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Abstract—We study the topology of the Megaparsec Cosmic
Web in terms of the scale-dependent Betti numbers, which
formalize the topological information content of the cosmic
mass distribution. While the Betti numbers do not fully quan-
tify topology, they extend the information beyond conventional
cosmological studies of topology in terms of genus and Euler
characteristic. The richer information content of Betti numbers
goes along the availability of fast algorithms to compute them.

For continuous density fields, we determine the scale-depen-
dence of Betti numbers by invoking the cosmologically familiar
filtration of sublevel or superlevel sets defined by density
thresholds. For the discrete galaxy distribution, however, the
analysis is based on the alpha shapes of the particles. These
simplicial complexes constitute an ordered sequence of nested
subsets of the Delaunay tessellation, a filtration defined by
the scale parameter, α. As they are homotopy equivalent to
the sublevel sets of the distance field, they are an excellent
tool for assessing the topological structure of a discrete point
distribution. In order to develop an intuitive understanding
for the behavior of Betti numbers as a function of α, and
their relation to the morphological patterns in the Cosmic
Web, we first study them within the context of simple heuristic
Voronoi clustering models. These can be tuned to consist of
specific morphological elements of the Cosmic Web, i.e. clusters,
filaments, or sheets. To elucidate the relative prominence of
the various Betti numbers in different stages of morphological
evolution, we introduce the concept of alpha tracks.

Subsequently, we address the topology of structures emerg-
ing in the standard LCDM scenario and in cosmological
scenarios with alternative dark energy content. The evolution
of the Betti numbers is shown to reflect the hierarchical
evolution of the Cosmic Web. We also demonstrate that the
scale-dependence of the Betti numbers yields a promising
measure of cosmological parameters, with a potential to help in
determining the nature of dark energy and to probe primordial
non-Gaussianities. We also discuss the expected Betti numbers
as a function of the density threshold for superlevel sets of a
Gaussian random field.

Finally, we introduce the concept of persistent homology. It
measures scale levels of the mass distribution and allows us to

separate small from large scale features. Within the context
of the hierarchical cosmic structure formation, persistence
provides a natural formalism for a multiscale topology study
of the Cosmic Web.

Keywords-Cosmology: theory - large-scale structure of Uni-
verse - Methods: data analysis - techniques: Image Processing -
Computational Geometry: tessellations - Computational Topol-
ogy: homology.

I. INTRODUCTION: THE COSMIC WEB

The large scale distribution of matter revealed by galaxy
surveys features a complex network of interconnected fil-
amentary galaxy associations. This network, which has
become known as the Cosmic Web [1], contains structures
from a few megaparsecs1 up to tens and even hundreds of
megaparsecs of size. Galaxies and mass exist in a wispy
web-like spatial arrangement consisting of dense compact
clusters, elongated filaments, and sheet-like walls, amidst
large near-empty voids, with similar patterns existing at
earlier epochs, albeit over smaller scales; see Figure 1 for
an illustration of a simulated cosmic mass distribution in the

1The main measure of length in astronomy is the parsec. Technically,
1pc is the distance at which we would see the distance Earth-Sun at an
angle of 1 arcsec. It is equal to 3.262 lightyears = 3.086 × 1013km.
Cosmological distances are substantially larger, so that a megaparsec, with
1Mpc = 106 pc, is the common unit of distance.



standard LCDM cosmology2 in a box of size 80h−1Mpc 3.
The hierarchical nature of this mass distribution, marked by
substructure over a wide range of scales and densities, has
been clearly demonstrated [2]. Its appearance has been most
dramatically illustrated by the recently produced maps of
the nearby cosmos, the 2dFGRS, the SDSS and the 2MASS
redshift surveys [3], [4], [5] 4.

The vast Megaparsec Cosmic Web is one of the most
striking examples of complex geometric patterns found in
nature, and certainly the largest in terms of sheer size.
Computer simulations suggest that the observed cellular pat-
terns are a prominent and natural aspect of cosmic structure
formation through gravitational instability [6], the standard
paradigm for the emergence of structure in our Universe
[7], [8]. According to the gravitational instability scenario,
cosmic structure grows from primordial density and velocity
perturbations. These tiny primordial perturbations define a
Gaussian density field and are fully characterized by the
power spectrum; see Section VIII.

A. Web Analysis

Over the past decades, we have seen many measures for
characterizing different aspects of the large scale cosmic
structure: correlation functions (describing the n-point dis-
tribution), Minkowski functionals and genus (characterizing
the local and global curvature of isodensity surfaces), multi-
fractals (summarizing the statistical moments on various
scales), and so on. Despite the multitude of descriptions, it
has remained a major challenge to characterize the structure,
geometry and topology of the Cosmic Web. Many attempts
to describe, let alone identify, the features and components of
the Cosmic Web have been of a rather heuristic nature. The
overwhelming complexity of both the individual structures

2Currently, the LCDM cosmological scenario is the standard - or,
“concordance” - cosmological scenario. It seems to be in agreement with
a truly impressive amount of observational evidence, although there are
also some minor deficiencies. The “L” stands for Λ, the cosmological
constant that dominates the dynamics of our Universe, causes its expansion
to accelerate and represents in the order of about 73% of its energy content.
“CDM” indicates the Cold Dark Matter content of the Universe. Invisible,
it appears to form the major fraction of gravitating matter in the Universe,
representing some 23% of the cosmic energy density as opposed to the
mere 4.4% that we find in the normal baryonic matter we, and the planets
and stars, consist of.

