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1. INTRODUCTION

This paper introduces a new algorithm for computing all lonaxima of the elevation function
defined on a&-manifold embedded ifR3. This function has been introduced by Agarwal et al.
[Agarwal et al. 2006] for the purpose of improving the préidic of protein interaction through
docking. The approach identifies protrusions (knobs) awniiea (wells) on the two surfaces and
matches them up. This idea goes back to Connolly [Conn®@§61who used a function that maps
each point of the protein surface to the fraction of a fixeditrasphere centered at the point that lies
outside the protein volume. As shown by Cazals et al. [Catadd. 2003], this function resembles
the mean curvature at the pointin the limit, when the radppse@aches zero. The fixed radius makes
a choice of the scale the function reflects.

The elevation function introduced in [Agarwal et al. 200éh&s the same purpose, but in con-
trast to Connolly’s function, the elevation is scale indegent and marks small as well as large
protrusions of varying shape and direction. Its constaucis based on the persistence structure of
the2-parameter family of height functions, as explained in tagtisection. The task at hand is then
the computation of all local maxima for two proteins and tise of the type, size, and location of
the marked topographic features to identify promising f@ss$ for interaction. The experimental
study in [Wang et al. 2005] shows that this approach is gffedn finding initial positions that can
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39:2 B. Wang et al.

then be refined by local optimization. The computationaltystrexpensive step in this study is the
determination of the elevation maxima. Using the algorithrfAgarwal et al. 2006], the running
time for a triangulate@-manifold withm edges is proportional ta® log, m. Since typical proteins
give rise to surfaces with hundreds of thousands of edgesjuimtic dependence on is a serious
drawback that limits the practical deployment of the method

In this paper, we give a new algorithm that is faster for wgialated surfaces approximating
smooth surfaces that we typically find in practice. They draracterized by having dihedral an-
gles at edges that are close to half the full angle (moleakar surface [Edelsbrunner 1999]).
We relate the running time of our algorithm to the total absoGaussian curvature of the surface
and this way determine that we can expect roughly a ten-grali®ld improvement over the run-
ning time of the old algorithm. We note, however, that we offe improvement in the worst-case
performance.

Since we incorporate the surface complexity in terms ofl mib@olute Gaussian curvature into
the analysis of the algorithm, it is worth mentioning thatrénis a large literature on the notion of
curvatures for triangulated surfaces. We refer to [Banfct@?0] and [Morvan 2008; Cohen-Steiner
and Morvan 2006] for details.

Outline. In Section 2, we introduce the geometric and topologicakemund needed to under-
stand the elevation function. We do this in two steps, disicigsthe mathematically cleaner smooth
case in Section 2.1 and the computationally more usefukpiese linear (PL) case in Section 2.2.
In Section 3, we present the algorithm for computing all afn maxima, along with some im-
plementation details and the analysis. In Section 4, weeptesur experimental results, employing
our software to compute elevation maxima for a number oftridated protein surfaces. We gather
statistics on critical regions, pairwise intersectioms] alevation maxima. We use these statistics as
evidence that our assumption is a reasonable approximattithe reality for our data and that the
new algorithm runs about four orders of magnitude fasten tha old one.

2. PRELIMINARIES

In this section, we introduce the necessary backgroundfderstanding the elevation function and
our algorithm for computing its local maxima. We begin wittetsmooth case, which we use as
guiding intuition in our subsequent treatment of the pigsevinear case.

2.1. The Smooth Case

We begin with brief introduction of Morse functions and pstent homology, then use these con-
cepts to define the elevation function. Finally, we dischesGaussian curvature of tBemanifold.

