right is simi-

lar. Inthe case < n < jinthe middleg is a cycle inK; and

b is a cycle inKy,,—;, with intersection in the smaller of the
two complexes. Again we can use the same representations



can see that the pairing is bilinear and symmetric. It remain
to prove that it is also non-degenerate. Sircgis non-
degenerate for all vertically arranged pairs, we can chpose
in H,_, such that(v, 8) # 0 and(a, 8) = 0 for all « in the
image ofh~17=1, By compatibility, this latter condition im-
plies(a”, B8") = 0 forall o in H:~1, whereg” is the image

of 3in H%_ . Non-degeneracy thus leaves only the possibil-
ity that3” = 0. Hence, the imag@’ of 3in H:~! represents

T

an element onl’fT for which P([v], [5']) # 0. This shows
that P is non-degenerate and completes the proof.

Figure 5: From left to right: Cycles in closed and open suélsets

of the torus fori < j < n,i <n < j,n < i < j. The cyclea is Version 1 of the Duality Theorem implies relationships be-
a representative of the homology classf K; as well asitsimage  tween the persistence diagrams, which we express by writing
in K;. The cycleb_ is_a repr(_esentative of the homology clasef ngT for the reflection ofDgm along the main diagonal.
Kon—; as well as its image it —i. In other words,(z,y) € Dgm, .(f) iff (y,2) € Dgm” (f).

Similarly, we use a superscrifit to indicate reflections of
the three sub-diagrams. By duality, the ordinary dimension
persistent classes correspond to the dimengien relative
persistent classes or, more formalytd, (f) = Rel’_,.(f).

_ _ . _ Indeed, ifi < j < n then a class in the pair grougf.’
Duality. As before, we assum& is a triangulation of a 5 porn by adding the lower star of the vertexto K;_1,
d-manifold and we use the notation for complexes, homol- 54 it is killed by adding the lower star of; to K;_;.

ogy groups, and induced homomaorphisms introduced earlier.
With this notation, the definition of pair groups given in (1)
extendstd <i < j < 2n.

for the images and the number of intersections we count is
again the same.

Symmetrically, a class i?;* is born by adding the up-
per star ofug,—¢y1 = wu; to L,_;, and it is killed by
adding the upper star afs, 11 = u; t0 L. Simi-
~ T i T
DUALITY THEOREM (VERSION1). A real-valued func- 1y, Ext.(f) = Extg_,(f) andRel,(f) = Ordg_,.(f).
tion on ad-manifold has non-degenerate pairings on the pair VW& combine the three cases into one statement.

groups, . piid  p2—itlan-itl _ o DUALITY THEOREM (VERSION 2). A real-valued func-
Py d—r 2 tion f on ad-manifold has persistence diagrams that are
forall 0 <+ < j < 2n and all dimensions. reflections of each otheRgm, (f) = Dgm’  (f), for all

dimensions-.
PrRooOF To simplify notation, we writék = 2n — ¢ + 1 and

¢ = 2n — j + 1 so that the second pair group in the non-
degenerate pairing iﬁg’fr. The following diagram shows

all groups and maps needed to define the two pair groups
referred to in the claim:

Symmetry. As before K is atriangulation of @-manifold
and f is defined by a real-valued function on the vertex set.
We claim that duality implies that persistence is symmetric
in the sense thaf and —f give the same diagrams up to

H-Y —  HY - WY W reflections and dimensions. However, this time we use the
X X X X superscriptR to indicate reflection across the minor diago-
H];fr - HZ;{ - HfHd - Hf;ilr nal, mapping a pointz, y) to (—y, —x), and the superscript

0 to indicate reflection through the origin, mappiag y) to
We may assume that both pair groups are non-trivial, else (—z, —y).

there is nothing to prove. We define the pairiRgin the
natural way, letting SYMMETRY THEOREM. For a real-valued functiorf on

ad-manifold, we have

v € imh%» ' nkerhi™t C HIT! 5
§ € imh* ' nkerhiZ!* < HAZ! Ord,(f) = Ordg_r_l(—f),
Ext,(f) = Extq_.(=f),
represent the non-zero clasge$ € P/ and[s] € P . Rel,(f) = Relf _ (-5,
Then choosé’ in H)_, whose image it~ ! is § and set
for all dimensions-.
P(hy, D) = (9.