3The Universe expands according to Hubble’s law, stating that the
recession velocity of a galaxy is linearly proportional to its distance:
v = Hr. The Hubble parameter, H, quantifies the expansion rate of the
Universe, and is commonly expressed in units of km/s/Mpc. Its present
value, the “Hubble constant”, is estimated to be H0 ≈ 71 km/s/Mpc.
Quite often, its value is expressed by a dimensionless number, h, that
specifies the Hubble parameter in units of 100 km/s/Mpc.

4Because of the expansion of the Universe, any observed cosmic object
will have its light shifted redward : its redshift, z. According to Hubble’s
law, the redshift z is directly proportional to the distance r of the object, for
z ¿ 1: cz = Hr, in which the constant H is the Hubble parameter. Because
it is extremely cumbersome to measure distances r directly, cosmologists
resort to the expansion of the Universe and use z as a distance measure.
Because of the vast distances in the Universe, and the finite velocity of
light, the redshift z of an object may also be seen as a measure of the time
at which it emitted the observed radiation.

as well as their connectivity, the lack of structural symme-
tries, its intrinsic multiscale nature and the wide range of
densities in the cosmic matter distribution has prevented the
use of simple and straightforward instruments.

In the observational reality, galaxies are the main tracers
of the Cosmic Web, and it is mainly through the measure-
ment of the redshift distribution of galaxies that we have
been able to map its structure. Likewise, simulations of the
evolving cosmic matter distribution are almost exclusively
based upon N -body particle computer calculations, involv-
ing a discrete representation of the features we seek to study.
Both the galaxy distribution as well as the particles in an
N -body simulation are examples of spatial point processes
in that they are discretely sampled and have an irregular
spatial distribution.

For furthering our understanding of the Cosmic Web,
and to investigate its structure and dynamics, it is of prime
importance to have access to a set of proper and objective
analysis tools. In this contribution, we address the topolog-
ical and morphological analysis of the large scale galaxy
distribution. In particular, we introduce a new measure that is
particularly suited to differentiating web-like structures: the
homology of the distribution as measured by Betti numbers
and their persistence.

B. Genus and Minkowski Functionals

Gott and collaborators were the first to propose the use
of the topology of the megaparsec structure of the Universe
[9], [10], to examine whether or not the initial fluctuations
had been Gaussian. They introduced the genus of isodensity
surfaces of the cosmic mass distribution as a quantitative
characterization of cosmic topology in terms of the connec-
tivity of these surfaces. Being an intrinsic topology measure,
the genus is relatively insensitive to systematic effects such
as non-linear gravitational evolution, galaxy biasing, and
redshift-space distortions [11]. This, in fact, is one of the
most important advantages of using the genus in studying
the patterns in the Megaparsec Universe. This allowed [9],
along with a series of subsequent studies, to conclude that
the measured genus of the observed large scale structure
is consistent with the predictions of cosmological scenarios
whose initially Gaussian density and velocity fluctuations
correspond to that of the observed power spectrum [12],
[13], [14], [15], [16], [17], [18]. Nonetheless, recent work
has shown that on small scales, the observed genus is
inconsistent with theoretical models [19]. On these scales the
- not fully known - details of the galaxy formation process
become important.

Additional quantitative information on the morphology of
the large scale distribution of galaxies are the Minkowski
functionals. Mecke et al. [20] introduced them within a
cosmological context as a more extensive characterization
of the morphology and geometry of spatial patterns, after
which Schmalzing et al. [21], [22] and others developed



Figure 1. The Cosmic Web in an LCDM simulation. Shown is the dark matter distribution at the current cosmological epoch in a 3843 particles N -body
simulation of structure formation in a universe with a cosmological constant Λ, accounting for an energy density ΩΛ = 0.73, and cold dark matter,
accounting for a total mass density of Ωm = 0.23. The box has a co-moving size of 80h−1Mpc (i.e. a box co-expanding with the universe and having a
current size of 80h−1Mpc). Clearly visible is the intriguing network of filaments and high-density cluster nodes surrounding low-density voids. The mass
distribution has a distinct multiscale character, marked by clumps over a wide range of mass scales, reflecting the hierarchical evolution of the cosmic
mass distribution. Figure courtesy of Bartosz Borucki.

them into a useful tool for studying cosmological datasets.
The Minkowski functionals measure the geometry and shape
of manifolds, providing a quantitative characterization of the
level sets (the isodensity surfaces) of the matter distribution
at a given level of smoothing of the original data. In a d-
dimensional space, there are d + 1 Minkowski function-
als, and the Euler characteristic of isodensity surfaces is
one of them. In 3 dimensions, there are four Minkowski
functionals: the volume enclosed by an isodensity surface,

the surface area, the integrated mean curvature, and the
Euler characteristic (as in (2)). From these, it is possible
to generate nonparameteric shape descriptors such as the
“typical” thickness, breadth and length of the structures
involved at that level of smoothing [23]. There are also
algorithms for computing these quantities from discrete point
sets [24], and the technique has found wide applications
outside of astronomy and physics.

What the Minkowski functionals do not tell about is the



topology of the structure as described by the number of
blobs, tunnels and voids that are present with changing scale.
In that sense, the Betti numbers and their persistence will
provide a substantial extension of available topological in-
formation. Also, the related use of alpha shapes will provide
effective methods of evaluating the Minkowski functionals.

