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The elevation function on a smoothly embedded2-manifold inR
3 reflects the multiscale topography of cavities and protru-

sions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Trans-
porting the concept from the smooth to the piecewise linear category, this paper describes an algorithm for finding all local
maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is
orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian
curvature of the2-manifold.
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1. INTRODUCTION

This paper introduces a new algorithm for computing all local maxima of the elevation function
defined on a2-manifold embedded inR3. This function has been introduced by Agarwal et al.
[Agarwal et al. 2006] for the purpose of improving the prediction of protein interaction through
docking. The approach identifies protrusions (knobs) and cavities (wells) on the two surfaces and
matches them up. This idea goes back to Connolly [Connolly. 1986] who used a function that maps
each point of the protein surface to the fraction of a fixed-radius sphere centered at the point that lies
outside the protein volume. As shown by Cazals et al. [Cazalset al. 2003], this function resembles
the mean curvature at the point in the limit, when the radius approaches zero. The fixed radius makes
a choice of the scale the function reflects.

The elevation function introduced in [Agarwal et al. 2006] serves the same purpose, but in con-
trast to Connolly’s function, the elevation is scale independent and marks small as well as large
protrusions of varying shape and direction. Its construction is based on the persistence structure of
the2-parameter family of height functions, as explained in the next section. The task at hand is then
the computation of all local maxima for two proteins and the use of the type, size, and location of
the marked topographic features to identify promising positions for interaction. The experimental
study in [Wang et al. 2005] shows that this approach is effective in finding initial positions that can
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then be refined by local optimization. The computationally most expensive step in this study is the
determination of the elevation maxima. Using the algorithmin [Agarwal et al. 2006], the running
time for a triangulated2-manifold withm edges is proportional tom5 log2 m. Since typical proteins
give rise to surfaces with hundreds of thousands of edges, the quintic dependence onm is a serious
drawback that limits the practical deployment of the method.

In this paper, we give a new algorithm that is faster for triangulated surfaces approximating
smooth surfaces that we typically find in practice. They are characterized by having dihedral an-
gles at edges that are close to half the full angle (molecularskin surface [Edelsbrunner 1999]).
We relate the running time of our algorithm to the total absolute Gaussian curvature of the surface
and this way determine that we can expect roughly a ten-thousand fold improvement over the run-
ning time of the old algorithm. We note, however, that we offer no improvement in the worst-case
performance.

Since we incorporate the surface complexity in terms of total absolute Gaussian curvature into
the analysis of the algorithm, it is worth mentioning that there is a large literature on the notion of
curvatures for triangulated surfaces. We refer to [Banchoff 1970] and [Morvan 2008; Cohen-Steiner
and Morvan 2006] for details.

Outline. In Section 2, we introduce the geometric and topological background needed to under-
stand the elevation function. We do this in two steps, discussing the mathematically cleaner smooth
case in Section 2.1 and the computationally more useful piecewise linear (PL) case in Section 2.2.
In Section 3, we present the algorithm for computing all elevation maxima, along with some im-
plementation details and the analysis. In Section 4, we present our experimental results, employing
our software to compute elevation maxima for a number of triangulated protein surfaces. We gather
statistics on critical regions, pairwise intersections, and elevation maxima. We use these statistics as
evidence that our assumption is a reasonable approximationof the reality for our data and that the
new algorithm runs about four orders of magnitude faster than the old one.

2. PRELIMINARIES

In this section, we introduce the necessary background for understanding the elevation function and
our algorithm for computing its local maxima. We begin with the smooth case, which we use as
guiding intuition in our subsequent treatment of the piecewise linear case.

2.1. The Smooth Case

We begin with brief introduction of Morse functions and persistent homology, then use these con-
cepts to define the elevation function. Finally, we discuss the Gaussian curvature of the2-manifold.