Morse functionsThe class of smooth, real-valued functions is a challengbject that simplifies
considerably if we add genericity as a requirement. Letfingl — R be a smooth function on a
2-manifold, a pointc € M is critical if the derivative atr equals zero. The value gfat a critical
pointis acritical value. All other points areegular pointsand all other values aregular valueof
f. A critical point isnon-degeneratié the Hessian, that is, the matrix of second partial derrest
at the point is invertible. In this case, the matrix has two-zero eigenvalues,; # A2, and the
indexof the non-degenerate critical point is the number of nggatigenvalues. A non-degenerate
critical point of index0 is aminimum of index1 is asaddle and of index2 is a maximum see
Figure 1. Finally,f is aMorse functionif all its critical points are non-degenerate and its values
at the critical points are distinct. Given a valuee R, the correspondingublevel setonsists
of all points with value at most, M, = f~!(—o0, a]. Sweeping the manifold in the direction of
increasing function value, we getlgparameter family of sublevel sets. The topology of the vl
set changes precisely when the sweep passes through algiiot. Lett; < ¢t < ... < ¢, be the
ordered sequence of critical values antb = sy < s1 < ... < s, = 00 @ sequence of interleaved
values, that iss; < t;11 < s;+1, for all . By assumption off being Morse, we get from the
sublevel set at; to the one at;,, by passing exactly one non-degenerate critical point. Hlaage

can be characterized in terms of the dimension of the hanelattach to go fron,, to M, ,.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Adgle 39, Publication date: March 2010.



Computing Elevation Maxima by Searching the Gauss Sphere 39:3

> </

Fig. 1: From left to right: a minimum, a saddle, and a maximum.

For index0, we add &-handle, that is, an isolated point which we then thickendds&. For index
1, we add al-handle, that is an interval attached to the boundary of tivéesel set at its endpoints
which we then thicken to a strip. Finally, for indexwe add &-handle, that is, a disk attached to
the boundary of the sublevel set along its boundary circle.

Persistent homology.ooking at the homology groups [Munkres 1984] of the seqeesfcsub-
level sets, we use the concept of persistence to measurerthth$ of the intervals along which
homology classes exist [Edelsbrunner et al. 2002]. Sinbkesgal sets between two contiguous crit-
ical values are indistinguishable, we may consider thesfisgiquence

=My CM; C...CM, =M,

where we simplify notation by settinyl; = M;,. Fixing a dimensiorp (p > 0), each sublevel
set has @-th homology group and the sequence is connected from lefhb by homomorphisms
induced by inclusion, which we denote #$’ : H,(M;) — H,(M,). We have ebirth at M if
the mapf,~"* is not surjective, and we havedeathat M if the map fJ ="/ is not injective.
Furthermore, the death &; corresponds to the birth &f; if there is homology class in H,, (M)
that is not in the image of,~'*, its image inH, (M, _,) is still not in the image off,"/~",
but its image inH, (M) is in the image off,~ 7. We call f(t;) — f(t;) the persistenceof this
birth-death pair. As explained in [Cohen-Steiner et al. Z40this method gives a pairing between
births and deaths that has many interesting propertie$ Heath corresponds to a unique birth
but not every birth corresponds to a death. To remedy thig@hming, we extend the sequence
of homology groups for extended persistence as describgebinen-Steiner et al. 2009]. Writing
M® = f~1[a, co) for the superlevel sedf a, we go up with absolute homology groups of sublevel
sets, as before, and we come back down with relative homagomgyps,

0=H,(Mp) - H,(M3) — ... = H,(M,)
— Hy(M,M™) — ... — H,(M,M°) =0,

where we simplify notation by settimgl! = M*:, M° = M andM" = (). Now every birth corre-
sponds to a death. In fact, we have two events at every dnitaiat, one going up and one coming
down, but duality implies that we just get each pair twices fgohen-Steiner et al. 2009]. As a
consequence of duality, the birth-death pairs we get fomgative function- f, are the same.
This turns out to be important in the definition of the elevatiunction.

For2-manifolds, there is a more elementary way to introducergled persistence using the Reeb
graph of the function. Instead of giving details, we refd#tgarwal et al. 2006] and we mention that
this approach leads to a fast algorithm. It consists of canshg the Reeb graph in a sweep [Cole-
McLaughlin et al. 2004] followed by deconstructing it in dhner sweep using cutting and linking
trees [Agarwal et al. 2006; Georgiadis et al. 2006]. We rus #igorithm for a piecewise linear
function on a triangulated-manifold. Lettingm be the number of edges in the triangulation, as
before, the running time computing the extended persistéara given height function is bounded
by some constant times log, m.
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Elevation.To define elevation, we assume thenanifold M is smoothly embedded iR3. For
a directionu € S?, we consider the height functial, : M — R defined byh, (z) = (z,u).
Generically),, is a Morse function, but for some direction is not, either because a critical point
is degenerate or because two or more critical points mapetedme height value. Considering the
entire sphere of directions, we geR-garameter family of height functions.

