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Abstract persistence and denoted Bers,(f). We prove there are

- _ . _ _ constants: andC' such that
We prove two stability results for Lipschitz functions o tr

angulable, compact metric spaces and consider application [Pers, (f) — Pers,(g)] < C-|If — gl
of both to problems in systems biology. Given two functions, >~

the first is formulated in terms of the Wasserstein distance for everyp > k+1. More complete versions of both inequal-
between their persistence diagrams and the second in termgies are stated as the Wasserstein and the Total Persistenc

of their total persistences. Stability Theorems in Section 3.

K eywords. Continuous functions, comparison, classification, met- 10 pu_tthe two results in per_spective, Y"le recall recent work
ric spaces, persistent homology, Wasserstein distantze persis- on persistent hqmology. Letting, = f (—Oo_a al be the
tence, stability, gene expression. sublevel set defined by the threshaldwe consider the ho-

mology groups ofX,, and fora < b we consider the ho-

momorphisms between the corresponding homology groups
1 Introduction induced by the inclusioiX, C X,. As shown in [7], the

homology classes can be tracked within this sequence of ho-
The mathematical methods developed in this paper are moti-mology groups and it is possible to determine the moments
vated by biological questions of gene regulation. Meagurin  Of birth and death for each; see also [9, 15]. The correspond-
gene expression over time, we get functions and we are in-ing persistence diagram is a multi-set of points in two di-
terested in quantifying their shape and similarity. Reingn ~ Mensions in which each point represents a homology class,
to the biological questions in Section 4, we now focus on Marking its birth by the first and its death but the second
the mathematical results which are vastly more general thancoordinate. A breakthrough result is the stability of these
what we need for the specific applications. Specifically, let agrams proved in [3]. Specifically, the bottleneck distance
X be a triangulable, compact metric space #ng: X — R defined as the maximur,,-distance between two matched
two tame Lipschitz functions. Then there exist constants ~Points of the diagrams of and ofg, is at most|f — g| ..
andC that depend oiX and on the Lipschitz constants ¢f ~ Of course it is possible that the diagramsfoind ofg have
andg such that the degreeWasserstein distance between different size, but we can always use points on the diagonal

the corresponding persistence diagrams is to complete or improve the matching.
i The two results in this paper go beyond this stability the-
Wo(f,9) < C-|lf—gl? orem by measuring similarity in terms of sums of powers.

This provides the sensitivity to local variation. Both inedq
for everyp > k. The second result pertains to the sum of ities are false for general continuous functions and cilycia
p-th powers of persistences, referred to as the degitetal rely on the assumption thgtandg are Lipschitz.
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2 Preiminaries

Snapping. Let K be a triangulation oK with mesh equal

to r. For a subset C X, we consider its thickened ver-

In this section, we introduce the tools we need to prove our sion, 2", consisting of all pointsz € X for which there is

results, triangulations of small mesh and combinatorial ar

a pointy € z with d(z,y) < r. As illustrated in Figure

guments that relate the number of homology classes to thel, the thickened version af contains a subset of the skele-
sizes of these triangulations. We assume basic familiarity ton of the appropriate dimension that approximatgboth

with homology theory as described in [12].

2.1 Triangulations

We begin by introducing the type of triangulation we need
and by explaining to what extent cyclesincan be replaced
by cycles in the appropriate skeleton of the triangulation.

Mesh and size. Let X be a triangulable, compact metric
space andl : X x X — R its metric. Atriangulation of

X is a finite simplicial complex< together with a homeo-
morphism from the underlying space of the complex to the
spacey : | K| — X. We define theliameterof a simplex

o in K as the maximum distance between any two points
of its image, diam(o) = max, ye, d(¥(z),d(y)). The
mestof the triangulation is the largest diameteksh(K) =
max,¢ i diam(c). Thesizeof the triangulation is the num-
ber of simplicescard K. If the dimension ofX is n then

K consists of simplices of dimension betweeandn. For
each0 < ¢ < n, the/-skeletondenoted ad( ("), is the sub-
set of simplices of dimension at mdstGiven a positive real
numberr, we are interested in a triangulation whose mesh is

at mostr and whose size is as small as possible. Specifically,

we define
N(r) = min card K;
mesh(K)<r
Ne(r) = min  (card K® — card K(Efl)),
mesh(K)<r

for each0 < ¢ < n. Note thaty~,_, Ny(r) < N(r).

