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Abstract

We prove two stability results for Lipschitz functions on tri-
angulable, compact metric spaces and consider applications
of both to problems in systems biology. Given two functions,
the first is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms
of their total persistences.
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1 Introduction

The mathematical methods developed in this paper are moti-
vated by biological questions of gene regulation. Measuring
gene expression over time, we get functions and we are in-
terested in quantifying their shape and similarity. Returning
to the biological questions in Section 4, we now focus on
the mathematical results which are vastly more general than
what we need for the specific applications. Specifically, let
X be a triangulable, compact metric space andf, g : X → R

two tame Lipschitz functions. Then there exist constantsk
andC that depend onX and on the Lipschitz constants off
andg such that the degree-p Wasserstein distance between
the corresponding persistence diagrams is

W p(f, g) ≤ C · ‖f − g‖1− k
p

∞

for everyp ≥ k. The second result pertains to the sum of
p-th powers of persistences, referred to as the degree-p total
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persistence and denoted asPersp(f). We prove there are
constantsk andC such that

|Persp(f) − Persp(g)| ≤ C · ‖f − g‖∞

for everyp ≥ k+1. More complete versions of both inequal-
ities are stated as the Wasserstein and the Total Persistence
Stability Theorems in Section 3.

To put the two results in perspective, we recall recent work
on persistent homology. LettingXa = f−1(−∞, a] be the
sublevel set defined by the thresholda, we consider the ho-
mology groups ofXa, and fora ≤ b we consider the ho-
momorphisms between the corresponding homology groups
induced by the inclusionXa ⊆ Xb. As shown in [7], the
homology classes can be tracked within this sequence of ho-
mology groups and it is possible to determine the moments
of birth and death for each; see also [9, 15]. The correspond-
ing persistence diagram is a multi-set of points in two di-
mensions in which each point represents a homology class,
marking its birth by the first and its death but the second
coordinate. A breakthrough result is the stability of thesedi-
agrams proved in [3]. Specifically, the bottleneck distance,
defined as the maximumL∞-distance between two matched
points of the diagrams off and ofg, is at most‖f − g‖∞.
Of course it is possible that the diagrams off and ofg have
different size, but we can always use points on the diagonal
to complete or improve the matching.

The two results in this paper go beyond this stability the-
orem by measuring similarity in terms of sums of powers.
This provides the sensitivity to local variation. Both inequal-
ities are false for general continuous functions and crucially
rely on the assumption thatf andg are Lipschitz.

Outline. Section 2 looks at triangulations ofX with small
mesh and small size and uses them to prove an upper bound
on the number of homology classes of persistence beyond
some threshold. Section 3 establishes the two stability re-
sults. Section 4 sketches the applications of the inequalities
to analyzing gene expression in development. Section 5 con-
cludes the paper.



2 Preliminaries

In this section, we introduce the tools we need to prove our
results, triangulations of small mesh and combinatorial ar-
guments that relate the number of homology classes to the
sizes of these triangulations. We assume basic familiarity
with homology theory as described in [12].

2.1 Triangulations

We begin by introducing the type of triangulation we need
and by explaining to what extent cycles inX can be replaced
by cycles in the appropriate skeleton of the triangulation.

Mesh and size. Let X be a triangulable, compact metric
space andd : X × X → R its metric. A triangulation of
X is a finite simplicial complexK together with a homeo-
morphism from the underlying space of the complex to the
space,ϑ : ||K || → X. We define thediameterof a simplex
σ in K as the maximum distance between any two points
of its image,diam(σ) = maxx,y∈σ d(ϑ(x), ϑ(y)). The
meshof the triangulation is the largest diameter,mesh(K) =
maxσ∈K diam(σ). Thesizeof the triangulation is the num-
ber of simplices,cardK. If the dimension ofX is n then
K consists of simplices of dimension between0 andn. For
each0 ≤ ℓ ≤ n, theℓ-skeleton, denoted asK(ℓ), is the sub-
set of simplices of dimension at mostℓ. Given a positive real
numberr, we are interested in a triangulation whose mesh is
at mostr and whose size is as small as possible. Specifically,
we define

N(r) = min
mesh(K)≤r

cardK;

Nℓ(r) = min
mesh(K)≤r

(cardK(ℓ) − cardK(ℓ−1)),

for each0 ≤ ℓ ≤ n. Note that
∑n

ℓ=0 Nℓ(r) ≤ N(r).