Morse functions.The class of smooth, real-valued functions is a challengingobject that simplifies
considerably if we add genericity as a requirement. Lettingf : M → R be a smooth function on a
2-manifold, a pointx ∈ M is critical if the derivative atx equals zero. The value off at a critical
point is acritical value. All other points areregular pointsand all other values areregular valuesof
f . A critical point isnon-degenerateif the Hessian, that is, the matrix of second partial derivatives
at the point is invertible. In this case, the matrix has two non-zero eigenvalues,λ1 6= λ2, and the
indexof the non-degenerate critical point is the number of negative eigenvalues. A non-degenerate
critical point of index0 is a minimum, of index1 is a saddle, and of index2 is a maximum, see
Figure 1. Finally,f is a Morse functionif all its critical points are non-degenerate and its values
at the critical points are distinct. Given a valuea ∈ R, the correspondingsublevel setconsists
of all points with value at mosta, Ma = f−1(−∞, a]. Sweeping the manifold in the direction of
increasing function value, we get a1-parameter family of sublevel sets. The topology of the sublevel
set changes precisely when the sweep passes through a critical point. Lett1 < t2 < ... < tn be the
ordered sequence of critical values and−∞ = s0 < s1 < ... < sn = ∞ a sequence of interleaved
values, that is,si < ti+1 < si+1, for all i. By assumption off being Morse, we get from the
sublevel set atsi to the one atsi+1 by passing exactly one non-degenerate critical point. The change
can be characterized in terms of the dimension of the handle we attach to go fromMsi

to Msi+1
.
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Fig. 1: From left to right: a minimum, a saddle, and a maximum.

For index0, we add a0-handle, that is, an isolated point which we then thicken to adisk. For index
1, we add a1-handle, that is an interval attached to the boundary of the sublevel set at its endpoints
which we then thicken to a strip. Finally, for index2, we add a2-handle, that is, a disk attached to
the boundary of the sublevel set along its boundary circle.

Persistent homology.Looking at the homology groups [Munkres 1984] of the sequence of sub-
level sets, we use the concept of persistence to measure the lengths of the intervals along which
homology classes exist [Edelsbrunner et al. 2002]. Since sublevel sets between two contiguous crit-
ical values are indistinguishable, we may consider the finite sequence

∅ = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M,

where we simplify notation by settingMi = Msi
. Fixing a dimensionp (p ≥ 0), each sublevel

set has ap-th homology group and the sequence is connected from left toright by homomorphisms
induced by inclusion, which we denote asf i,j

p : Hp(Mi) → Hp(Mj). We have abirth at Mi if
the mapf i−1,i

p is not surjective, and we have adeathat Mj if the mapf j−1,j
p is not injective.

Furthermore, the death atMj corresponds to the birth atMi if there is homology classγ in Hp(Mi)
that is not in the image off i−1,i

p , its image inHp(Mj−1) is still not in the image off i−1,j−1
p ,

but its image inHp(Mj) is in the image off i−1,j
p . We call f(tj) − f(ti) the persistenceof this

birth-death pair. As explained in [Cohen-Steiner et al. 2007], this method gives a pairing between
births and deaths that has many interesting properties. Each death corresponds to a unique birth
but not every birth corresponds to a death. To remedy this shortcoming, we extend the sequence
of homology groups for extended persistence as described in[Cohen-Steiner et al. 2009]. Writing
M

a = f−1[a,∞) for thesuperlevel setof a, we go up with absolute homology groups of sublevel
sets, as before, and we come back down with relative homologygroups,

0 = Hp(M0) → Hp(M1) → . . . → Hp(Mn)

→ Hp(M, Mn) → . . . → Hp(M, M0) = 0,

where we simplify notation by settingMi = M
si , M

0 = M andM
n = ∅. Now every birth corre-

sponds to a death. In fact, we have two events at every critical point, one going up and one coming
down, but duality implies that we just get each pair twice, see [Cohen-Steiner et al. 2009]. As a
consequence of duality, the birth-death pairs we get for thenegative function,−f , are the same.
This turns out to be important in the definition of the elevation function.

For2-manifolds, there is a more elementary way to introduce extended persistence using the Reeb
graph of the function. Instead of giving details, we refer to[Agarwal et al. 2006] and we mention that
this approach leads to a fast algorithm. It consists of constructing the Reeb graph in a sweep [Cole-
McLaughlin et al. 2004] followed by deconstructing it in another sweep using cutting and linking
trees [Agarwal et al. 2006; Georgiadis et al. 2006]. We run this algorithm for a piecewise linear
function on a triangulated2-manifold. Lettingm be the number of edges in the triangulation, as
before, the running time computing the extended persistence for a given height function is bounded
by some constant timesm log2 m.
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Elevation.To define elevation, we assume the2-manifoldM is smoothly embedded inR3. For
a directionu ∈ S

2, we consider the height functionhu : M → R defined byhu(x) = 〈x, u〉.
Generically,hu is a Morse function, but for some directionsu it is not, either because a critical point
is degenerate or because two or more critical points map to the same height value. Considering the
entire sphere of directions, we get a2-parameter family of height functions.