Consider thex-dimensional spher& = S™, as an exam-
ple. Forn = 1 its length is27 and we can decompose it
into m = [27/r] arcs of length at most each. Assuming
r < 7 we can triangulate withn edges andn vertices. It
is impossible to do better, hené&)(r) = N1(r) = m and
N(r) = 2m. Forn > 2 itis not as easy to pin down the
functions but it is not difficult to see that there are positiv
constants: andC' that depend om and then-dimensional
volume of S™ such thate/r™ < N(r) < C/r". If Xis a
compact Riemannian-manifold thenN exhibits the same
behavior for sufficiently smalt but can be significantly dif-
ferent for large values of. As an example, leK be the
2-dimensional torus consisting of all points at Euclideas di
tances > 0 from a circle of radiust in R®. Its area isin?.
For smalle and relatively much larger the number of sim-
plices required to triangulat¥ is proportional to%, while
for r < e itis proportional to-%.

geometrically and homologically.

Figure 1: Thel-cycle in the edge-skeleton of the triangulation is
homologous to the shadddcycle inside the annulus around that
1-cycle.

SNAPPING LEMMA. Let K be a triangulation of a com-
pact metric spacK with mesh(K') = r. Then for each cycle
z of dimension¢ in X there is a cycle in the ¢-skeleton of
K that is homologous te insidez".

PROOF Let K be the minimal subcomplex df containing

z. Since the map that sends each simplicial cycléfto

its associated singular cycle induces an isomorphism at the
homology level, we have thatis homologous to a simplicial
cycle within K. Since all simplices ir; have diameter at
mostr, K1 is included inz", which implies the result.

Lipschitz functions. Let now f : X — R be aLipschitz
functiononX, that is, there is a constansuch thatf (x) —
f(y) < cd(z,y) forall z,y € X. The infimum over all such
cis theLipschitz constantf f, denoted a&ip(f). A crucial
property of Lipschitz functions is that their level sets el
separated.

SEPARATION LEMMA. The distance between the level
sets defined by values < b is at least the difference in
values divided by the Lipschitz constamlfz,y) > (b —
a)/Lip(f) wheneverf(z) = a andf(y) = b.

The proof is obvious. The Separation Lemma implies that
the sublevel seK, contains the thickened versioff, con-
sisting of all points at distance at most= (b — a)/Lip(f)



from X,. Theamplitudeof f is the maximum difference in  the{-th persistence diagramenoted adgm,(f). For each

function values, classa that makes an appearance in the sequenédtoho-
. mology groups, the diagram contains the p@l(iv), d(«)).
Amp(f) = max f(x) — min f() We thus draw births along the horizontal axis, deaths along

the vertical axis, and since deaths happen only after births
For a Lipschitz function, the amplitude is bounded from all points lie above the diagonal. In degenerate caseseadas
above by the diameter of the space times the Lipschitz con-can be born at the same time and die at the same time. Points

stant,Amp(f) < diam(X)Lip(f). in the diagram thus have integer multiplicities ddgm, (f)
is a multiset.
2.2 Persistent Homology This brings up an important subtlety about the meaning of

a point in the diagram. Witlx an entire coset of homology
We now bound the number of cycles whose persistence ex-classes is born ai = b(a) and dies entering = d(«).
ceeds some threshold and we use this to bound sums of powSpecifically, every class + § with 5 € H;(X,—_s) is in
ers of persistences. These bounds will be instrumental inthis coset. The poinfa, b) in Dgm,(f) represents all these
deriving our two main results in Section 3. classes. Itis a single point indicating that the rank oféttle

homology group goes up by oneaand it drops by one dk

Birth and death. As before, we assume a compact metric This is the case in which the rank changes by the appearance

spaceX and a Lipschitz functiory : X — R. For each or disappearance of a single generator. In a degenerate case
valuea € R, we have the sublevel s&, = f~!(—o0,d] we may have more than one generator appear at the same

critical value. Sayt = b(a;1) = b(az) = ... = b(ay) and

consisting of points with function value at mastFora < b _
all these classes are independent. Then the coset b&in at