For eachu € S?, we pair up births with deaths using the extended sequenwenblogy groups
defined by the sublevel and the superlevel sets 0fln the Morse function case, each birth-death
pair identifies two critical points; andy, one giving birth and the other giving death, and we define
the elevation at these two points as their persistence oivagntly, the absolute height difference
in the directionu, E(z) = E(y) = |hu(x) — hy(y)|. Each point ofM is critical in two directions,

u and—u, and is thus assigned two values, the absolute heighteliféerto the paired critical point
in the two directions. Sincké_,, = —h,, the paired point is the same so we get a unique value at
every point. This is thelevation functiorof the 2-manifold, £ : Ml — R.

To get a feeling for this function, we consider a protrusiamiountain) of the&-manifold. To
measure the height of the mountain, we measure from the top,do the first saddle that separates
it from an even higher mountain. We can do this in variousdio®s, so we do it to maximize the
height. This might be in a direction along which the first dadd ambiguous. Perhaps there are
three such saddles at the same height value in this diresiimilar to the third type in Figure 2 in
which we have a saddle with the same height difference tetimi@ima. In this direction, we have
two violations of genericity required for Morse functiobgcause there are three critical points with
the same height value. Indeed, local maximaFofend to arise along non-generic directions. An
exception is thé-legged maximum defined by only two critical points (with deg between them).
Besides this case, we have 2-legged maxima defined by thitmalgpoints, and3- and4-legged
maxima defined by four critical points each; see Figure 2.

Y3 Y2
yO yl % 2 yl

Fig. 2: The four generic types of local maxima of the elevafienction. From left to right: thé-, 2-, 3- and
4-legged maximum.

Curvature.We will later discover that the running time of our algorittfor finding all local
maxima relates to the total absolute curvature of the serfée introduce this concept using the
Gauss mapN : M — S?, defined by mapping a poiat of M to the outer unit normaly (z), at
x. AssumingM is smoothly embedded iR?, the Gauss map is continuous and surjective but not
necessarily injective. Indeed, the preimage.af S? consists of all critical points of,, with outer
normalu, as opposed te-u. The multiplicity of N at «w and —u together is thus the number of
critical points ofh,,. We will see shortly that the total coverageSsf is exactly the total absolute
Gaussian curvature &fL.

Letting = be a point ofMl andr > 0 a radius, we define thebsolute Gaussian curvatueg z: by
taking the limit of a fraction of areag(x) = lim,_.¢ %&3)), whereA,. is the neighborhood
of points at distance at mostfrom 2 on M. Thetotal absolute Gaussian curvatuigthe integral

of the local quantity(M) = [ _,, g(x)dz. It should be clear tha® (M) is the area of the total
coverage ofs?, taking multiplicity into account. For a given directiohgtmultiplicity is| N~ (u)].
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Hence,G(M) = [, _c. [N ™" (u)|du. Writing ¢,y for the average number of critical points of the
height functions, we thus have the total absolute Gaussiasature equal to one half times the area
of the sphere times that averaggM) = 2rc,,.. This integral geometry formula for the curvature
will come handy in the analysis of our algorithm. For moreoimfiation on the integral geometry

formulation of curvature see Santal6 [Santalo 2004].

2.2. The PL Case

We do all computations on a piecewise linear approximatfah@smoott2-manifold. To transport
the smooth concepts to the PL category, we think of the PlLasar&s being approximated by a
smooth surface. Tightening the approximation, we get @seamd take the limit. This is the general
intuition we have in the background guiding the formulatidmefinitions in the PL case.