For eachu ∈ S
2, we pair up births with deaths using the extended sequence ofhomology groups

defined by the sublevel and the superlevel sets ofhu. In the Morse function case, each birth-death
pair identifies two critical points,x andy, one giving birth and the other giving death, and we define
the elevation at these two points as their persistence or, equivalently, the absolute height difference
in the directionu, E(x) = E(y) = |hu(x) − hu(y)|. Each point ofM is critical in two directions,
u and−u, and is thus assigned two values, the absolute height difference to the paired critical point
in the two directions. Sinceh−u = −hu, the paired point is the same so we get a unique value at
every point. This is theelevation functionof the2-manifold,E : M → R.

To get a feeling for this function, we consider a protrusion (a mountain) of the2-manifold. To
measure the height of the mountain, we measure from the top down, to the first saddle that separates
it from an even higher mountain. We can do this in various directions, so we do it to maximize the
height. This might be in a direction along which the first saddle is ambiguous. Perhaps there are
three such saddles at the same height value in this direction, similar to the third type in Figure 2 in
which we have a saddle with the same height difference to three minima. In this direction, we have
two violations of genericity required for Morse functions,because there are three critical points with
the same height value. Indeed, local maxima ofE tend to arise along non-generic directions. An
exception is the1-legged maximum defined by only two critical points (with oneleg between them).
Besides this case, we have 2-legged maxima defined by three critical points, and3- and4-legged
maxima defined by four critical points each; see Figure 2.
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Fig. 2: The four generic types of local maxima of the elevation function. From left to right: the1-, 2-, 3- and
4-legged maximum.

Curvature.We will later discover that the running time of our algorithmfor finding all local
maxima relates to the total absolute curvature of the surface. We introduce this concept using the
Gauss map, N : M → S

2, defined by mapping a pointx of M to the outer unit normal,N(x), at
x. AssumingM is smoothly embedded inR3, the Gauss map is continuous and surjective but not
necessarily injective. Indeed, the preimage ofu ∈ S

2 consists of all critical points ofhu with outer
normalu, as opposed to−u. The multiplicity of N at u and−u together is thus the number of
critical points ofhu. We will see shortly that the total coverage ofS

2 is exactly the total absolute
Gaussian curvature ofM.

Lettingx be a point ofM andr > 0 a radius, we define theabsolute Gaussian curvatureatx by
taking the limit of a fraction of areas,g(x) = limr→0

Area(N(Ar))
Area(Ar) , whereAr is the neighborhood

of points at distance at mostr from x on M. Thetotal absolute Gaussian curvatureis the integral
of the local quantity,G(M) =

∫

x∈M
g(x)dx. It should be clear thatG(M) is the area of the total

coverage ofS2, taking multiplicity into account. For a given direction, the multiplicity is|N−1(u)|.
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Hence,G(M) =
∫

u∈S2 |N
−1(u)|du. Writing cavg for the average number of critical points of the

height functions, we thus have the total absolute Gaussian curvature equal to one half times the area
of the sphere times that average,G(M) = 2πcavg. This integral geometry formula for the curvature
will come handy in the analysis of our algorithm. For more information on the integral geometry
formulation of curvature see Santaló [Santaló 2004].

2.2. The PL Case

We do all computations on a piecewise linear approximation of the smooth2-manifold. To transport
the smooth concepts to the PL category, we think of the PL surface as being approximated by a
smooth surface. Tightening the approximation, we get a series and take the limit. This is the general
intuition we have in the background guiding the formulationof definitions in the PL case.

Triangulated surfaces.A triangulation of a 2-manifold M is a simplicial complex,K, whose
underlying space is homeomorphic toM: |K| ≈ M. It consists of vertices, edges, and triangles. To
putK into R

3, it suffices to map each vertex to a point; the edges and triangles are the convex hulls
(of the images) of their vertices. This is ageometric realizationif the triangles meet in shared edges
and vertices but not in any other point sets. We call the result a triangulated surface, implicitly
assuming that it is geometrically realized inR