we haveX, C X,. This inclusion implies homomorphisms

from the homology groups df, to those ofX, consists of all classes + 3, wherea is a non-zero combi-
' nation of thea; and € Hy(X,_5). The rank of the/-th
fj’b s He(Xo) — He(Xp), homology group increases iy Correspondingly, the total

multiplicity of the points with birth-coordinateis k. Thea;
one for each dimensioA. Throughout this paper, we as- may die at the same or at different critical values. Assume
sume our homology groups are defined for modlarith- we have them indexed such thHiy — 1) < d(ap) < ... <
metic but everything we say also holds for coefficient groups d(ay). For each non-zero combination= Zf:l aiQ, We
that are fields [15]. The nested family of sublevel sets de- haye a largest indelx= I(«) such thaly; = 1. Thena + 8
fines a sequence of homology groups connected by the degies atd(«), the critical value at which its last constituent
scribed homomorphisms. Following [3], we calltame  djes. Similar to births, we can have an arbitrary numbker,
if this sequence is finite and consists of homology groups of independent classes die at the same valu€prrespond-
whose ranks are finite. ingly, the rank of the/-th homology group drops by and

Within this framework, we can increagefrom 0 to oo the total multiplicity of points with death-coordinaiés .

and observe homology classes appear and disappear. Specif- while there is nothing canonical about the choice of gen-
ically, a classa € H/(X,) isbornatX, if aisnotinthe  erators at births and deaths, the persistence diagrames ind
image offf";"‘ for anyd > 0. Furthermore, the class pendent of that choice and thus unique.
born atX, dies enteringX, if f;"b"s(a) is not in the image
of ff**7°, for anys > 0, butf;"’(a) is in the image of 2.3 Persistent Cycles

£ If o is born atX, and dies entering, then we set _ _ _ _
b(a) = a andd(a) = b. Itis also possible that does not We use the existence of triangulations with small mesh and

die in the sequence which ends with(X). In this case, smal_l size to prove upper bounds on the sums of powers of
we setd(a) = max,ex f(z). In summary, we have a value Persistences.

b(a) and a valuel(a) for each cyclen that makes an ap-

pearance in the sequence of homology groups. dérsis- Number of cycles. We begin with bounding the number of
tenceof the class is the difference between the two values, homology classes of large persistence.

pers(a) = d(a) — b(a). This agrees with the original defi- i

nition except for classes that do not die for which [7] set the PERSISTENTCYCLE LEMMA. Let X be a triangulable,

persistence to infinity. The motivation for the slight chang COmPactmetric space arfd: X — R atame Lipschitz func-
in definition is convenience. Without it, our theorems would 10N+ Then the number of points in the persistence diagrams

require the more sophisticated concept of extended persisOf / Whose persistence exceeds at mostV (/Lip(f)).

tence as introduced in [4]. PROOF. Setr = ¢/Lip(f) and letK be a triangulation of

X with mesh(K) < r and number of-simplices equal to
Persistencediagrams. We represent the births and deaths N,(r). Let o be an/-dimensional homology class whose
of ¢-dimensional homology classes by a set of point®&n persistence exceeds the threshplds(«) = d(a) —b(a) >



e. By definition of birth, there is a cycle(a) in Xy, that
generatea in Hy(Xy,(,)). Sincef is Lipschitz X, 4. cOn-
tainng(a).
of a cyclez(«) in the ¢-skeleton ofK that is homologous to
Z(Oé) in Xb(a)+a-

Using this construction we obtain a cycle = z(«a;) for
each point inDgm,(f) whose persistence exceedsy; be-

Lemma we havé’(¢) < N(e/Lip(f)). The derivative ofP
is the negative of the persistence values viewed as a distri-

The Snapping Lemma thus implies the existence bution, that is, a sum of Dirac masses obtained by projecting

the diagrams onto the anti-diagonal and scaling by a factor
V2, as sketched in Figure 2. It follows that the sumketh

death

ing an/-dimensional homology class associated to that point.
If points share the birth value then we chose the classes in-
dependent. Assuming the indices are chosen so that the birth
values are ordered, we havfv;) < b(ag) < ... < b(anm).