Consider then-dimensional sphere,X = S
n, as an exam-

ple. Forn = 1 its length is2π and we can decompose it
into m = ⌈2π/r⌉ arcs of length at mostr each. Assuming
r < π we can triangulate withm edges andm vertices. It
is impossible to do better, henceN0(r) = N1(r) = m and
N(r) = 2m. For n ≥ 2 it is not as easy to pin down the
functions but it is not difficult to see that there are positive
constantsc andC that depend onn and then-dimensional
volume ofSn such thatc/rn ≤ N(r) ≤ C/rn. If X is a
compact Riemanniann-manifold thenN exhibits the same
behavior for sufficiently smallr but can be significantly dif-
ferent for large values ofr. As an example, letX be the
2-dimensional torus consisting of all points at Euclidean dis-
tanceε > 0 from a circle of radius1

ε
in R

3. Its area is4π2.
For smallε and relatively much largerr the number of sim-
plices required to triangulateX is proportional to1

r
, while

for r ≤ ε it is proportional to 1
r2 .

Snapping. Let K be a triangulation ofX with mesh equal
to r. For a subsetz ⊆ X, we consider its thickened ver-
sion, zr, consisting of all pointsx ∈ X for which there is
a pointy ∈ z with d(x, y) ≤ r. As illustrated in Figure
1, the thickened version ofz contains a subset of the skele-
ton of the appropriate dimension that approximatesz, both
geometrically and homologically.

Figure 1: The1-cycle in the edge-skeleton of the triangulation is
homologous to the shaded1-cycle inside the annulus around that
1-cycle.

SNAPPING LEMMA . Let K be a triangulation of a com-
pact metric spaceX with mesh(K) = r. Then for each cycle
z of dimensionℓ in X there is a cyclēz in theℓ-skeleton of
K that is homologous toz insidezr.

PROOF. LetK1 be the minimal subcomplex ofK containing
z. Since the map that sends each simplicial cycle ofK1 to
its associated singular cycle induces an isomorphism at the
homology level, we have thatz is homologous to a simplicial
cycle withinK1. Since all simplices inK1 have diameter at
mostr, K1 is included inzr, which implies the result.

Lipschitz functions. Let nowf : X → R be aLipschitz
functionon X, that is, there is a constantc such thatf(x) −
f(y) ≤ cd(x, y) for all x, y ∈ X. The infimum over all such
c is theLipschitz constantof f , denoted asLip(f). A crucial
property of Lipschitz functions is that their level sets arewell
separated.

SEPARATION LEMMA . The distance between the level
sets defined by valuesa ≤ b is at least the difference in
values divided by the Lipschitz constant,d(x, y) ≥ (b −
a)/Lip(f) wheneverf(x) = a andf(y) = b.

The proof is obvious. The Separation Lemma implies that
the sublevel setXb contains the thickened versionXr

a con-
sisting of all points at distance at mostr = (b − a)/Lip(f)
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from Xa. Theamplitudeof f is the maximum difference in
function values,

Amp(f) = max
x∈X

f(x) − min
y∈X

f(y).

For a Lipschitz function, the amplitude is bounded from
above by the diameter of the space times the Lipschitz con-
stant,Amp(f) ≤ diam(X)Lip(f).

2.2 Persistent Homology

We now bound the number of cycles whose persistence ex-
ceeds some threshold and we use this to bound sums of pow-
ers of persistences. These bounds will be instrumental in
deriving our two main results in Section 3.

Birth and death. As before, we assume a compact metric
spaceX and a Lipschitz functionf : X → R. For each
valuea ∈ R, we have the sublevel setXa = f−1(−∞, a]
consisting of points with function value at mosta. Fora ≤ b
we haveXa ⊆ Xb. This inclusion implies homomorphisms
from the homology groups ofXa to those ofXb,

f
a,b
ℓ : Hℓ(Xa) → Hℓ(Xb),

one for each dimensionℓ. Throughout this paper, we as-
sume our homology groups are defined for modulo-2 arith-
metic but everything we say also holds for coefficient groups
that are fields [15]. The nested family of sublevel sets de-
fines a sequence of homology groups connected by the de-
scribed homomorphisms. Following [3], we callf tame
if this sequence is finite and consists of homology groups
whose ranks are finite.