C. Homology Groups

Here we advance the topological characterization of the
Cosmic Web to a more complete description, the homology
of the distribution as measured by the scale-dependent Betti
numbers of the sample. While a full quantitative characteri-
zation of the topology of the cosmic mass distribution is not
feasible, its homology is an attractive compromise between
detail and speed, providing a useful summary measurement
of topology. The ranks of the homology groups, known
as the Betti numbers, completely characterize the topology
of orientable 2-manifolds, such as the isodensity surfaces
used in earlier topological analyzes of the Cosmic Web.
For a d-dimensional manifold, we have d + 1 homology
groups, Hp, and correspondingly d + 1 Betti numbers, βp,
for 0 ≤ p ≤ d. The Betti numbers may be considered as the
number of p-dimensional holes. In fact, homology groups
can be seen as a useful definition of holes in the cosmic mass
distribution. They are fundamental quantities from which the
Euler characteristic and genus are derived, including those of
the isodensity 2-manifolds. In that sense, they are a powerful
generalization of genus analysis.

While the Euler characteristic and the Betti numbers give
information about the connectivity of a manifold, two of
the other three Minkowski functionals are sensitive to local
manifold deformations, and their topological information is
limited. The Betti numbers represent a more succinct as well
as more informative characterization of the topology.

Following this observation, we will argue and demon-
strate that the scale-dependence of Betti numbers makes
them particularly suited to analyze and differentiate web-
like structures. The Betti numbers measured as a function
of scale are a sensitive discriminator of cosmic structure
and can effectively reveal differences arising in alternative
cosmological models. Potentially, they may be exploited to
infer information on important issues such as the nature
of dark energy or even possible non-Gaussianities in the
primordial density field, as will be corroborated by [25];
see Section VII.

D. Alpha Shapes

Most of the topological studies in cosmology depend
on some sort of user-controlled smoothing and related
threshold to specify surfaces of which the topology may be
determined. In cosmological studies, this usually concerns
isodensity surfaces and their superlevel and sublevel sets
defined on a Gaussian filter scale.

A preferred alternative would be avoid filters and to
invoke a density field reconstruction that adapts itself to the
galaxy distribution. For our purpose, the optimal technique
would be that of the Delaunay Tessellation Field Estimator
(DTFE) formalism [26], [27], [28], which uses the local
density and shape sensitivity of the Delaunay tessellation
to recover a density field that retains the multiscale nature
as well as the anisotropic nature of the sampled particle or
galaxy distribution. This results in an adaptive and highly
flexible representation of the underlying density field, which
may then be used to assess its topological and singularity
structure; see e.g. [18], [24], [29].

A closely related philosophy is to focus exclusively on the
shape of the particle or galaxy distributions itself, and seek
to analyze its topology without resorting to the isodensity
surfaces and level sets of the corresponding density field.
This is precisely where alpha shapes enter the stage. They
are subsets of a Delaunay triangulation that describe the in-
tuitive notion of the shape of a discrete point set. Introduced
by Edelsbrunner and collaborators[30], they are one of the
principal concepts from the field of Computational Topology
[31], [32], [33].

E. Outline

This review contains a report on our project to study the
homology and topology of the Cosmic Web. It is a major
upgrade of an earlier report [34].

Sections II and III provide the mathematical background
for this review, consisting of a short presentation of homol-
ogy and Betti numbers, followed by a discussion of alpha
shapes and the formalism to infer Betti numbers.

One of the intentions of our study is to understand the
information content of scale-dependent Betti numbers with
respect to the corresponding geometric patterns observed in
the Cosmic Web, i.e. the relative prominence of clusters,
filaments and walls. To this end, we first investigate a
number of Voronoi clustering models. These models use the
geometric structure of Voronoi tessellations as a skeleton of
the cosmic mass distribution. In Section IV, we describe
these models, and specify the class of Voronoi Element
Models and Voronoi Kinematic Models. Section V contains
an extensive description of the analysis of a set of Voronoi
Element and Voronoi Kinematic Models.

Following the analysis of Voronoi clustering models,
we turn to the homology analysis in a few cosmological
situations of current interest. Section VI discusses the scale-
dependent Betti numbers inferred for the current standard
theory of cosmic structure formation, LCDM. The results are
obtained from a computer simulation of structure formation
in this cosmological scenario. The discussion in Section VI
connects the resulting homological characteristics to the
hierarchically evolving mass distribution. In an attempt to
investigate and exploit the sensitivity of Betti numbers to
key cosmological parameters, we apply our analysis to a



set of cosmological scenarios with a different content of
dark energy. Section VII demonstrates that indeed homology
may be a promising tool towards inferring information on
the dark energy content that dominates the dynamics of
our Universe. Equally compelling is the issue of the Betti
numbers of superlevel or sublevel sets of Gaussian random
fields. To high accuracy, the initial density field out of
which all structure in our Universe arose has had a Gaussian
character. As reference point for any further assessment of
the homology of the evolving cosmic mass distribution, we
therefore need to evaluate the homology of Gaussian random
fields. This is the subject of Section VIII, which focusses on
the expected values of the Betti numbers. In addition, it will
be a starting point for any related study looking for possible
primordial non-Gaussian deviations.

Having shown the potential of homology studies for
cosmological purposes, we discuss the prospects of assessing
the persistence of cosmological density fields in Section IX.
Persistence measures scale levels of the mass distribution
and allows us to systematically separate small from large
scale features in the mass distribution. It provides us with a
rich language to study intrinsically multiscale distributions
as those resulting from the hierarchically evolving struc-
ture in the Universe. Finally, Section X addresses future
prospects and relates this review to other work.

II. HOMOLOGY AND BETTI NUMBERS

Homology groups and Betti numbers are concepts from
algebraic topology, designed to quantify and compare topo-
logical spaces. They characterize the topology of a space in
terms of the relationship between the cycles and boundaries
we find in the space5. For example, if the space is a d-
dimensional manifold, M, we have cycles and boundaries
of dimension p from 0 to d. Correspondingly, M has one
homology group Hp(M) for each of d + 1 dimensions,
0 ≤ p ≤ d. By taking into account that two cycles
should be considered identical if they differ by a boundary,
one ends up with a group Hp(M) whose elements are the
equivalence classes of p-cycles6. The rank of the homology
group Hp(M) is the p-th Betti number, βp = βp(M).