A crucial property of this construction is the Independence

of the m cycles in thel-skeleton of K. We prove this by
induction. Suppose that; is not independent of its pre-

decessors. Then it is homologous to a linear combination,

Zj ~ Z;;ll a;Zj. By construction, we have; ~ z(a;) in
Xp(a;)+e foreachl < j <. Thus,

1—1
2ow) ~ Y ajz(ay)
j=1

in Xp(a,)4e- If b(ai—1) < b(a;) then this contradicts the
assumption that the death @f comes strictly afteb(c;) +
e. Else letk < i be the smallest index such thatoy) =
b(a;). Then we have a non-zero combinationzfto z;
homologous tozz;} a;z;. By construction, the death of
the corresponding non-zero combination of the classes
no earlier than the death @f;. This again contradicts the
assumption tha(a;) > b(«;) + €.

Being independent, the number of cyckess at most the
rank of the/-th homology group of thé-skeleton, which is
at most the number af-simplices,m < rank H,(K()) <

Ny(r). The claimed inequality follows becaugé(r) is at
least the sum of thé/,(r) over all dimensiong.

Persistence moments. We are interested in the sum bf

birth

Figure 2: A cubistic sketch of the functia® and its relation to the
persistence diagrams. Imagine tReaxis normal to the birth,death-
plane and the graph of the function drawn in thé>-plane.

powers of the persistences exceedilig
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Persi(f,t) =
de,

using integration by parts. We notice thatc) vanishes for
e > Amp(f). We can therefore substitutemp(f) for co
and get

Amp(f)
Persy(f,t) < tFP(t) + k/ P(e)e 1 de.

e=t

The claimed inequality follows.

th powers of the persistences of all points in the diagrams of Polynomial growth and bounded total persistence. ~As-
f whose persistence exceeds some non-negative threshold, sume now that the size of the smallest triangulagioows

Persi(f,t) =

Z pers(x)k.

pers(z)>t

Fort = 0 we call Pers;(f) = Persi(f,0) the degreek
total persistencef f. We use the bound on the number of
persistent cycles to get a bound on this sum.

MOMENT LEMMA. Let X be a triangulable, compact
metric space and : X — R a tame Lipschitz function.
ThenPers(f, t) is bounded from above by

i + Amp(f) ( e )k—l
e (Lip(f))M/a_t M)

PROOF Let P(e) be the number of points in the diagrams
of f whose persistence exceedsBy the Persistent Cycle

polynomiallywith one over the mesh. By this we mean there
are constant&, and M such thatV (r) < Co/r™ for every

r > 0. For example such a behavior holds for any bilipschitz
image of anM -dimensional Euclidean simplicial complex,
since we can obtain small triangulations as images of subdi-
visions of the simplicial complex. This general case inelsid
in particular compact finite-dimensional Riemannian mani-
folds. Let nowA andB be the two terms of the upper bound
in the Moment Lemma, that i®ers;(f,t) < A+ B. As-
suming polynomial growth and settikg= M + ¢ for some
constant > 0 we can find constant upper bounds for both
terms,

Lip(f)"
M+6
. M )
< CoLip(f)™ Amp(f)";



Amp(f) 15 M
(M + 5)/ C’oilp(f) eM+o-1 4

=t eM
Amp(f)

CoLip(f/)™ (M + 6) {355] )
p(f)éM(;F 6-

Both constant upper bounds depend only on the sgatee
Lipschitz constant of the functiofy and the chosen constant
0. This result motivates the introduction of the following
concept.

< CoLip(f)" Am

DEFINITION. A metric spaceX implies bounded degree-
k total persistencé there is a constanf'x that depends only
on X such thafPers; (f) < Cx for every tame functiory :
X — R with Lipschitz constanLip(f) < 1.

For general Lipschitz functiong we getPers;(f) < C,
whereC' = CxLip(f)*. ConsiderX = S" as an example
and note thatV(r) < Cy/r™ implies Pers,(f) < C for
everyk = n + J, whered > 0. This givesk = 1 + ¢ for the

circle, S', but we will see later that in this special case the

exponent can be lowered ko= 1

3 Realts

The basic intuition for our results is that for a Lipschitntu

Lip(g)"}.