Triangulated surfacesA triangulation of a 2-manifold M is a simplicial complex X, whose
underlying space is homeomorphicltfx | K| ~ M. It consists of vertices, edges, and triangles. To
put K into R?, it suffices to map each vertex to a point; the edges and tearage the convex hulls
(of the images) of their vertices. This iggaometric realizatioiif the triangles meet in shared edges
and vertices but not in any other point sets. We call the testriangulated surfaceimplicitly
assuming that it is geometrically realizedI&¥. The star of a vertex is the set of simplices that
contain it, and thdink consists of all faces of simplices in the star that do not gl the star,
Stv; ={oc € K| v, € o}; Lkv; ={r Co € Stv; | 7 & Stv;}. APL functionf : |[K| — R
is determined by its values at the vertices. Assumfiig) # f(v;) wheneveri # j, we define
thelower link as the subset of simplices in the link wheiés smaller than at the vertekk _v; =
{0 € Lkv; | x € 0 = f(z) < f(v;)}. Finally, v; is regular if its lower link is contractible, and
critical, otherwise. Sincé& triangulates @-manifold, every link is a circle and the only contractible
closed subsets are points and closed paths. The lower liakegfular vertex is thus a single vertex
or a path connecting two vertices.rAinimumis characterized b{.k_v; = () and amaximumby
Lk_v; = Lkuv;. In the remaining case, the lower link consistscof 1 > 2 paths and we call; a
k-fold saddle or asimple saddléf k& = 1.

In contrast to the smooth case, it is not possible to tukAf@ld into a simple saddle by a small
perturbation. We therefore treat them directly, withowtuetion to simple cases. As an example,
consider the Euler-Poincaré Theorem which relates thelogy of the2-manifold with the critical
point structure of its functions. Denote thelexof a simple critical point byndex (v;), recalling
thatindex (v;) = 0if v; is @ minimum,1 if v; is a simple saddl& if v; is @ maximum. Assuming
K is connected, it is characterized by gsnusand we have2 — 2 - genus = n — m + [ =
> (—1)index(v) “wheren, m, | are the number of vertices, edges, triangledsirand ak-fold
saddle is represented tysimple saddles in the sum.

Critical regions. Another significant complication we encounter in the PL dagkat a vertex is
generally critical for an entire region of directions. lie¢t h,, : |[K| — R be the height function
defined byh,, (z) = (z, u), thecritical region of a vertex is the closure of the set of directions along
whichw; is critical,

R; = cl{u € §? | v; is critical point ofh,, }.

We construct it from the closed polygonal curve defined bystaeofv;. Specifically, we map each
triangle in the star to its outer normal direction, a pointS¥n and we connect the directions of
two neighboring triangles by the shorter of the two conmergjireat-circle arcs. This gives a closed
polygonal curver;, which may or may not have self-intersections. To cope withformer, more
complicated case, we orienf and define thevinding numbenf a directionu € S? not on the curve

as the number of times the curve goes around the directeddifieed byu. Viewed alongu, we
count a counterclockwise turn ad and a clockwise turn as1. Taking the sum we get the winding
number, which are denoted asu, 7; ). For a detailed study on the polyhedron Gauss map, refer to
[Alboul and Echeverria. 2005]. Examples are shown in Figuréhe winding number of. relates

to the type of the vertex in the height function definedibySpecifically, ifv; is regular then the
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winding number ofu is 0, if v; is a simple critical point then the winding number(is1)mdex (vi),
and ifv; is ak-fold saddle then the winding number-sk.

Curvature.Thinking of a vertex as a tiny region in an approximating sthaurface, we define
its Gaussian curvaturas the area of its critical region weighted by the winding bem More
useful in this paper is itabsolute Gaussian curvatudefined as the area weighted by the absolute
winding numberg(v;) = [, _c. lw(u,;)|du. Thetotal absolute Gaussian curvature then the
sum over all vertices(7(K) = >, g(v;). Equivalently, it is the area of the sphere times half the
average number of critical vertices, taking multiplicitiato account, as usual. The average is taken
over all height functions, and we count half the criticaltieas because; is critical foru € S? as

YNl 1D
y A8 S

Fig. 3: Left: for a direction: with winding number+1 the corresponding vertex appears either as a maximum
or a minimum. Right: for winding number 1 we have a simple saddle and feR we have &-fold or monkey
saddle for the height function defined by the correspondiregtion.