Within this framework, we can increasea from 0 to ∞
and observe homology classes appear and disappear. Specif-
ically, a classα ∈ Hℓ(Xa) is born at Xa if α is not in the
image offa−δ,a

ℓ for any δ > 0. Furthermore, the classα
born atXa dies enteringXb if f

a,b−δ
ℓ (α) is not in the image

of f
a−δ,b−δ
ℓ , for any δ > 0, but fa,b

ℓ (α) is in the image of
f
a−δ,b
ℓ . If α is born atXa and dies enteringXb then we set

b(α) = a andd(α) = b. It is also possible thatα does not
die in the sequence which ends withHℓ(X). In this case,
we setd(α) = maxx∈X f(x). In summary, we have a value
b(α) and a valued(α) for each cycleα that makes an ap-
pearance in the sequence of homology groups. Thepersis-
tenceof the class is the difference between the two values,
pers(α) = d(α) − b(α). This agrees with the original defi-
nition except for classes that do not die for which [7] set the
persistence to infinity. The motivation for the slight change
in definition is convenience. Without it, our theorems would
require the more sophisticated concept of extended persis-
tence as introduced in [4].

Persistence diagrams. We represent the births and deaths
of ℓ-dimensional homology classes by a set of points inR

2,

theℓ-th persistence diagramdenoted asDgmℓ(f). For each
classα that makes an appearance in the sequence ofℓ-th ho-
mology groups, the diagram contains the point(b(α), d(α)).
We thus draw births along the horizontal axis, deaths along
the vertical axis, and since deaths happen only after births,
all points lie above the diagonal. In degenerate cases, classes
can be born at the same time and die at the same time. Points
in the diagram thus have integer multiplicities andDgmℓ(f)
is a multiset.

This brings up an important subtlety about the meaning of
a point in the diagram. Withα an entire coset of homology
classes is born ata = b(α) and dies enteringb = d(α).
Specifically, every classα + β with β ∈ Hℓ(Xa−δ) is in
this coset. The point(a, b) in Dgmℓ(f) represents all these
classes. It is a single point indicating that the rank of theℓ-th
homology group goes up by one ata and it drops by one atb.
This is the case in which the rank changes by the appearance
or disappearance of a single generator. In a degenerate case,
we may have more than one generator appear at the same
critical value. Saya = b(α1) = b(α2) = . . . = b(αk) and
all these classes are independent. Then the coset born atXa

consists of all classesα + β, whereα is a non-zero combi-
nation of theαi andβ ∈ Hℓ(Xa−δ). The rank of theℓ-th
homology group increases byk. Correspondingly, the total
multiplicity of the points with birth-coordinatea isk. Theαi

may die at the same or at different critical values. Assume
we have them indexed such thatd(α − 1) ≤ d(α2) ≤ . . . ≤
d(αk). For each non-zero combinationα =

∑k
i=1 aiαi, we

have a largest indexl = l(α) such thatal = 1. Thenα + β
dies atd(αl), the critical value at which its last constituent
dies. Similar to births, we can have an arbitrary number,k,
of independent classes die at the same value,b. Correspond-
ingly, the rank of theℓ-th homology group drops byk and
the total multiplicity of points with death-coordinateb is k.

While there is nothing canonical about the choice of gen-
erators at births and deaths, the persistence diagram is inde-
pendent of that choice and thus unique.

2.3 Persistent Cycles

We use the existence of triangulations with small mesh and
small size to prove upper bounds on the sums of powers of
persistences.

Number of cycles. We begin with bounding the number of
homology classes of large persistence.

PERSISTENTCYCLE LEMMA . Let X be a triangulable,
compact metric space andf : X → R a tame Lipschitz func-
tion. Then the number of points in the persistence diagrams
of f whose persistence exceedsε is at mostN(ε/Lip(f)).