PROOF To see this symmetry, we note that the vertex order-
By compatibility, the value does not depend on the choice ing defined by— f simply switchesX; andL,,_;. There are
of 6’ and the pairing is therefore well-defined. Similarly, we then three sets of equalities to consider.
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For the first set of equalities, I€¥;, f;) be a point in the ALl A
ordinary sub-diagram, < j < n. When a dimension ho-
mology class is born &; and dies entering;, duality pro- Woh nw
vides a dimensiod — r relative homology class that is born Vo Vv
atK, = (K, L,_;41)and diesentering, = (K, Lp,—;11). D D
This class is represented by the pdiffit, f;) in Relg—(f).
The relative class born &, is Case D.2 in the classifica- w 1w
tion of the Section 4 so it is accompanied by the birth of a
dimensiond — r — 1 class inL,_;4,. Similarly, the rela- d d
tive class that dies enterin, is Case D.1, so the dimen- v Hov
siond — r — 1 class born ai,,_ ;1 dies enteringl,,_;41. cq ¢
This class is therefore represented by the poinf;, — f;) ¢ ¢
in Ordg—,—1(—f), proving the first set of equalities. u g Y
For the second set of equalities, (g, f;) be a point in i e
the extended sub-diagraim< n < j. Adimension- homol- a ! L] a
—f

ogy class is born ak; and dies enterind; = (K, L;_,).
The Duality Theorem then provides a dimensibr r rel-
ative homology class born dt, and dying entering<;, =
(K, L,—;+1). We note that the class born &} is Case D.3,
S0 it is accompanied by a dimensidn- r absolute homol-
ogy class and the same is true for the class that dies enteringemain the same except the coordinates become negative and
Kj. This class is represented by the pofrtf;, —f;) in switch their order. In other words, we get the diagrams ¢f
Extq—(—f), thus proving the second set of inequalities. by reflection along the minor diagonal. If we overlay the di-
The argument for the third set of equalities is the same, agrams off and— f we get a picture that is symmetric with
and we have again a shift in dimension, same as in the firstrespect to both diagonals, as in Figure 7. Note, however, tha
case. the type of the sub-diagram and the dimension may change
as we reflect a point across the major or the minor diagonal.

Figure 6: Two Morse functions onZmanifold, measuring height
above and below a base plane.

Morse function example. Assumingf is a Morse func- ) )
tion, each critical point belongs to two pairs, one for the 8 DIScussion
ascending and one for the descending direction. The Du-
ality Theorem implies that the two pairs are the same, so
we have a perfect matching. The Symmetry Theorem im-
plies that— f gives the same perfect matching. We follow
up with an illustration of duality and symmetry, letting

be the2-manifold sketched in Figure 6 anfl : M — R
measure height above a horizontal base plane. In the ex- ] ] )

ample, f is Morse and has three minima, nine saddles, and Elevation. We rc_ecall that the e!evanon function of a sur-
two maxima. SincéM is orientable, this implies its genus face embedded ilR? has been introduced and studied in

is three. Hence, there are eight essential homology classesl1]: The local maxima of this function have been applied
the component represented by the global minimamsix to coarse protein docking in [11]. Here we briefly comment
1-cycles represented by the saddies, w,U,V, W, and on how the results of this paper can be used to generalize
the 2-cycle represented by the global maximurh, The  ©levation beyond&®. . - _
pairs formed by extended persistence define points mak- L&t M be a codimension submanifold ofR L ,1that IS,
ing up the extended sub-diagrants, A) for dimension0, M is the smooth embedding ofdamanifold inR“**. Each
(u,U), (v, V), (w, W), (W,w), (V,v), (U, u) for dimension pointz € M has two unit normal_suz_anq —Us. Leturllg