3. COMPUTATION

In this section, we describe how we compute the elevationmmeafor a given triangulated surface
in R3. The algorithm is straightforward and the only new insightri the analysis, relating the
running time with the total absolute Gaussian curvatur@efsurface.

Types and filtersRecall that there are four types of elevation maxima for aegersmooth sur-
face, as illustrated in Figure 2. We have the same four casesdeneric triangulated surfaéein
R3. Each maximum is given by a set of two, three, or four points.ddhsider the case in which all
these points are vertices &f. The cases in which some of the pointslinlies on edges ofS are
similar. LetV be a set of vertices. A necessary requiremenifdo define a maximum is that its
vertices are critical for a common direction. More specificave need them critical in a particular
direction that is determined biy. This directionuy = (y — z)/||ly — ||, is slightly different for
each type.

1. 1-legged casey = {z,y}. Here,uy is the direction defined by the two points.

2. 2-legged caseV = {z,y1,y2}. Lettingy be the orthogonal projection of onto the line
passing throughy; andys., uy is defined ify lies betweeny; andys.

3. 3-legged casdy = {z, y1,y2,y3}. Lettingy be the orthogonal projection efonto the plane
passing through, 2, ys3, uy is defined ify lies in the triangle they span.

4. 4-legged casely = {x1,x2,y1,y2}. Lettingx andy be the feet of the shortest line segment
connecting the line passing through and x> with the line passing througly, andys, uy is
defined ifz lies betweerr; andzy andy lies betweeny; andys.
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PROJECTION FILTERThe directionuy defined by the points iV is defined and belongs to
the common intersection of critical regions; € ﬂvie\/ R;.

The cases in which some of the pointsinie on edges of{ are similar. Given the vertices and
edges, there is generically at most one choice of pointstaéfiore at most one directian, that
passes the Projection Filter. We generate these mixedysstgitituting edges connecting adjacent
vertices in vertex-only sets. For example, the four vestioka4-legged case may give rise to a
mixed set containing two vertices and one edge, specifyidegged case, or a set of two edges,
specifying al-legged case.

Note that the non-empty intersection of the critical regia necessary but not a sufficient con-
dition for the setl” to pass the Projection Filter. In turn, passing the Prajecilter is a necessary
but not sufficient condition for the directian, to be an elevation maximum. For that, the set needs
to satisfy another condition. To describe it, we writefor .

PERSISTENCE FILTEREor each pair; andy; in V, there is an arbitrarily small perturbation
u of uy such thate;, y; is a birth-death pair for the height functian.

Algorithm. We compute the elevation maxima in three steps, startinly 2vit3-, 4-tupletsV’
whose points have pairwise overlapping critical regiorie Mext two steps narrow down the selec-
tion using first the Projection and the Persistence Filter.

Step 0. Compute the critical regions of the vertices/of Letting the critical regions be the
nodes of the intersection grapR, we draw an arc if the two regions have a non-empty com-
mon intersection. Fok = 2, 3,4, let @, be the set ok-cliques, that is, thé&-tuplets of nodes
connected by al(’g) arcs. LetSy = {J,, Q-

STteP 1. Subject each pair, triplet, and quadruplefinto the Projection Filter and lef; C Sy

be the collection that passes the filter.

STEP 2. Subject each pair, triplet, and quadruplesinto the Persistence Filter and Igf C S,

be the collection that passes the filter.

Step 1 and 2 are the same as in [Agarwal et al. 2006], so we fottie implementation of Step 0
in which we compute the-, 3-, 4-tuplets with pairwise intersecting critical regions.

ImplementationWe break down Step 0 into three smaller steps, construdiangritical regions,
finding the intersecting pairs, and computing the cliquesioé2, 3, 4 in the intersection graph.
Implementation is done with Perl, C and CGAL [CGAL ]. All conmations are exact except esti-
mating the area and the bounding box of a critical region.