PROOF. Setr = ε/Lip(f) and letK be a triangulation of
X with mesh(K) ≤ r and number ofℓ-simplices equal to
Nℓ(r). Let α be anℓ-dimensional homology class whose
persistence exceeds the threshold,pers(α) = d(α)−b(α) >
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ε. By definition of birth, there is a cyclez(α) in Xb(α) that
generatesα in Hℓ(Xb(α)). Sincef is Lipschitz,Xb(α)+ε con-
tainsX

r
b(α). The Snapping Lemma thus implies the existence

of a cyclez̄(α) in theℓ-skeleton ofK that is homologous to
z(α) in Xb(α)+ε.

Using this construction we obtain a cyclez̄i = z̄(αi) for
each point inDgmℓ(f) whose persistence exceedsε, αi be-
ing anℓ-dimensional homology class associated to that point.
If points share the birth value then we chose the classes in-
dependent. Assuming the indices are chosen so that the birth
values are ordered, we haveb(α1) ≤ b(α2) ≤ . . . ≤ b(αm).
A crucial property of this construction is the Independence
of the m cycles in theℓ-skeleton ofK. We prove this by
induction. Suppose that̄zi is not independent of its pre-
decessors. Then it is homologous to a linear combination,
z̄i ∼ ∑i−1

j=1 aj z̄j. By construction, we havēzj ∼ z(αj) in
Xb(αi)+ε for each1 ≤ j ≤ i. Thus,

z(αi) ∼
i−1
∑

j=1

ajz(αj)

in Xb(αi)+ε. If b(αi−1) < b(αi) then this contradicts the
assumption that the death ofαi comes strictly afterb(αi) +
ε. Else letk < i be the smallest index such thatb(αk) =
b(αi). Then we have a non-zero combination ofz̄k to z̄i

homologous to
∑k−1

k=1 aj z̄j. By construction, the death of
the corresponding non-zero combination of the classesαj is
no earlier than the death ofαi. This again contradicts the
assumption thatd(αi) > b(αi) + ε.

Being independent, the number of cyclesz̄i is at most the
rank of theℓ-th homology group of theℓ-skeleton, which is
at most the number ofℓ-simplices,m ≤ rankHℓ(K

(ℓ)) ≤
Nℓ(r). The claimed inequality follows becauseN(r) is at
least the sum of theNℓ(r) over all dimensionsℓ.

Persistence moments. We are interested in the sum ofk-
th powers of the persistences of all points in the diagrams of
f whose persistence exceeds some non-negative threshold,

Persk(f, t) =
∑

pers(x)>t

pers(x)
k
.

For t = 0 we call Persk(f) = Persk(f, 0) the degree-k
total persistenceof f . We use the bound on the number of
persistent cycles to get a bound on this sum.

MOMENT LEMMA . Let X be a triangulable, compact
metric space andf : X → R a tame Lipschitz function.
ThenPersk(f, t) is bounded from above by

tkN

(

t

Lip(f)

)

+ k

∫ Amp(f)

ε=t

N

(

ε

Lip(f)

)

εk−1 dε.

PROOF. Let P (ε) be the number of points in the diagrams
of f whose persistence exceedsε. By the Persistent Cycle

Lemma we haveP (ε) ≤ N(ε/Lip(f)). The derivative ofP
is the negative of the persistence values viewed as a distri-
bution, that is, a sum of Dirac masses obtained by projecting
the diagrams onto the anti-diagonal and scaling by a factor√

2, as sketched in Figure 2. It follows that the sum ofk-th

birth

death

ε P

Figure 2: A cubistic sketch of the functionP and its relation to the
persistence diagrams. Imagine theP -axis normal to the birth,death-
plane and the graph of the function drawn in theε, P -plane.

powers of the persistences exceedingt is

Persk(f, t) =

∫ ∞

ε=t

−∂P

∂ε
(ε)εk dε

= [−P (ε)εk]∞ε=t +

∫ ∞

ε=t

P (ε)
∂εk

∂ε
dε,

using integration by parts. We notice thatP (ε) vanishes for
ε > Amp(f). We can therefore substituteAmp(f) for ∞
and get

Persk(f, t) ≤ tkP (t) + k

∫ Amp(f)

ε=t

P (ε)εk−1 dε.