5Assuming the space is given as a simplicial complex, a p-cycle is a
p-chain with empty boundary, where a p-chain, γ, is a sum of p-simplices.
The standard notation is γ =

∑
aiσi, where the σi are the p-simplices

and the ai are the coefficients. For example, a 1-cycle is a closed loop of
edges, or a finite union of such loops, and a 2-cycle is a closed surface, or a
finite union of such surfaces. Adding two p-cycles, we get another p-cycle,
and similar for the p-boundaries. Hence, we have a group of p-cycles and
a group of p-boundaries.

6Correctly defined, the p-th homology group is the p-th cycle group
modulo the p-th boundary group. In algebraic terms, this is a quotient group.
In intuitive terms, this says that two p-cycles are considered the same, or
homologous, if together they bound a (p+1)-chain or, equivalently, if they
differ by a p-boundary. Indeed, we do not want to distinguish between two
1-cycles of, say the torus, if they both go around the hole, differing only
in the geometric paths they take to do so.

In heuristic - and practical - terms, the Betti numbers
count topological features and can be considered as the num-
ber of p-dimensional holes. When talking about a surface in
3-dimensional space, the zeroth Betti number, β0, counts the
components, the first Betti number, β1, counts the tunnels,
and the second Betti number, β2, counts the enclosed voids.
All other Betti numbers are zero. Examples of spaces with
Betti numbers which are of interest to us are the sublevel
and superlevel density set of the cosmic mass distribution,
i.e. the regions whose density is smaller or greater than a
specified threshold level.

A. Genus and Euler Characteristic

Numerous cosmological studies have considered the genus
of the isodensity surfaces defined by the megaparsec galaxy
distribution [9], [10], [35], which specifies the number
of handles defining the surface. More formally, it is the
maximum number of disjoint closed curves such that cut-
ting along these curves does not increase the number of
components. The genus has a simple relation to the Euler
characteristic, χ, of the isodensity surface. Consider a 3-
manifold subset M of the Universe and its boundary, ∂M,
which is a 2-manifold. With ∂M consisting of c = β0(∂M)
components, the Gauss-Bonnet Theorem states that the
genus of the surface is given by

G = c− 1
2
χ(∂M), (1)

where the Euler characteristic χ(∂M) is the integrated
Gaussian curvature of the surface

χ(∂M) =
1
2π

∮

x

dx

R1(x)R2(x)
. (2)

Here R1(x) and R2(x) are the principal radii of curvature
at the point x of the surface. The integral of the Gaussian
curvature is invariant under continuous deformation of the
surface: perhaps one of the most surprising results in differ-
ential geometry.

The Euler characteristic of the surface can also be ex-
pressed in terms of its Betti numbers, namely, χ(∂M) is
equal to β0(∂M) minus β1(∂M) plus β2(∂M). This is im-
plied by the Euler-Poincaré Formula, which we will discuss
shortly, after introducing triangulation of spaces. Combining
these two equations for the Euler characteristic, we get a
fundamental relationship between differential geometry and
algebraic topology. Returning to the 3-dimensional subset,
M, of the Universe, its Euler characteristic is

χ(M) = β0(M)− β1(M) + β2(M)− β3(M). (3)

Whenever M is a non-exhaustive subset of the connected
Universe, its third Betti number vanishes, β3(M) = 0, and
its boundary is necessarily non-empty, namely a 2-manifold
without boundary. As mentioned above, the Euler character-
istic of ∂M is the alternating sum of Betti numbers, where
β0(∂M) is the number of surface components, β1(∂M) is



twice the genus, and β2(∂M) = β0(∂M). Assuming the Uni-
verse is connected like the 3-sphere, we can use Alexander
duality and the Mayer-Vietoris sequence to establish a direct
relation between the Betti numbers of the 3-manifold with
boundary, M, and those of the 2-manifold without boundary,
∂M; see e.g. [36]:

β0(∂M) = β2(∂M) = β0(M) + β2(M), (4)
β1(∂M) = 2β1(M). (5)

From this, we infer that the Euler characteristic of the
boundary is directly proportional to the Euler characteristic
of the 3-manifold:

χ(∂M) = β0(∂M)− β1(∂M) + β2(∂M) (6)
= 2χ(M). (7)

In the cosmologically interesting situation in which ∂M is
the isodensity surface of either density superlevel or sublevel
sets, we find a relation between the genus7 of the surface
and the Betti numbers of the enclosed manifold:

G = c− 1
2
χ(∂M) (8)

= c− χ(M) (9)
= c− (β0(M)− β1(M) + β2(M)) . (10)

In the analysis described in this paper, we will restrict
ourselves to the three Betti numbers, β0, β1, and β2, of
the 3-manifolds with boundary defined by the cosmic mass
distribution.

B. Triangulated Spaces

A practical simplification occurs when we represent a
space by a triangulation, which is a simplicial complex that
retains the topological properties of the space. These are
topological spaces assembled from vertices, edges, triangles,
tetrahedra, and possibly higher-dimensional simplices8. In
this situation, homology is defined as described earlier,
by comparing chains that are cycles with chains that are
boundaries. The availability of simplices has a number
of advantages, including the existence of fast algorithms
to compute homology. Here, we focus on the connection
between the number of simplices in the simplicial complex
and the Betti numbers of the space.