3. Thestar of a vertex is the set of simplices that
contain it, and thelink consists of all faces of simplices in the star that do not belong to the star,
St vi = {σ ∈ K | vi ∈ σ}; Lk vi = {τ ⊆ σ ∈ St vi | τ 6∈ St vi}. A PL functionf : |K| → R

is determined by its values at the vertices. Assumingf(vi) 6= f(vj) wheneveri 6= j, we define
the lower link as the subset of simplices in the link wheref is smaller than at the vertex,Lk−vi =
{σ ∈ Lk vi | x ∈ σ ⇒ f(x) < f(vi)}. Finally, vi is regular if its lower link is contractible, and
critical, otherwise. SinceK triangulates a2-manifold, every link is a circle and the only contractible
closed subsets are points and closed paths. The lower link ofa regular vertex is thus a single vertex
or a path connecting two vertices. Aminimumis characterized byLk−vi = ∅ and amaximumby
Lk−vi = Lk vi. In the remaining case, the lower link consists ofk + 1 ≥ 2 paths and we callvi a
k-fold saddle, or asimple saddleif k = 1.

In contrast to the smooth case, it is not possible to turn ak-fold into a simple saddle by a small
perturbation. We therefore treat them directly, without reduction to simple cases. As an example,
consider the Euler-Poincaré Theorem which relates the topology of the2-manifold with the critical
point structure of its functions. Denote theindexof a simple critical point byindex (vi), recalling
that index (vi) = 0 if vi is a minimum,1 if vi is a simple saddle,2 if vi is a maximum. Assuming
K is connected, it is characterized by itsgenusand we have2 − 2 · genus = n − m + l =
∑

i(−1)index (vi), wheren, m, l are the number of vertices, edges, triangles inK and ak-fold
saddle is represented byk simple saddles in the sum.

Critical regions.Another significant complication we encounter in the PL caseis that a vertex is
generally critical for an entire region of directions. Letting hu : |K| → R be the height function
defined byhu(x) = 〈x, u〉, thecritical regionof a vertex is the closure of the set of directions along
whichvi is critical,

Ri = cl {u ∈ S
2 | vi is critical point ofhu}.

We construct it from the closed polygonal curve defined by thestar ofvi. Specifically, we map each
triangle in the star to its outer normal direction, a point onS

2, and we connect the directions of
two neighboring triangles by the shorter of the two connecting great-circle arcs. This gives a closed
polygonal curve,πi, which may or may not have self-intersections. To cope with the former, more
complicated case, we orientπi and define thewinding numberof a directionu ∈ S

2 not on the curve
as the number of times the curve goes around the directed linedefined byu. Viewed alongu, we
count a counterclockwise turn as+1 and a clockwise turn as−1. Taking the sum we get the winding
number, which are denoted asw(u, πi). For a detailed study on the polyhedron Gauss map, refer to
[Alboul and Echeverria. 2005]. Examples are shown in Figure3. The winding number ofu relates
to the type of the vertex in the height function defined byu. Specifically, ifvi is regular then the
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winding number ofu is 0, if vi is a simple critical point then the winding number is(−1)index (vi),
and ifvi is ak-fold saddle then the winding number is−k.

Curvature.Thinking of a vertex as a tiny region in an approximating smooth surface, we define
its Gaussian curvatureas the area of its critical region weighted by the winding number. More
useful in this paper is itsabsolute Gaussian curvaturedefined as the area weighted by the absolute
winding number,g(vi) =

∫

u∈S2 |w(u, πi)|du. The total absolute Gaussian curvatureis then the
sum over all vertices,G(K) =

∑

i g(vi). Equivalently, it is the area of the sphere times half the
average number of critical vertices, taking multiplicities into account, as usual. The average is taken
over all height functions, and we count half the critical vertices becausevi is critical foru ∈ S

2 as
well as−u ∈ S

2.

+1

+1

−1

−2

vi

vi

vi

vi

Fig. 3: Left: for a directionu with winding number+1 the corresponding vertex appears either as a maximum
or a minimum. Right: for winding number−1 we have a simple saddle and for−2 we have a2-fold or monkey
saddle for the height function defined by the corresponding direction.

3. COMPUTATION

In this section, we describe how we compute the elevation maxima for a given triangulated surface
in R

3. The algorithm is straightforward and the only new insight is in the analysis, relating the
running time with the total absolute Gaussian curvature of the surface.