STeP0.1. Recall that each critical regioR;, is given by a closed polygon with; edges on
the sphere. Those edges may intersect, and we take tjmg)Qo construct the decomposition
of the sphere [de Berg et al. 1997], including winding nunster all subregions. Reflecting;
centrally through the origin ifR3, we get the region- R; of inward normals along which; is
critical. Constructing all critical regions takes time pootional to), m?.

STEP0.2. Most critical regions are small and simple. This sutge® use a bounding volume
approach to find the intersecting pairs. Specifically, we fincaxis-parallel box3; in R? that
encloses the regioR; onS? C R3. We do this in two steps, first computing the smallest enclos-
ing sphere of?; and second the smallest axis-aligned box that containspihers. Assuming
that R; fits inside a hemisphere 6f, the smallest enclosing sphere of its vertices also englose
R,. To compensate for round-off errors, we increase the sygigiely and compute the bak;

to enclose the enlarged sphere. Computing the smallestsnglsphere of?; takes random-
ized time Qm; ), see [Welzl 1991]. Given the boxé, we find the overlapping pairs using the
segment-tree streaming algorithm as described in [Zonianaxthd Edelsbrunner 2002]. Writing

b; for the number of boxes that overld}, we have a total of = % >, b; of overlapping pairs.

The streaming algorithm takes time proportionahtbgg n + b to find them. For each pair of
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overlapping boxes, we check whether or not the criticalaeghey enclose have a non-empty
intersection. Standard computational geometry methdolw ais to determine whether or n&}
andR; intersect in time Qm;; log m;;), wherem;; = m? +m7 [de Berg et al. 1997].
STeEP0.3. The result of Steps 0.1 and 0.2 is a gréphts n nodes are the critical regions, and
its ¢ arcs are the pairs of critical regions with non-empty oyerl&'riting ¢ = % > ¢, where

q: is the degree of theth node, we compute the cliques of size3, 4 by checking all pairs and

triplets of neighbors. Finding the cliques that incluglethus takes time Q%) + (%) + (%)).

Analysis.The time for Step 0 is dominated by the requirement for St@pwhich is some con-
stant timesiew = >, (%) + (%) + (%). The time for Step 1 is some constant timé§| < Tc.
and that for Step 2 is some constant tinfes= |S;|nlog, n. This adds up to some constant
times Tyew + 1, @as compared td,q + T for the algorithm in [Agarwal et al. 2006], where
Tola = (g) + (g) + (Z) Any improvement thus hinges on two properties, namely That is
significantly larger tha,,.., as well asl". We now show that the first property holds under grossly
simplifying assumptions, and we provide evidence in the segtion that both properties hold for

data we encounter in practice.

CAP ASSUMPTIONThe critical regions are spherical caps, all of the same, sind their
centers are uniformly distributed &3.

Recall that the areas of the critical regions add up to thal @mibsolute Gaussian curvature,
> Area(R;) = G(K). This sum is also half the area of the sphere times the averager
of critical points of the height function&; (K) = 2mc,y,. It follows the area of a single critical re-
gion is Area(R;) = 2mcavg/n, and because the cap is smaller than the flat disk of the sainsya
its radius squared i8? > 2c.y/n. Two caps overlap if and only if the center of one is contained
in the cap of radiugp around the center of the other. The area of the enlarged dagsishan four
times Area(R;). Hence the probability for a regioR; to overlapR; is Prob[R; N R; # (] <
4Area(R;)/4m = 2cavg /1. SinCe expectations are additive even if the events arendependent,
the expected number éftuplets of neighbors iExp[(%)] < (", ") Area(R;)* /m* < 2kck /Kl
Adding the expectations fdr = 1, 2, 3 and alli gives

4
Exp[Thew] < n - (2cavg + 2c§vg + gcivg).
Recall thatc,,, = G(K)/2w. It follows the average number éftuplets of critical regions overlap-
ping a given one depends on the shape of the smooth surfac@tonlthe size of the approximating
triangulated surface. Similarly, the time for Step 0 depgamdthe shape and otherwise only linearly
on the number of vertices in the triangulation.