Suppose M is a d-dimensional manifold, and K is a tri-
angulation of M. Write np for the number of p-dimensional

7For consistency, it is important to note that the definition in previous
topology studies in cosmology [9], [10] slightly differs from this. The genus,
g, in these studies has been defined as the number of holes minus the
number of connected regions: g = G− c. Here, we will refer to g as the
reduced genus.

8Technically, we require that the union of simplices in the simplicial
complex is homeomorphic to the space it represents, which means that
there is a bijective map between the two sets that is continuous and
whose inverse is continuous. As an example, consider the boundary of
the octahedron, consisting of 6 vertices, 12 edges, and 8 triangles, which
forms a triangulation of the 2-dimensional sphere.

simplices in K. For example, n0 is the number of vertices,
n1 is the number of edges, and so on. The Euler characteris-
tic of K is defined as the alternating sum of these numbers:

χ(K) =
d∑

p=0

(−1)pnp. (11)

This is the d-dimensional generalization of the classical
Euler characteristic of a polytope:

χ = #vertices− #edges + #faces. (12)

For a convex polytope, Euler’s Formula states that χ = 2.
The Euler-Poincaré Formula is a far-reaching generalization
of this relation. To state this generalization, we first note that
homology is independent of the choice of triangulation, and
so are the Betti numbers and the Euler characteristic. The
Euler-Poincaré Formula says that the Euler characteristic
of a triangulation, which is the alternating sum of simplex
numbers, is equal to the alternating sum of Betti numbers
of the triangulated space:

χ(K) =
d∑

p=0

(−1)pβp(M). (13)

Coming back to the case of a convex polytope in 3-
dimensional space, its faces decompose the boundary, which
is homeomorphic to the 2-dimensional sphere. We may
further decompose the faces into triangles, if necessary, but
this makes no difference here. Since this is true for all
convex polytopes, their faces are but different triangulations
of this same sphere, so the alternating sums must be the
same. They are all equal to 2 because this is the Euler
characteristic of the 2-dimensional sphere.

C. Homology of a Filtration

For the assessment of the topology of a mass or point
distribution, a rich source of information is the topological
structure of a filtration. Given a space M, a filtration is a
nested sequence of subspaces:

∅ =M0 ⊆M1 ⊆ . . . ⊆Mm =M. (14)

The nature of the filtrations depends, amongst others, on the
representation of the mass distribution. When representing
the mass distribution by a continuous density field, f(x), a
common practice is to study the sublevel or superlevel sets
of the field smoothed on a scale Rs:

fs(x) =
∫

f(y)Ws(y − x) dy, (15)

where Ws(x−y) is the smoothing kernel. The sublevel sets
of this field are defined as the regions

Mν = {x ∈M | fs(x) ∈ (−∞, fν ]} (16)
= f−1

s (−∞, fν ]. (17)



Figure 2. Illustration of alpha shapes. For two different values of α, we show the relation between the 2-dimensional point distribution, the value of α,
and the resulting alpha shape. Around each point in the sample, we draw a circle of radius α. The outline of the corresponding Voronoi tessellation is
indicated by the edges (left). All Delaunay simplices dual to the decomposition of the union of disks by the Voronoi polygons are shown in black (center).
The final resulting alpha shape is shown on the right. Top: large α value. Bottom: small α value.

In other words, they are the regions where the smoothed
density is less than or equal to the threshold value fν = νσ0,
with σ0 the dispersion of the density field. When addressing
the topology of the primordial Gaussian density field, as
in Section VIII, the analysis will be based on the filtration
consisting of superlevel sets.

The representation of the mass by a discrete particle or
galaxy distribution leads to an alternative strategy of filtra-
tion, this time in terms of simplicial complexes generated by
the particle distribution. In the case of simplicial complexes
that are homotopy equivalent to the sublevel sets of either
the density or the distance function field, the computation of
the homological characteristics of the field is considerably
facilitated. Often it is also much easier to visualize the
somewhat abstract notion of homology by means of these
simplicial complexes.

In our study, we will concentrate on alpha shapes of a
point set, which are subsets of the corresponding Delau-
nay triangulation; see Section III. The alpha shapes are
homotopy equivalent to the sublevel sets of the distance
field defined by the point distribution, and they constitute
a nested sequence of simplicial complexes that forms a
topologically useful filtration of the Delaunay triangulation.

In the following sections, we will extensively discuss the
use of alpha shapes to assess the homology of cosmological
particle and galaxy distributions.

III. ALPHA SHAPES

One of the key concepts in the field of Computational
Topology are alpha shapes, as introduced by Edelsbrunner
and collaborators [30], [37], [38]; see [36] for a recent
review. They generalize the convex hull of a point set and
are concrete geometric objects that are uniquely defined for
a particular point set and a real value α. For their definition,
we look at the union of balls of radius α centered on the
points in the set, and its decomposition by the corresponding
Voronoi tessellation; see the left diagrams in Figure 2.
The alpha complex consists of all Delaunay simplices that
record the subsets of Voronoi cells that have a non-empty
common intersection within this union of balls; see the
center diagrams of Figure 2. The alpha shape is the union
of simplices in the alpha complex; see the right diagrams of
Figure 2.

Alpha shapes reflect the topological structure of a point
distribution on a scale parameterized by the real number α.
The ordered set of alpha shapes constitute a filtration of the



Figure 3. Illustration of 3-dimensional alpha shapes for three different values of α = 0.001, 0.005, 0.01. Clearly visible are the differences in connectivity
and topological structure of the different alpha shapes.