Types and filters.Recall that there are four types of elevation maxima for a generic smooth sur-
face, as illustrated in Figure 2. We have the same four cases for a generic triangulated surfaceK in
R

3. Each maximum is given by a set of two, three, or four points. We consider the case in which all
these points are vertices ofK. The cases in which some of the points inV lies on edges ofK are
similar. LetV be a set of vertices. A necessary requirement forV to define a maximum is that its
vertices are critical for a common direction. More specifically, we need them critical in a particular
direction that is determined byV . This direction,uV = (y − x)/||y − x||, is slightly different for
each type.

1. 1-legged case,V = {x, y}. Here,uV is the direction defined by the two points.
2. 2-legged case,V = {x, y1, y2}. Letting y be the orthogonal projection ofx onto the line
passing throughy1 andy2, uV is defined ify lies betweeny1 andy2.
3. 3-legged case,V = {x, y1, y2, y3}. Lettingy be the orthogonal projection ofx onto the plane
passing throughy1, y2, y3, uV is defined ify lies in the triangle they span.
4. 4-legged case,V = {x1, x2, y1, y2}. Lettingx andy be the feet of the shortest line segment
connecting the line passing throughx1 andx2 with the line passing throughy1 andy2, uV is
defined ifx lies betweenx1 andx2 andy lies betweeny1 andy2.
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PROJECTION FILTER.The directionuV defined by the points inV is defined and belongs to
the common intersection of critical regions,uV ∈

⋂

vi∈V Ri.

The cases in which some of the points inV lie on edges ofK are similar. Given the vertices and
edges, there is generically at most one choice of points and therefore at most one directionuV that
passes the Projection Filter. We generate these mixed sets by substituting edges connecting adjacent
vertices in vertex-only sets. For example, the four vertices of a4-legged case may give rise to a
mixed set containing two vertices and one edge, specifying a2-legged case, or a set of two edges,
specifying a1-legged case.

Note that the non-empty intersection of the critical regions is a necessary but not a sufficient con-
dition for the setV to pass the Projection Filter. In turn, passing the Projection Filter is a necessary
but not sufficient condition for the directionuV to be an elevation maximum. For that, the set needs
to satisfy another condition. To describe it, we writex0 for x.

PERSISTENCE FILTER.For each pairxi andyj in V , there is an arbitrarily small perturbation
u of uV such thatxi, yj is a birth-death pair for the height functionhu.

Algorithm.We compute the elevation maxima in three steps, starting with 2-, 3-, 4-tupletsV
whose points have pairwise overlapping critical regions. The next two steps narrow down the selec-
tion using first the Projection and the Persistence Filter.

STEP 0. Compute the critical regions of the vertices ofK. Letting the critical regions be the
nodes of the intersection graph,R, we draw an arc if the two regions have a non-empty com-
mon intersection. Fork = 2, 3, 4, let Qk be the set ofk-cliques, that is, thek-tuplets of nodes
connected by all

(

k
2

)

arcs. LetS0 =
⋃

k Qk.
STEP 1. Subject each pair, triplet, and quadruplet inS0 to the Projection Filter and letS1 ⊆ S0

be the collection that passes the filter.
STEP 2. Subject each pair, triplet, and quadruplet inS1 to the Persistence Filter and letS2 ⊆ S1

be the collection that passes the filter.

Step 1 and 2 are the same as in [Agarwal et al. 2006], so we focuson the implementation of Step 0
in which we compute the2-, 3-, 4-tuplets with pairwise intersecting critical regions.

Implementation.We break down Step 0 into three smaller steps, constructing the critical regions,
finding the intersecting pairs, and computing the cliques ofsize2, 3, 4 in the intersection graph.
Implementation is done with Perl, C and CGAL [CGAL ]. All computations are exact except esti-
mating the area and the bounding box of a critical region.

STEP 0.1. Recall that each critical region,Ri, is given by a closed polygon withmi edges on
the sphere. Those edges may intersect, and we take time O(m2

i ) to construct the decomposition
of the sphere [de Berg et al. 1997], including winding numbers for all subregions. ReflectingRi

centrally through the origin inR3, we get the region−Ri of inward normals along whichvi is
critical. Constructing all critical regions takes time proportional to

∑

i m2
i .