4. EXPERIMENTS

In this section, we present the results of some of our contiputa experiments. Running our soft-
ware on triangulated surfaces representing biomolectractsres, we gather statistics on critical
regions, pairwise intersections, and elevation maximaugéethese statistics as evidence that the
Cap Assumption is a reasonable approximation of the rfalityur data and that the new algorithm
runs about four orders of magnitude faster than the old one.

Input data.We use two types of triangulated surfaces approximating$immodels of biomolec-
ular structures all listed in Table I. The first type is the ewllar skin which uses hyperboloid and
concave sphere patches to blend between the spheres tiesmefthe atoms of a molecule [Edels-
brunner 1999]. An algorithm that constructs an approxinggttiiangulated surface with guaranteed
bounds on two- and three-dimensional angles is describgghieng et al. 2001] and software writ-
ten by Ho-lun Cheng is available at [Biogeometry 2005]. Foeparesentative of our data set, see
Figure 4. The second type is the molecular surfaces geuebgt€himera [Petterson et al. 2004].

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Adle 39, Publication date: March 2010.



Computing Elevation Maxima by Searching the Gauss Sphere 39:9

The MSMS algorithm used in Chimera [Sanner and Olson 1996%tcocts a triangulation of the
solvent excluded surfaces initially computed by Connalipfinolly 1983].

Fig. 4: Representative of our data sets, a triangulatedsaidpproximating a peptide within the 1BRS protein.

Critical point statistics.For each data set, we estimate the minimum, average, andrnuaxi
number of critical points of the height functions, which veergle at one thousand directions chosen
from S2. The results are shown in Table Il left. Comparing the es@aavith the actual average,
which we get using:.., = G(K)/2rm = ), Area(R;)/2m, we see that the error is small. For
example, for data seft, the estimated,., is 29.92 while the actual average £9.94. Since all our
skin triangulations approximate a smooth surface to alheusame accuracy, for different surfaces,
the average number of critical points scales linearly withndeed,c../n is betweerd.003 and
0.005 for all our skin data sets.

As mentioned earlier, each vertex &fis critical for a region of directions, in fact two antipodal
regions. Most of these regions are simple, that is, defineddmlygon without self-intersections. As
shown in the last column in Table Il, the percentage of nomp$e polygons is indeed rather small.
Besides checking for self-intersections, we measure thgptxity of a critical region by counting
the triangles we need to triangulate it on the sphere. Thémim, average, and maximum of this
number are given in the right half of Table II.

Intersection statisticsThe following statistics were collected for the finer moliecskin surfaces
only. Recall that we compute the pairs of intersecting@ltregions in two steps, first finding the
intersections among the bounding boxes and second amowegtibal regions. Table Il gives the
statistics for both.

Table I: The triangulated surfaces used in our computaltiexgeriments together with their numbers of ver-
tices, edges, and triangles. Top: molecular skin surfaetom: molecular Chimera surfaces.

i name | n | m | /
1BRS-5t06 1,370 4,104 2,736
1CLU-DBG 3,149 9,441 6,294

1BRS-A-5t010 4,248 | 12,738 | 8,492
1BRS-A-30t040|| 6,114 | 18,336 | 12,224
1BRS-A-17t025|| 7,799 | 23,391 | 15,594
1BRS-A-5t010 836 2,502 | 1,668
1BRS-A-30t040|| 1,372 | 4,110 | 2,740
1BRS-A-17t025| 1,595 | 4,119 | 3,186

~N~No g~ wNE Ol

Given a pair of intersecting boxes, we test whether or notctireesponding critical regions
intersect by checking the overlap among the triangles iin thengulations. The average number of
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Table II: Left: estimated minimum, average, and maximumhaf humber of critical points of the height
functions. Right: minimum, average, and maximum of the neinab triangles needed to triangulate the critical

regions. Top: molecular skin surfaces. Bottom: moleculaint@ra surfaces.

id H Cmin Cavg Cmax ‘ Covg H Tmin Tavg Tmax | %
0 2 6.41 16| 0.0047 2 399 8| 12
1 2 13.50 44| 0.0043 2 401 12| 15
2 6 17.07 34| 0.0040 2 401 10| 17
3 10 25.14 46| 0.0041 2 401 10| 16
4 12 29.92 64| 0.0038 2 401 10| 20
5 6 16.01 32| 0.0192 2 408 11| 29
6 10 27.13 46| 0.0198 2 413 15| 30
7 14 31.02 54| 0.0194 2  4.09 10| 33