Delaunay tessellation. The link between alpha shapes and the
homology of a point distribution can be appreciated from the
fact that tunnels will be formed when, at a certain value of
α, an edge is added between two vertices that were already
connected, which increases the first Betti number. When new
triangles are added, the tunnel may be filled, which decreases
the first Betti number. More about this process of growing
and shrinking Betti numbers in Section IX, where we discuss
the persistence of tunnels and other topological features.

Connections of alpha shapes to diverse areas in the sci-
ences and engineering have developed, including to pattern
recognition, digital shape sampling and processing, and
structural molecular biology [36]. Applications of alpha
shapes have as yet focussed on biological systems, where
they have been used in the characterization of the topology
and structure of macromolecules. The work by Liang and
collaborators [39], [40], [41], [42] uses alpha shapes and
Betti numbers to assess the voids and pockets in an effort
to classify complex protein structures, a highly challenging
task given the tens of thousands of protein families involving
thousands of different folds. Given the interest in the topol-
ogy of the cosmic mass distribution [9], [20], [21], [22], it

is evident that alpha shapes also provide a highly interesting
tool for studying the topology of the galaxy distribution
and the particles in N -body simulations of cosmic structure
formation. Directly connected to the topology of the point
distribution itself, it avoids the need of any user-defined filter
kernels.

A. Definition

Figure 2 provides an impression of the concept by il-
lustrating the process of defining the alpha shape, for two
different values of α. If we have a finite point set, S, in 3-
dimensional space and its Delaunay triangulation, we may
identify all simplices – vertices, edges, triangles, tetrahedra
– in the triangulation. For a given non-negative value of α,
the alpha complex consists of all simplices in the Delaunay
triangulation that have an empty circumsphere with radius
less than or equal to α. Here “empty” means that the open
ball bounded by the sphere does not include any points of
S. For an extreme value α = 0, the alpha complex merely
consists of the vertices of the point set. There is also a
smallest value, αmax, such that for α ≥ αmax, the alpha
complex is the Delaunay triangulation and the alpha shape



Figure 4. Examples of alpha shapes of the LCDM GIF simulation. Shown are central slices through the complete alpha shape for two different values
of α, viewed from different angles. The sensitivity to the structure and topology of the matter distribution in the Cosmic Web is clearly visible when
comparing the lower value of α in the top panel with the higher value of α in the bottom panel.



is the convex hull of the point set.
As mentioned earlier, the alpha shape is the union of all

simplices in the alpha complex. It is a polytope in a fairly
general sense: it can be concave and even disconnected.
Its components can be three-dimensional clumps of tetrahe-
dra, two-dimensional patches of triangles, one-dimensional
strings of edges, and collections of isolated points, as well
as combinations of these four types. The set of real numbers
leads to a family of shapes capturing the intuitive notion of
the overall versus fine shape of a point set. Starting from the
convex hull gradually decreasing α, the shape of the point
set gradually shrinks and starts to develop enclosed voids.
These voids may join to form tunnels and larger voids. For
negative α, the alpha shape is empty. An intuitive feel for
the evolution of the topological structure may be obtained
from the three different alpha shapes of the same point set
in 3-dimensional space shown in Figure 3.

It is important to realize that alpha shapes are not triangu-
lations of the union of balls in the technical sense. Instead,
they are simplicial complexes that are homotopy equivalent
to the corresponding union of balls with radius α. While
this is a nontrivial observation that follows from the Nerve
Theorem [43], it is weaker than being homeomorphic, which
would be necessary for being a triangulation. Nevertheless,
the homotopy equivalence implies that the alpha shape
and the corresponding union of balls have the same Betti
numbers.

Although the alpha shape is defined for all real numbers
α, there are only a finite number of different alpha shapes for
any finite point set. In other words, the alpha shape process
is never continuous: it proceeds discretely with increasing
α, marked by the addition of new Delaunay simplices once
α exceeds the corresponding threshold.

B. Computing Betti Numbers

Following the description above, one may find that alpha
shapes are intimately related to the topology of a point
set. Indeed, they form a direct way of characterizing the
topology of a point distribution. The complete description
of its homology in terms of Betti numbers may therefore be
inferred from the alpha shapes.

For simplicial complexes, like Delaunay tessellations and
alpha complexes, the Betti numbers can be defined on the
basis of the p-simplices. We illustrate this for a simplicial
complex in 3-dimensional space. Cycling through all its
simplices, we base the calculation on the following straight-
forward considerations. When a vertex is added to the alpha
complex, a new component is created and β0 is increased
by 1. Similarly, if an edge is added, it connects two vertices,
which either belong to the same or to different components
of the current complex. In the former case, the edge creates
a new tunnel, so β1 is increased by 1. In the latter case,
two components get connected into one, so β0 is decreased
by 1. If a triangle is added, it either completes a void or

it closes a tunnel. In the former case, β2 is increased by 1,
and in the latter case, β1 is decreased by 1. Finally, when
a tetrahedron is added, a void is filled, so β2 is lowered by
1. Following this procedure, the algorithm has to include a
technique for determining whether a p-simplex belongs to a
p-cycle. For vertices and tetrahedra, this is rather trivial. On
the other hand, for edges and triangles, we use a somewhat
more elaborate procedure, involving the classical computer
science concept of a union-find data structure [44].

Turning our attention to software that implements these
algorithmic ideas, we resort to the Computational Geometry
Algorithms Library, CGAL 9. Within this context, Caroli and
Teillaud recently developed an efficient code for the calcula-
tion of two-dimensional and three-dimensional alpha shapes
in periodic spaces. We use their software for the computation
of the alpha shapes of our cosmological models. In the first
stage of our project, which concerns the analysis of Voronoi
clustering models, we computed the Betti numbers of alpha
shapes with a code developed within our own project. Later,
for the analysis of the cosmological LCDM models, we were
provided with an optimized code written by Manuel Caroli.