STEP 0.2. Most critical regions are small and simple. This suggests we use a bounding volume
approach to find the intersecting pairs. Specifically, we findan axis-parallel boxBi in R

3 that
encloses the regionRi onS

2 ⊆ R
3. We do this in two steps, first computing the smallest enclos-

ing sphere ofRi and second the smallest axis-aligned box that contains the sphere. Assuming
thatRi fits inside a hemisphere ofS

2, the smallest enclosing sphere of its vertices also encloses
Ri. To compensate for round-off errors, we increase the sphereslightly and compute the boxBi

to enclose the enlarged sphere. Computing the smallest enclosing sphere ofRi takes random-
ized time O(mi), see [Welzl 1991]. Given the boxesBi, we find the overlapping pairs using the
segment-tree streaming algorithm as described in [Zomorodian and Edelsbrunner 2002]. Writing
bi for the number of boxes that overlapBi, we have a total ofb = 1

2

∑

i bi of overlapping pairs.
The streaming algorithm takes time proportional ton log3

2 n + b to find them. For each pair of
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overlapping boxes, we check whether or not the critical region they enclose have a non-empty
intersection. Standard computational geometry methods allow us to determine whether or notRi

andRj intersect in time O(mij log mij), wheremij = m2
i + m2

j [de Berg et al. 1997].
STEP 0.3. The result of Steps 0.1 and 0.2 is a graphR. Its n nodes are the critical regions, and
its q arcs are the pairs of critical regions with non-empty overlap. Writing q = 1

2

∑

i qi, where
qi is the degree of thei-th node, we compute the cliques of size2, 3, 4 by checking all pairs and
triplets of neighbors. Finding the cliques that includeRi thus takes time O(

(

qi

1

)

+
(

qi

2

)

+
(

qi

3

)

).

Analysis.The time for Step 0 is dominated by the requirement for Step 0.2, which is some con-
stant timesTnew =

∑

i

(

qi

1

)

+
(

qi

2

)

+
(

qi

3

)

. The time for Step 1 is some constant times|S0| ≤ Tnew

and that for Step 2 is some constant timesT = |S1|n log2 n. This adds up to some constant
times Tnew + T , as compared toTold + T for the algorithm in [Agarwal et al. 2006], where
Told =

(

n
2

)

+
(

n
3

)

+
(

n
4

)

. Any improvement thus hinges on two properties, namely thatTold is
significantly larger thanTnew as well asT . We now show that the first property holds under grossly
simplifying assumptions, and we provide evidence in the next section that both properties hold for
data we encounter in practice.

CAP ASSUMPTION.The critical regions are spherical caps, all of the same size, and their
centers are uniformly distributed onS2.

Recall that the areas of the critical regions add up to the total absolute Gaussian curvature,
∑

i Area(Ri) = G(K). This sum is also half the area of the sphere times the averagenumber
of critical points of the height functions,G(K) = 2πcavg. It follows the area of a single critical re-
gion isArea(Ri) = 2πcavg/n, and because the cap is smaller than the flat disk of the same radius,
its radius squared isρ2 > 2cavg/n. Two caps overlap if and only if the center of one is contained
in the cap of radius2ρ around the center of the other. The area of the enlarged cap isless than four
timesArea(Ri). Hence the probability for a regionRj to overlapRi is Prob[Ri ∩ Rj 6= ∅] ≤
4Area(Ri)/4π = 2cavg/n. Since expectations are additive even if the events are not independent,
the expected number ofk-tuplets of neighbors isExp[

(

qi

k

)

] ≤
(

n−1
k

)

Area(Ri)
k/πk ≤ 2kck

avg/k!.
Adding the expectations fork = 1, 2, 3 and alli gives

Exp[Tnew] ≤ n · (2cavg + 2c2
avg +

4

3
c3
avg).

Recall thatcavg = G(K)/2π. It follows the average number ofk-tuplets of critical regions overlap-
ping a given one depends on the shape of the smooth surface andnot on the size of the approximating
triangulated surface. Similarly, the time for Step 0 depends on the shape and otherwise only linearly
on the number of vertices in the triangulation.

4. EXPERIMENTS

In this section, we present the results of some of our computational experiments. Running our soft-
ware on triangulated surfaces representing biomolecular structures, we gather statistics on critical
regions, pairwise intersections, and elevation maxima. Weuse these statistics as evidence that the
Cap Assumption is a reasonable approximation of the realityfor our data and that the new algorithm
runs about four orders of magnitude faster than the old one.