PROOF Let~y, : Dgm,(f) — Dgm,(g) be the bijection that
realizes the bottleneck distance, that fig, — v.(z)|, <

e = ||f — gl for each pointz in the first diagram. In
addition, we require thafjz — v(z)|, < 3[pers(z) +
pers(y¢(z))]. Indeed, if this inequality does not hold then
pers(z) < 2e andpers(y¢(z)) < 2¢ and we can change the
bijection by matching both points with points on the diago-
nal within L.-distances. Thep-th power of the degreg-
Wasserstein distance therefore satisfies

Wy(f,9)P < leﬂ?—w ][
< 8”7'“ZH$—W(I)
L,z

g~k
< TS Z [pers(z
L,z
’U) S

Recall that every convex functiofi satisfies f(%
3[f(u) + f(v)]. Noting that taking the-th power is con-
vex, we setu = 2pers(x) andv = 2pers(y¢(x)) to further
boundW,(f, g)? from above by

2k Z (2pers(z

forall p > k, whereC' = Cx max{Lip(f)*,

)+ pers(ye(2))]".

+ (2pers(ye(x)))"].

tion on a compact space to have a large number of homolog-

ical critical values their persistence must be small.

Wasser stein distance. The first way of making this intu-
ition precise uses the,-stability of tame functions proved
in [3] and proves the ,-stability of tame Lipschitz functions
on compact metric spaces. Lgtg : X — R be two tame
functions with persistence diagrafgm, () andDgm,(g),
one for each dimensiofi Assuming bounded degréetotal
persistence, we prove that the sumpeth powers of dis-

Using the assumption tht implies bounded degreketotal
persistence, we bound this sum®@y?~*, as required.

Total persistence. Recall that the degrek-total persis-
tence of a functiong : X — R describes by a single num-
ber. We prove that for Lipschitz functions on triangulable,
compact metric spaces this description is stable. Assuming
bounded degreg-total persistence, we prove the deggee-

tances between matched points in the two diagrams is stableotal persistence is stable for> k& + 1.

for everyp > k. Specifically, we define theegreep Wasser-
stein distancdetween the persistence diagramg @ndg,

1

ZlanHx—w ||p ,

where the first sum is over all dimensiofisthe infimum
is over all bijectionsy, : Dgm,(f) — Dgm,(g), and the
second sum is over all pointsin Dgm,(f) [14]. This no-
tion of distance between distributions is popular in coreput
vision; see also the Monge-Kantorovich transportatioftopro
lem [10, 11].

WASSERSTEINSTABILITY THEOREM. LetX be a trian-

Wp(f,g) =

TOTAL PERSISTENCESTABILITY THEOREM. Let X be
a triangulable, compact metric space that implies degree-
total persistence fok > 0, and letf,g : X — R be two
tame Lipschitz functions. Then

|Pers, (f)

for every realp > k + 1, where the constar is equal to

Cx max{Lip(f)", Lip(9)*} andw is bounded from above
by max{Amp(f), Amp(g)}.

—Pers,(g)] < 4Apw? RO | f = gl

PROOF We begin by noting thag? — 2% = [ pzP~1dz <
ply — z| max{x,y}P~! forall z,y > 0 andp > 1. We use

gulable, compact metric space that implies bounded degree! the Stability Theorem in [3] to index the persistences of the

k total persistence, fat > 1, and letf,g : X — R be two
tame Lipschitz functions. Then

Wo(f.g) < Cr-|lf—gllo?

points in the diagrams of andg such that

Persi(f) =
Persip(g) =

C;
C,

+pk,
+q

p’f—i—p’;—i—...

<
qf+q§+... <



and|p; — ¢;| < 2¢ for all i, wheree = || f — g¢|| ., possibly data is sparse and noisy and the longitudinal slices do not

after adding zeroes. Now let be the maximum of the; accurately represent actual time. We therefore look fol-qua
and theg;. Writing A = Pers,(f) — Pers,(g) we get itative similarity rather than for agreement in detail.
m There are many clustering methods that are traditionally
Al < Z PP — ¢ appli_ed to expression da_ta. All of these methods requi_re a
] metric and most are easily adapted to accommodate differ-

ent choices. Commonly used are the Euclidean metric, the

m
< Zp|pi — ¢;| max{p;, ¢; }"~* Pearson correlation, and simple boolean metrics. However,
i=1 the Wasserstein distance between the persistence diagrams
< p(2e)(2C)wPF, provides an alternative that we believe is more appropriate
in some situations. Specifically, we suggest usiig f, g).
as claimed. By design, it adapts to local variation without requiringth

change rigidly occurs at the same stage. Furthermore, this

measure is stable. Indeed, the Wasserstein Stability Theo-
4 Applications rem together wittPers; (f) < C andPers; (¢g) < C implies

1
o o Wa(f,9) <207 -||f = gll2..