C. Alpha Shapes of the Cosmic Web

In a recent study, Vegter et al. computed the alpha
shapes for a set of GIF simulations of cosmic structure
formation [45]. It concerns a 2563 particles GIF N -body
simulation, encompassing a LCDM (Ωm = 0.3, ΩΛ = 0.7,
H0 = 70 km/s/Mpc) density field within a (periodic) cubic
box with length 141h−1Mpc and produced by means of an
adaptive P3M N -body code [46].

Figure 4 illustrates the alpha shapes for two different
values of α, by showing sections through the GIF simulation.
The top panel uses a small value of α, the bottom uses
a high value. The intricacy of the web-like patterns is
very nicely followed. The top configuration highlights the
interior of filamentary and sheet-like features, and reveals
the interconnection between these structural elements. The
bottom configuration covers an evidently larger volume,
which it does by connecting finer features in the Cosmic
Web. Noteworthy are the tenuous filamentary and planar
extensions into the interior of the voids.

These images testify of the potential power of alpha
shapes in analyzing the web-like cosmic matter distribution,
in identifying its morphological elements, their connections
and, in particular, their hierarchical character. However, to
understand and properly interpret the topological informa-
tion contained in these images, we need first to assess their
behavior in simpler yet similar circumstances. To this end,
we introduce a set of heuristic spatial matter distributions,
Voronoi clustering models.

9CGAL is a C++ library of algorithms and data structures for computa-
tional geometry, see www.cgal.org.



Figure 5. Three different Voronoi element models, shown in a cubic setting. From left to right: a wall-dominated Voronoi universe, a
filamentary Voronoi universe, and a cluster-dominated Voronoi universe.

IV. VORONOI CLUSTERING MODELS

In this section, we introduce a class of heuristic models for
cellular distributions of matter using Voronoi tessellations
as scaffolds, know as Voronoi clustering models [47], [48],
[49]. They are well suited to model the large scale clustering
of the morphological elements of the Cosmic Web, defined
by the stochastic yet non-Poissonian geometrical distribution
of the matter and the related galaxy population forming
walls, filaments, and clusters.

The small-scale distribution of galaxies within the various
components of the cosmic skeleton involves the complicated
details of highly nonlinear interactions of the gravitating
matter. This aspect may be provided by elaborate physical
models and/or N -body computer simulations, but this would
distract from the purpose of the model and destroy its con-
ceptual simplicity. In the Voronoi models, we complement a
geometrically fixed Voronoi tessellation defined by a small
set of nuclei with a heuristic prescription for the location
of particles or model galaxies within the tessellation. We
distinguish two complementary approaches: the Voronoi
element and the Voronoi evolution models. Both are obtained
by moving an initially random distribution of N particles
toward the faces, lines, and nodes of the Voronoi tessellation.
The Voronoi element models do this by a heuristic and user-
specified mixture of projections onto the various geometric
elements of the tessellation. The Voronoi evolution models
accomplish this via a gradual motion of the galaxies from
their initial, random locations towards the boundaries of the
cells.

The Voronoi clustering models identify the geometric
elements of a 3-dimensional Voronoi tessellations with the
morphological component of the Cosmic Web. To describe
this relationship, we will adhere to the terminology listed
in Table I, which also lists the terminology to the corre-
sponding types of holes in the alpha shape of the particle

Cosmic Web Voronoi Alpha

voids, field cell void

walls, sheets, superclusters face tunnel

filaments, superclusters line gap

clusters node

Table I
IDENTIFICATION OF MORPHOLOGICAL COMPONENTS OF THE COSMIC

WEB (LEFTHAND COLUMN) WITH GEOMETRIC VORONOI
TESSELLATION ELEMENTS (CENTRAL COLUMN). THE RIGHTHAND

COLUMN LIST THE TERMINOLOGY FOR THE CORRESPONDING TYPES OF
HOLES IN THE ALPHA SHAPE OF THE PARTICLE DISTRIBUTION.

distribution10.

A. Voronoi Element Models

These are fully heuristic, user-specified spatial galaxy
distributions within the cells, faces, lines, and nodes of a
Voronoi tessellation. They are obtained by projecting the
initially randomly distributed N model galaxies onto the
relevant Voronoi face, line, or node. We can also retain a
galaxy within the Voronoi cell in which it is located. The
Voronoi element models are particularly apt for studying
systematic properties of spatial galaxy distributions confined
to one or more structural elements of nontrivial geometric
spatial patterns.

Pure Voronoi element models place their galaxies exclu-
sively inside or near either faces, lines, or nodes. In contrast,

10For consistency and clarity, throughout this paper we adopt the follow-
ing nomenclature for the spatial components of the Cosmic Web, of Voronoi
tessellations and of Delaunay tessellations. The cosmic web consists of
voids, walls, filaments, and clusters. Voronoi tessellations consist of cells,
faces, lines, and nodes. Finally, Delaunay tessellations (and alpha shapes)
involve tetrahedra, triangles, edges, and vertices.



Figure 6. Four alpha shapes of a Voronoi filament model consisting of 200, 000 particles in a periodic box of size 50h−1Mpc with 8 Voronoi cells. We
use colors to highlight different components. From top left to bottom right: 104 · α = 0.5, 1.0, 2.0, 4.0.

mixed models allow combinations in which distributions
inside or near cells, faces, lines, and nodes are superimposed.
These include particles located in four distinct structural
components:

• field particles located in the interior of Voronoi cells,
• wall particles within and around the Voronoi faces,
• filament particles within and around the Voronoi lines,
• cluster particles within and around the Voronoi nodes.