The claimed inequality follows.

Polynomial growth and bounded total persistence. As-
sume now that the size of the smallest triangulationgrows
polynomiallywith one over the mesh. By this we mean there
are constantsC0 andM such thatN(r) ≤ C0/rM for every
r > 0. For example such a behavior holds for any bilipschitz
image of anM -dimensional Euclidean simplicial complex,
since we can obtain small triangulations as images of subdi-
visions of the simplicial complex. This general case includes
in particular compact finite-dimensional Riemannian mani-
folds. Let nowA andB be the two terms of the upper bound
in the Moment Lemma, that is,Persk(f, t) ≤ A + B. As-
suming polynomial growth and settingk = M + δ for some
constantδ > 0 we can find constant upper bounds for both
terms,

A ≤ tM+δC0
Lip(f)

M

tM

≤ C0Lip(f)
M

Amp(f)
δ
;
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B ≤ (M + δ)

∫ Amp(f)

ε=t

C0
Lip(f)M

εM
εM+δ−1 dε

= C0Lip(f)
M

(M + δ)

[

1

δ
εδ

]Amp(f)

ε=t

≤ C0Lip(f)
M

Amp(f)
δ M + δ

δ
.

Both constant upper bounds depend only on the spaceX, the
Lipschitz constant of the functionf , and the chosen constant
δ. This result motivates the introduction of the following
concept.

DEFINITION. A metric spaceX implies bounded degree-
k total persistenceif there is a constantCX that depends only
on X such thatPersk(f) ≤ CX for every tame functionf :
X → R with Lipschitz constantLip(f) ≤ 1.

For general Lipschitz functionsf we getPersk(f) ≤ C,
whereC = CXLip(f)k. ConsiderX = S

n as an example
and note thatN(r) ≤ C0/rn implies Persk(f) ≤ C for
everyk = n + δ, whereδ > 0. This givesk = 1 + δ for the
circle, S

1, but we will see later that in this special case the
exponent can be lowered tok = 1.

3 Results
The basic intuition for our results is that for a Lipschitz func-
tion on a compact space to have a large number of homolog-
ical critical values their persistence must be small.

Wasserstein distance. The first way of making this intu-
ition precise uses theL∞-stability of tame functions proved
in [3] and proves theLp-stability of tame Lipschitz functions
on compact metric spaces. Letf, g : X → R be two tame
functions with persistence diagramsDgmℓ(f) andDgmℓ(g),
one for each dimensionℓ. Assuming bounded degree-k total
persistence, we prove that the sum ofp-th powers of dis-
tances between matched points in the two diagrams is stable
for everyp > k. Specifically, we define thedegree-p Wasser-
stein distancebetween the persistence diagrams off andg,

W p(f, g) =

[

∑

ℓ

inf
γℓ

∑

x

‖x − γℓ(x)‖p
∞

]
1

p

,

where the first sum is over all dimensionsℓ, the infimum
is over all bijectionsγℓ : Dgmℓ(f) → Dgmℓ(g), and the
second sum is over all pointsx in Dgmℓ(f) [14]. This no-
tion of distance between distributions is popular in computer
vision; see also the Monge-Kantorovich transportation prob-
lem [10, 11].

WASSERSTEINSTABILITY THEOREM. Let X be a trian-
gulable, compact metric space that implies bounded degree-
k total persistence, fork ≥ 1, and letf, g : X → R be two
tame Lipschitz functions. Then

W p(f, g) ≤ C
1

p · ‖f − g‖1− k
p

∞

for all p ≥ k, whereC = CX max{Lip(f)
k
, Lip(g)

k}.

PROOF. Let γℓ : Dgmℓ(f) → Dgmℓ(g) be the bijection that
realizes the bottleneck distance, that is,‖x − γℓ(x)‖∞ ≤
ε = ‖f − g‖∞ for each pointx in the first diagram. In
addition, we require that‖x − γℓ(x)‖∞ ≤ 1

2 [pers(x) +
pers(γℓ(x))]. Indeed, if this inequality does not hold then
pers(x) ≤ 2ε andpers(γℓ(x)) ≤ 2ε and we can change the
bijection by matching both points with points on the diago-
nal within L∞-distanceε. Thep-th power of the degree-p
Wasserstein distance therefore satisfies

W p(f, g)p ≤
∑

ℓ,x

‖x − γℓ(x)‖p
∞

≤ εp−k
∑

ℓ,x

‖x − γℓ(x)‖k
∞

≤ εp−k

2k

∑

ℓ,x

[pers(x) + pers(γℓ(x))]k.