As mentioned in Section 1, the two results in Section 3 are
motivated by applications to the analysis of gene expres-
sion data in development. To change the level of expression D S
needs work, namely the production of RNA to grow and the ond a_p_pllcatlon is the_ development of som|te_s in yertelsrate
degradation of RNA to shrink. It is thus natural to assume Spec'f'c,a”y’ we con5|d¢rthe mouse embryo in which usually
the functions that expression in time are Lipschitz. In the 65 somites are formed ina rhythml_c process that takes about
first application, we use a Lipschitz function on the intérva two hours per sor_mte. They provide the ba}’sm body struc-
fw : [0,1] — R, and in the second a Lipschitz function on ture for the organism. The work of Pourquié [13] reduces
the circle, fr : S' — R. For both we get bounded degree- this rhythm to the periodic expression of genes. In an effort
1 total persistence which is slightly better than what we get to_expand the ea_rly results, Dequéant and Pourquié _USEd a
from the Moment Lemma. In the case of the interval, the Microarray experiment to collect data on the expression of
constant upper bound follows from the observation that the about 7,500 genes at 17 time-points within a single period.

sum of persistences is at most the total variation, After finding twenty-s_,even genes involved m_the rhythmlc
process [5], the task is now to complete the picture by iden-

e, tifying additional players needed to uncover the biolobica
Persy(fw) < /S_O [fw ()] ds. clocks that drive the somite development. The task is made
B difficult by the sparsity of the data and the noise.
Becausefy is Lipschitz, this integral is at mostip(fw). To be specific, we think of the 17 measurements as or-
In the case of the circle, the sum of pe.rS|stences is half thedered samples of a functigh: S' — R and base our assess-
total variation and we géters: (fr) < mLip(fr). ment of periodicity on counting critical points. More pre-
cisely, we integrate the number of critical points over ¢he
Similarity in gene expression. We use the result about simplificationsf. : S' — R defined such thatf — f.|| . <
functions on the unit interval to define a similarity measure ¢ and the diagrams of. agree with those of except that
for gene expression patterns to be used in clustering. Thethey contain no points of persistencer less; see [8]. For
biological question concerns the expression of genes alongfunctions on the circle it is easy to see thfatexists for ev-
the root of the plant arabidopsis [1]. Concrete insights are ery value ofs. To simplify notation, let us assume that the
sought by analyzing the recently obtained microarray data amplitude off is one. Writingco (f) for the number of min-

for about 20,000 genes expressed in 14 cell types over 13jma andc; (f) for the number of maxima, the sequence of
stages in the development of the plant arabidopsis [2]. We measures is defined inductively as

refer to the stages as longitudinal data since it is takemgalo
the root so that position corresponds to the age of the cell.
For each cell type and each gene we have a sequence of 13
measurements which we interpret as samples of a function
f :]0,1] — R. The first step in discovering gene regu- Mi(f)
lation and cellular communication from this data is to clus-

ter the genes according to their expression patterns. Genegor ¢ > 1. For exampleM; integrates half the number of
that are expressed in the same longitudinal pattern may becritical points over alk-simplifications. Two critical points
co-regulated or may work together to regulate other genes.paired by persistence contribute to the integral 4dirom
Using the clusters we form hypotheses that can then be scruzero to their persistence, which implies thds (/) is equal
tinized. It is important to keep in mind that the microarray to the sum of persistences. As noted before, this is half the

Rhythmic gene expression. The background for the sec-

iy — ol

2
1
/ M;_1(fe)de,
e=0



total variation off. More generally)M;(f) = > pers(z)’,
where the sum is over all pointsin Dgm,(f). ¢From our
analysis we know thad/; is stable fori > 2 and it is not
difficult to prove that it is not stable far< 1. In the ranking

of functions we indeed see a marked change in the distribu-
tion of the twenty-seven validated genes when we go from
M to M,. Fori = 0,1 there are relatively few near the 7]
top, fori = 2 this number increases dramatically, and for
¢ > 2 that number stays about the same. We refer to [6] for
details of the experiments and the comparison\gf with