Input data.We use two types of triangulated surfaces approximating smooth models of biomolec-
ular structures all listed in Table I. The first type is the molecular skin which uses hyperboloid and
concave sphere patches to blend between the spheres that represent the atoms of a molecule [Edels-
brunner 1999]. An algorithm that constructs an approximating triangulated surface with guaranteed
bounds on two- and three-dimensional angles is described in[Cheng et al. 2001] and software writ-
ten by Ho-lun Cheng is available at [Biogeometry 2005]. For arepresentative of our data set, see
Figure 4. The second type is the molecular surfaces generated by Chimera [Petterson et al. 2004].
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The MSMS algorithm used in Chimera [Sanner and Olson 1996] constructs a triangulation of the
solvent excluded surfaces initially computed by Connolly [Connolly 1983].

Fig. 4: Representative of our data sets, a triangulated surface approximating a peptide within the 1BRS protein.

Critical point statistics.For each data set, we estimate the minimum, average, and maximum
number of critical points of the height functions, which we sample at one thousand directions chosen
from S

2. The results are shown in Table II left. Comparing the estimated with the actual average,
which we get usingcavg = G(K)/2π =

∑

i Area(Ri)/2π, we see that the error is small. For
example, for data set4, the estimatedcavg is 29.92 while the actual average is29.94. Since all our
skin triangulations approximate a smooth surface to about the same accuracy, for different surfaces,
the average number of critical points scales linearly withn. Indeed,cavg/n is between0.003 and
0.005 for all our skin data sets.

As mentioned earlier, each vertex ofK is critical for a region of directions, in fact two antipodal
regions. Most of these regions are simple, that is, defined bya polygon without self-intersections. As
shown in the last column in Table II, the percentage of non-simple polygons is indeed rather small.
Besides checking for self-intersections, we measure the complexity of a critical region by counting
the triangles we need to triangulate it on the sphere. The minimum, average, and maximum of this
number are given in the right half of Table II.

Intersection statistics.The following statistics were collected for the finer molecular skin surfaces
only. Recall that we compute the pairs of intersecting critical regions in two steps, first finding the
intersections among the bounding boxes and second among thecritical regions. Table III gives the
statistics for both.

Table I: The triangulated surfaces used in our computational experiments together with their numbers of ver-
tices, edges, and triangles. Top: molecular skin surfaces.Bottom: molecular Chimera surfaces.

id name n m ℓ

0 1BRS-5to6 1,370 4,104 2,736
1 1CLU-DBG 3,149 9,441 6,294
2 1BRS-A-5to10 4,248 12,738 8,492
3 1BRS-A-30to40 6,114 18,336 12,224
4 1BRS-A-17to25 7,799 23,391 15,594
5 1BRS-A-5to10 836 2,502 1,668
6 1BRS-A-30to40 1,372 4,110 2,740
7 1BRS-A-17to25 1,595 4,119 3,186

Given a pair of intersecting boxes, we test whether or not thecorresponding critical regions
intersect by checking the overlap among the triangles in their triangulations. The average number of
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Table II: Left: estimated minimum, average, and maximum of the number of critical points of the height
functions. Right: minimum, average, and maximum of the number of triangles needed to triangulate the critical
regions. Top: molecular skin surfaces. Bottom: molecular Chimera surfaces.

id cmin cavg cmax
cavg

n
rmin ravg rmax %

0 2 6.41 16 0.0047 2 3.99 8 12
1 2 13.50 44 0.0043 2 4.01 12 15
2 6 17.07 34 0.0040 2 4.01 10 17
3 10 25.14 46 0.0041 2 4.01 10 16
4 12 29.92 64 0.0038 2 4.01 10 20
5 6 16.01 32 0.0192 2 4.08 11 29
6 10 27.13 46 0.0198 2 4.13 15 30
7 14 31.02 54 0.0194 2 4.09 10 33

Table III: Left: the minimum, average, and maximum number ofboxes intersecting a given box. Right: the
minimum, average, and maximum number of critical regions intersection a given critical region.

id bmin bavg bmax
bavg

n
qmin qavg qmax

qavg

n

0 12 94 207 0.069 9 40 97 0.029
1 27 204 626 0.065 11 82 250 0.026
2 52 236 556 0.056 20 92 201 0.022
3 95 243 859 0.040 29 134 330 0.022
4 99 423 1,276 0.054 35 160 543 0.021

Table IV: Left: the number of cliques before and after the Projection Filter and the Persistence Filter. Right:
dominant terms in the running time of the old and the new algorithms.

id |S0|/103 |S1| Told/1010 Tnew/106 T/106

0 1,608 2,373 15 24 33
1 32,119 20,521 410 508 749
2 43,572 17,175 1,356 720 882
3 198,023 56,797 5,820 3,327 4,368
4 433,116 94,300 15,411 7,354 9,508

triangle-triangle checks is consistently between11 and12, which justifies the use of this brute-force
over a more sophisticated method.