Recall that every convex functionf satisfiesf(u+v
2 ) ≤

1
2 [f(u) + f(v)]. Noting that taking thek-th power is con-
vex, we setu = 2pers(x) andv = 2pers(γℓ(x)) to further
boundWp(f, g)p from above by

εp−k

2k

∑

ℓ,x

[(2pers(x))k + (2pers(γℓ(x)))k].

Using the assumption thatX implies bounded degree-k total
persistence, we bound this sum byCεp−k, as required.

Total persistence. Recall that the degree-k total persis-
tence of a functionsf : X → R describesf by a single num-
ber. We prove that for Lipschitz functions on triangulable,
compact metric spaces this description is stable. Assuming
bounded degree-k total persistence, we prove the degree-p
total persistence is stable forp ≥ k + 1.

TOTAL PERSISTENCESTABILITY THEOREM. Let X be
a triangulable, compact metric space that implies degree-k
total persistence fork ≥ 0, and letf, g : X → R be two
tame Lipschitz functions. Then

|Persp(f) − Persp(g)| ≤ 4pwp−1−kC · ‖f − g‖∞
for every realp ≥ k + 1, where the constantC is equal to
CX max{Lip(f)

k
, Lip(g)

k} andw is bounded from above
by max{Amp(f), Amp(g)}.

PROOF. We begin by noting thatyp − xp =
∫ y

x
pzp−1 dz ≤

p|y − x|max{x, y}p−1 for all x, y ≥ 0 andp ≥ 1. We use
the Stability Theorem in [3] to index the persistences of the
points in the diagrams off andg such that

Persk(f) = pk
1 + pk

2 + . . . + pk
m ≤ C;

Persk(g) = qk
1 + qk

2 + . . . + qk
m ≤ C,
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and|pi − qi| ≤ 2ε for all i, whereε = ‖f − g‖∞, possibly
after adding zeroes. Now letw be the maximum of thepi

and theqi. Writing ∆ = Persp(f) − Persp(g) we get

|∆| ≤
m

∑

i=1

|pp
i − qp

i |

≤
m

∑

i=1

p|pi − qi|max{pi, qi}p−1

≤ p(2ε)(2C)wp−1−k,

as claimed.

4 Applications
As mentioned in Section 1, the two results in Section 3 are
motivated by applications to the analysis of gene expres-
sion data in development. To change the level of expression
needs work, namely the production of RNA to grow and the
degradation of RNA to shrink. It is thus natural to assume
the functions that expression in time are Lipschitz. In the
first application, we use a Lipschitz function on the interval,
fW : [0, 1] → R, and in the second a Lipschitz function on
the circle,fT : S

1 → R. For both we get bounded degree-
1 total persistence which is slightly better than what we get
from the Moment Lemma. In the case of the interval, the
constant upper bound follows from the observation that the
sum of persistences is at most the total variation,

Pers1(fW ) ≤
∫ 1

s=0

|f ′
W (s)| ds.

BecausefW is Lipschitz, this integral is at mostLip(fW ).
In the case of the circle, the sum of persistences is half the
total variation and we getPers1(fT ) ≤ πLip(fT ).

Similarity in gene expression. We use the result about
functions on the unit interval to define a similarity measure
for gene expression patterns to be used in clustering. The
biological question concerns the expression of genes along
the root of the plant arabidopsis [1]. Concrete insights are
sought by analyzing the recently obtained microarray data
for about 20,000 genes expressed in 14 cell types over 13
stages in the development of the plant arabidopsis [2]. We
refer to the stages as longitudinal data since it is taken along
the root so that position corresponds to the age of the cell.
For each cell type and each gene we have a sequence of 13
measurements which we interpret as samples of a function
f : [0, 1] → R. The first step in discovering gene regu-
lation and cellular communication from this data is to clus-
ter the genes according to their expression patterns. Genes
that are expressed in the same longitudinal pattern may be
co-regulated or may work together to regulate other genes.
Using the clusters we form hypotheses that can then be scru-
tinized. It is important to keep in mind that the microarray

data is sparse and noisy and the longitudinal slices do not
accurately represent actual time. We therefore look for qual-
itative similarity rather than for agreement in detail.