1, and (4, a) for dimension2. The remaining pairs corre- fu : M — R be the height function in direction < §¢,
spond to points in the other sub-diagrartts,B), (¢, C') and the point is critical iffu is equal tou; Or 10 —u,. Assume
(d, D) for the ordinary sub-diagrams of dimensianand]1, u = u, and lety € M be the critical point off, that is
and (C, ¢), (B,b) and (D, d) for the relative sub-diagrams paired withz by (extended) persistence. By the Sym_metry
of dimensions2 and1. Figure 7 overlays the sub-diagrams 1heoremy andy are also paired for = —u,. The function

The main contributions of this paper is the extension of or-
dinary persistence to essential homology classes. Inghis s
tion, we briefly discuss the motivating application to eleva
tion functions and list a few questions raised by the regbrte
work.

showing all fourteen points as circle-shaped dots in one pic Elevation : M — R
ture. By the Duality Theorem, this picture is symmetric with '
respect to the main diagonal. As we switch frgnto — f, defined byElevation(z) = | f,(x) — fu(y)| therefore makes

minima become maxima, saddles remain saddles, and maxsense. Similar to the cage= 2, the function is smooth al-
ima become minima. By the Symmetry Theorem, the pairs most everywhere but there are measure-zero violations even
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Figure 7: Overlay of the persistence diagramg aeihd— f of all di-
mensions. We draw circles fgrand squares for f, color-coding
ordinary, extended, relative sub-diagrams white, gragckl and
marking the dots by the dimension of their diagrams. The nmime
of birth and death of points above the main diagonal are naarke
by the corresponding critical points. We hafé:) = —f(A) and
therefore two double points on the minor diagonal.

for continuity. It is possible to do surgery dvl to make
Elevation continuous so local maxima can be defined. For
every finite dimensiond, there are finitely many generic
cases, namely maxima determinedby k + ¢ < d + 2
points onM. Counting all possibilities that satisty< & < ¢

we get(d® +4d + 4) /4 cases for eved and(d* + 4d + 3) /4
cases for oddl. For surfaces embedded k¥, elevation is
one of few known functions essentially different from vari-
ations of curvature that capture shape information. It \@oul
be interesting to find applications in which the shape of €odi
mensionl submanifolds in Euclidean space of dimension be-
yond3 plays a role.

Open questions. The algorithm for computing extended
persistence applies to triangulated manifolds as well as to
general simplicial complexes, but the Duality and Symme-
try Theorems do not. As a consequence, the information we
get for general simplicial complexes is more difficult to in-
terpret. Already for the height function of the figure-8 spac
shown in Figure 8, we have pairs defining a graph that is
more complicated than a matching.

¢ Is there a non-manifold counterexample to the weaker
version of the Symmetry Theorem that claims we get
the same collection of pairs fgirand for— f?

e Can we quantify the extent to which a diagram violates
the Duality and Symmetry Theorems and this way mea-
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Figure 8: The homology of the sublevel set changes at thieesa
Extended persistence forms three paifd, C), (C, B), (B, A).
We get the same three pairs, each in opposite order, if weureas
height from top to bottom.

sure how close a complex is to being a manifold?

The Stability Theorem can be strengthened to apply to the
three sub-diagrams individually. In particular, we have
dp(Ext,(f),Ext.(9)) < ||f — gl for each dimension.

e Can we extend this result to functiorisand g defined
on different spaces and use the bottleneck distance to
measure how similar or different these spaces are?

The extended sub-diagram needs to be interpreted diffgrent
from the ordinary and the relative sub-diagrams. For in-
stance, we can have points on the diagonal representing non-
negligible topological features. An example is the praject
plane,RP?, with 3y = 3; = 32 = 1. The essential dimen-
sion 1 homology class is born when we pass the saddle at
heightz in the upward pass and it dies again when we pass
the same saddle in the downward pass. It follows (hat:)

is the only point in the dimensioh extended sub-diagram.
Another such example is provided B2, an orientablet-
manifold. We may therefore reconsider the definition of bot-
tleneck distance as it applies to extended sub-diagrams, fo
example by not adding extra points on the diagonal.
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