(6]

other assessments of periodicity. el
5 Discussion e
Recall that the size of the smallest triangulatioisbfgrows
linearly with then-th power of one over the mesh(r) < (10]
Co/r™. It follows from the Moment Lemma th&" implies
bounded degre&-total persistence fot = n + 6, for every [11]
constant > 0. It is also easy to see that> n is necessary
for we can populat&™ with 1/r™ cones each supported by
a spherical cap of radiusand contributing a point of persis-  [12]
tencer. It would be interesting to know wheth8f implies
bounded degre&-total persistence fak = n. In Section 4, [13]
we proved that this is the case for= 1 using an argument
that circumvents the use of a triangulation. The authors of
this paper generalized this proofito= 2 but the question is [14]
still open forn > 3.

[15]

Acknowledgments

The authors thank Olivier Pourquié and Philip Benfey fortivai-

ing the work reported in this paper by their gene expressiqee
iments and Dmitriy Morozov for insightful technical dis&isns.
They also thank two anonymous referees for valuable comsnent
that helped improve the presentation but also the resuttsisrpa-
per.

References

[1] P. N. BENFEY AND B. SCHERES Root developmentl. Current Bi-
ology 10 (2000), R813-815.

S. M. BRADY, D. A. ORLANDO, J.-Y. LEE, J. Y. WANG, J. KOCH,
J. R. DNNENY, D. MACE, U. OHLER AND P. N. BENFEY. A high-
resolution root spatiotemporal map reveals dominant esgioe pat-
terns.Science318 (2007), 801-806.

(2]

[3] D. COHEN-STEINER, H. EDELSBRUNNER ANDJ. HARER. Stabil-
ity of persistence diagramBiscrete Comput. Geor37 (2007), 103—
120.

[4] D. COHEN-STEINER, H. EDELSBRUNNER ANDJ. HARER. Extend-
ing persistence using Poincaré and Lefschetz dusiynd. Comput.

Math, to appear.

M.-L. DEQUEANT, E. GLYNN, K. GAUDENZ, M. WAHL, J. CHEN,
A. MUSHEGIAN AND O. POURQUIE. A complex oscillating network
of signaling genes underlies the mouse segmentation cBiknce
314 (2006), 1595-1598.

(5]

M.-L. DEQUEANT, S. AHNERT, H. EDELSBRUNNER T. M. A.
FINK, E. F. GQYNN, G. HATTEM, A. KUDLICKI, Y. MILEYKO,

J. MORTON, A. R. MUSHEGIAN, L. PACHTER, M. ROWICKA,
A. SHIU, B. STURMFELS AND O. POURQUIE. Comparison of pat-
tern detection methods in microarray time series of the sgga
tion clock. PLoS ONE3 (2008), €2856, doi:10.1371/journal.pone.-
0002856.

H. EDELSBRUNNER D. LETSCHER ANDA. ZOMORODIAN. Topo-
logical persistence and simplificatioBiscrete Comput. Geon28
(2002), 511-533.

H. EDELSBRUNNER D. MOROZzOV AND V. PAascuccl. Persis-
tence-sensitive simplification of functions on 2-manifolth “Proc.
22th Ann. Sympos. Comput. Geom., 2006”, 127-134.

P. FROSINI AND C. LANDI. Size theory as a topological tool for
computer visionPattern Recognition and Image Analy8i§1999),
596-603.

L. V. KANTOROVICH. On the translocation of massé&s.R. (Dokl.)
Acad. Sci. URSS7 (1942), 199-226.

G. MONGE. Mémoire sur la théorie des déblais et des remblais. In
Histoire de I'’Académie Royale des Sciences de RdAri81), 666—
704.

J. R. MUNKRES. Elements of Algebraic Topologiddison-Wesley,
Redwood City, California, 1984.

0. POURQUIE. The segmentation clock: converting embryonic time
into spatial patternScience301 (2003), 328-330.

L. N. WASSERSTEIN Markov processes over denumerable products
of spaces describing large systems of autom@tablems of Infor-
mation TransmissioB (1969), 47-52.

A. ZOMORODIAN AND G. CARLSSON. Computing persistent ho-
mology.Discrete Comput. Geor33 (2005), 249-274.