There are many clustering methods that are traditionally
applied to expression data. All of these methods require a
metric and most are easily adapted to accommodate differ-
ent choices. Commonly used are the Euclidean metric, the
Pearson correlation, and simple boolean metrics. However,
the Wasserstein distance between the persistence diagrams
provides an alternative that we believe is more appropriate
in some situations. Specifically, we suggest usingW2(f, g).
By design, it adapts to local variation without requiring that
change rigidly occurs at the same stage. Furthermore, this
measure is stable. Indeed, the Wasserstein Stability Theo-
rem together withPers1(f) ≤ C andPers1(g) ≤ C implies

W2(f, g) ≤ 2C
1

2 · ‖f − g‖
1

2

∞.

Rhythmic gene expression. The background for the sec-
ond application is the development of somites in vertebrates.
Specifically, we consider the mouse embryo in which usually
65 somites are formed in a rhythmic process that takes about
two hours per somite. They provide the basic body struc-
ture for the organism. The work of Pourquié [13] reduces
this rhythm to the periodic expression of genes. In an effort
to expand the early results, Dequéant and Pourquié used a
microarray experiment to collect data on the expression of
about 7,500 genes at 17 time-points within a single period.
After finding twenty-seven genes involved in the rhythmic
process [5], the task is now to complete the picture by iden-
tifying additional players needed to uncover the biological
clocks that drive the somite development. The task is made
difficult by the sparsity of the data and the noise.

To be specific, we think of the 17 measurements as or-
dered samples of a functionf : S

1 → R and base our assess-
ment of periodicity on counting critical points. More pre-
cisely, we integrate the number of critical points over theε-
simplificationsfε : S

1 → R defined such that‖f − fε‖∞ ≤
ε and the diagrams offε agree with those off except that
they contain no points of persistenceε or less; see [8]. For
functions on the circle it is easy to see thatfε exists for ev-
ery value ofε. To simplify notation, let us assume that the
amplitude off is one. Writingc0(f) for the number of min-
ima andc1(f) for the number of maxima, the sequence of
measures is defined inductively as

M0(f) =
c0(f) + c1(f)

2
;

Mi(f) =

∫ 1

ε=0

Mi−1(fε) dε,

for i ≥ 1. For example,M1 integrates half the number of
critical points over allε-simplifications. Two critical points
paired by persistence contribute to the integral forε from
zero to their persistence, which implies thatM1(f) is equal
to the sum of persistences. As noted before, this is half the

6



total variation off . More generally,Mi(f) =
∑

x pers(x)
i,

where the sum is over all pointsx in Dgm0(f). ¿From our
analysis we know thatMi is stable fori ≥ 2 and it is not
difficult to prove that it is not stable fori ≤ 1. In the ranking
of functions we indeed see a marked change in the distribu-
tion of the twenty-seven validated genes when we go from
M1 to M2. For i = 0, 1 there are relatively few near the
top, for i = 2 this number increases dramatically, and for
i > 2 that number stays about the same. We refer to [6] for
details of the experiments and the comparison ofM2 with
other assessments of periodicity.

5 Discussion
Recall that the size of the smallest triangulation ofS

n grows
linearly with then-th power of one over the mesh,N(r) ≤
C0/rn. It follows from the Moment Lemma thatSn implies
bounded degree-k total persistence fork = n + δ, for every
constantδ > 0. It is also easy to see thatk ≥ n is necessary
for we can populateSn with 1/rn cones each supported by
a spherical cap of radiusr and contributing a point of persis-
tencer. It would be interesting to know whetherS

n implies
bounded degree-k total persistence fork = n. In Section 4,
we proved that this is the case forn = 1 using an argument
that circumvents the use of a triangulation. The authors of
this paper generalized this proof ton = 2 but the question is
still open forn ≥ 3.
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