Similar to the number of critical points, we expect that the average number of boxes intersecting a
given box and the average number of critical regions intersecting a given critical region scale linearly
with n. Indeed,bavg/n is between0.04 and0.07 andqavg/n is between0.02 and0.03 for all our skin
data sets. The latter is about six times the average number ofcritical points; compare this with the
factor two we got under the Cap Assumption. The observed relation between these two quantities is
only about three times as loose, which is reasonable considering that real data necessarily violates
the Cap Assumption to some extent (due to irregular shapes and different orientations of the critical
regions). The new algorithm starts withTnew tuplets. A back-of-the-envelope calculation suggests
thatTnew is roughlyn

(

qavg

3

)

, which is roughly a factor of ten thousand smaller than
(

n
4

)

, independent
of the value ofn. We thus might expect the new algorithm runs about four orders of magnitude faster
than the old one.

Running time.Recall thatS0 is the set of cliques of size2, 3, or 4 in the intersection graph of
the critical regions. The subsetS1 ⊆ S0 contains all cliques that pass the Projection Filter, and the
subsetS2 ⊆ S1 contains all cliques that also pass the Persistence Filter.The sizes of the first two
sets are given in the left of Table IV.

Most relevant to the running time of the algorithms for computing elevation maxima isS1. Indeed,
both the old and the new algorithm start with sets of2-, 3-, and4-tuplets that contain the cliques
in S0 and much more. As shown in Table IV on the right, the overestimate by the old algorithm
is about ten thousand times that of the new algorithm. Furthermore, in the new algorithm, the time
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for Step 0 and Steps 1 and 2 is fairly balanced. This implies a speed-up of about four orders of
magnitude, which is consistent with back-of-the-envelopecalculation mentioned above.

5. CONCLUSION

The main result of this paper is a new algorithm for computingall elevation maxima of a triangulated
surface inR

3. We provide experimental evidence that for practical data,the new algorithm runs
about four orders of magnitude faster than the old one. The improvement is achieved by making
the running time dependent on the total absolute Gaussian curvature of the surface and to a lesser
extent on the number of vertices in the approximating triangulation. Now, the total absolute Gaussian
curvature has different definitions for smooth and for piecewise linear surfaces. It appears thatG(K)
approachesG(M) asK is refined and forms a progressively more accurate approximation of the
smooth surfaceM. However, we do not have a proof and we do not know under what conditions
this is true.

There is room for performance improvement, one promising direction is to parallelize the com-
putations. It would also be interesting to sample the elevation maxima if this can be done faster
than computing all. For example, is it possible to compute all elevation maxima larger than some
threshold without spending the time to determine (and discard) the elevation maxima that do not
exceed that threshold?

REFERENCES

AGARWAL , P. K., EDELSBRUNNER, H., HARER, J., AND WANG, Y. 2006. Extreme elevation on a2-manifold. Discrete
Comput. Geom. 36, 553–572.

ALBOUL , L. AND ECHEVERRIA., G. 2005. Polyhedral Gauss maps and curvature characterization of triangle meshes.
Lecture Notes in Computer Science 3605, 14–33.

BANCHOFF, T. F. 1970. Critical points and curvature for embedded polyhedral surfaces.Amer. Math. Monthly 77, 475–485.
BIOGEOMETRY. 2005. The biogeometry project. http://biogeometry.duke.edu/.
CAZALS , F., CHAZAL , F., AND LEWINER., T. 2003. Molecular shape analysis based upon the Morse-Smale complex and

the connolly function.Proc. 19th Ann. Sympos. Comput. Geom., 351–360.
CGAL. Computational geometry algorithms library. http://www.cgal.org.
CHENG, H. L., DEY, T. K., EDELSBRUNNER, H., AND SULLIVAN , J. 2001. Dynamic skin triangulation.Discrete Comput.

Geom. 25, 525–568.
COHEN-STEINER, D., EDELSBRUNNER, H., AND HARER., J. 2007. Stability of persistence diagrams.Discrete Comput.

Geom. 37, 103–120.
COHEN-STEINER, D., EDELSBRUNNER, H., AND HARER, J. 2009. Extending persistence using Poincaré and Lefschetz
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