B. Wang et al.

Table Ill: Left: the minimum, average, and maximum numbeboxes intersecting a given box. Right: the
minimum, average, and maximum number of critical regiomsrgection a given critical region.
id |

bavg davg

bmax ‘ Gmax ‘

bmin bavg n | dmin Qavg )
0 12 94 207| 0.069 9 40 97 | 0.029
1 27 204 626| 0.065 11 82 250| 0.026
2 52 236 556 | 0.056 20 92 201| 0.022
3 95 243 859| 0.040 29 134 330| 0.022
4 99 423 1,276| 0.054 35 160 543| 0.021

Table 1V: Left: the number of cliques before and after thej&ation Filter and the Persistence Filter. Right:
dominant terms in the running time of the old and the new dlgms.

id || [So0l/10®  |S1| || To1a/10"°  Thew/10°  T/10°

0 1,608 2,373 15 24 33
1 32,119 20,521 410 508 749
2 43,572 17,175 1,356 720 882
3 198,023 56,797 5,820 3,327 4,368
4 433,116 94,300 15,411 7,354 9,508

triangle-triangle checks is consistently betweérmnd12, which justifies the use of this brute-force
over a more sophisticated method.

Similar to the number of critical points, we expect that therage number of boxes intersecting a
given box and the average number of critical regions intgirsg a given critical region scale linearly
with n. Indeedp,,/n is betweerd.04 and0.07 andqa., /n is betweer).02 and0.03 for all our skin
data sets. The latter is about six times the average numlmegitiofl points; compare this with the
factor two we got under the Cap Assumption. The observetoalhetween these two quantities is
only about three times as loose, which is reasonable camsigihat real data necessarily violates
the Cap Assumption to some extent (due to irregular shapkdiiarent orientations of the critical
regions). The new algorithm starts wiih.., tuplets. A back-of-the-envelope calculation suggests
thatT},.. is roughlyn (=), which is roughly a factor of ten thousand smaller tii&) independent
of the value of:. We thus might expect the new algorithm runs about four ardémagnitude faster
than the old one.

Running timeRecall thatSy is the set of cliques of siz, 3, or 4 in the intersection graph of
the critical regions. The subsgt C S, contains all cliques that pass the Projection Filter, ared th
subsetS, C S; contains all cliques that also pass the Persistence Hiltersizes of the first two
sets are given in the left of Table IV.

Most relevant to the running time of the algorithms for cortipgielevation maxima s . Indeed,
both the old and the new algorithm start with set249f3-, and4-tuplets that contain the cliques
in Sp and much more. As shown in Table IV on the right, the overestinby the old algorithm
is about ten thousand times that of the new algorithm. Furibee, in the new algorithm, the time
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for Step 0 and Steps 1 and 2 is fairly balanced. This impliegeed-up of about four orders of
magnitude, which is consistent with back-of-the-envelogleulation mentioned above.

5. CONCLUSION

The main result of this paper is a new algorithm for compudithglevation maxima of a triangulated
surface inR®. We provide experimental evidence that for practical déta,new algorithm runs
about four orders of magnitude faster than the old one. Thamement is achieved by making
the running time dependent on the total absolute Gaussiaatceue of the surface and to a lesser
extent on the number of vertices in the approximating tridation. Now, the total absolute Gaussian
curvature has different definitions for smooth and for pigse linear surfaces. It appears tiigtK’)
approaches:;(M) as K is refined and forms a progressively more accurate apprdiximaf the
smooth surfac®l. However, we do not have a proof and we do not know under whaditons
this is true.

There is room for performance improvement, one promisingatiion is to parallelize the com-
putations. It would also be interesting to sample the elemanaxima if this can be done faster
than computing all. For example, is it possible to computelavation maxima larger than some
threshold without spending the time to determine (and dijcthe elevation maxima that do not
exceed that threshold?
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