The characteristics of the spatial distributions in the mixed
models can be varied and tuned according to desired frac-
tions of galaxies of each type. These fractions are free
parameters that can be specified by the user; see Figure 5.

B. Voronoi Evolution Models

The second class we consider are the Voronoi evolution
models. They provide web-like galaxy distributions mim-
icking the outcome of realistic cosmic structure formation
scenarios. They are based upon the notion that voids play
a key organizational role in the development of structure,
causing the universe to resemble a soapsud of expanding
bubbles [50]. While the galaxies move away from the
void centers, and stream towards the walls, filaments, and
clusters, the fractions of galaxies in or near the cells, faces,
lines, and nodes evolve continuously. The details of the
model realization depends on the specified time evolution.

Within the class of Voronoi evolution models, the most



Figure 7. Topological analysis of the Voronoi filament model illustrated by its alpha shape shown in the upper left panel of Figure 6. From left to right:
β0, β1, and β2 counting the components, tunnels, and voids of the alpha shape. The realization contains 64 nuclei or cells.

representative and most frequently used are the Voronoi
kinematic models. Forming the idealized and asymptotic
description of the outcome of a hierarchical gravitational
structure formation process, they simulate the asymptotic
web-like galaxy distribution implied by the hierarchical void
formation process by assuming a single-size dominated void
population. Within a void, the mean distance between galax-
ies increases with time. Before a galaxy enters an adjacent
cell, the velocity component perpendicular to the otherwise
crossed face disappears. Thereafter, the galaxy continues to
move within the face. Before it enters the next cell, the
velocity component perpendicular to the otherwise crossed
edge disappears. The galaxy continues along a filament and,
finally, comes to rest at a node. The resulting evolutionary
progression within the Voronoi kinematic model proceeds
from an almost featureless random distribution towards
a distribution in which matter ultimately aggregates into
conspicuous compact cluster-like clumps.

The steadily increasing contrast of the various structural
features is accompanied by a gradual shift in the topology
of the distribution. The virtually uniform and featureless
particle distribution at the beginning ultimately unfolds into
a highly clumped distribution of clusters. This evolution
involves a gradual progression via a wall-like through a
filamentary towards an ultimate cluster-dominated matter
distribution.

V. TOPOLOGICAL ANALYSIS OF VORONOI UNIVERSES

In this section, we study the systematic behavior of the
Betti numbers of the alpha shapes of Voronoi clustering
models; see [45], [51]. For each point sample, we investigate
the alpha shape for the full range of the α parameter. We
generate six Voronoi clustering models, each consisting of
200, 000 particles within a periodic box of size 50h−1Mpc.
Of each model, we make two realizations, one with 8 and

the other with 64 nuclei. We start with two pure Voronoi
element models: a wall model, and a filament model. In
addition, we study four Voronoi kinematic models, ranging
from a mildly evolved to a strongly evolved configuration.
In each case, the clusters, filaments, and walls have a finite
Gaussian width of 1.0h−1Mpc.

An impression of the sequence of alpha shapes may be
gained from the four panels in Figure 6. For the smallest
value of α, we see that the simplices delineate nearly all
the filaments in the particle distribution. As α increases,
going from the top-left panel down to the bottom right
panel, we find that the alpha shape fills in the walls. For
even larger values of α, the alpha shape includes the large
Delaunay simplices that cover the interior of the Voronoi
cells. It is a beautiful illustration of the way in which alpha
shapes define, as it were, naturally evolving surfaces that
are sensitive to every detail of the morphological structure
of the cosmic matter distribution.

A. Filament Model Topology

We take the Voronoi filament model as a case study,
investigating its topology by following the behavior of the
three Betti numbers as functions of the parameter α.

Figure 7 shows the relation between the Betti numbers of
the alpha shape and the value of α. The zeroth Betti number,
β0, counts the components. Equivalently, β0 − 1 counts the
gaps between the components. In the current context, the
latter interpretation is preferred as we focus on the holes
left by the alpha shape. Starting with β0 = 200, 000 at α =
0, the zeroth Betti number gradually decreases to 1 as the
components merge into progressively larger entities.

The first Betti number, β1, counts the tunnels. At first,
it increases steeply when edges are added to the alpha
complex, some of which bridge gaps while others form
tunnels. After β1 reaches its maximum for α roughly equal



Figure 8. The dependence of the second Betti number, β2, on α, for six different Voronoi clustering models. Top left: Voronoi filament model. Top
right: Voronoi wall model. Centre left to bottom right: four stages of the Voronoi kinematic model, going from a moderately evolved model dominated by
walls (center left) to a highly evolved model dominated by filaments and clusters (bottom right). Blue lines: realizations with 8 nuclei or cells. Red lines:
realizations with 64 nuclei or cells.

to 0.25 times 10−4, the number of tunnels decreases sharply
as triangles enter the alpha complex in large numbers.

The second Betti number, β2, counts the voids in the
alpha shape. In the case of the Voronoi filament model, its
behavior resembles that of β1: a peaked distribution around a
moderate value of α. It increases when the entering triangles
are done closing tunnels and start creating voids. However,
when α is large enough to add tetrahedra, these voids start
to fill up and β2 decreases again, reaching zero eventually.
Notice that in the given example of the Voronoi filament
model, β2 reaches its maximum for α roughly equal to 0.45
times 10−4, which lies substantially beyond the peak in the
β1 distribution; see also Figure 8.

B. Void Evolution

Having assessed one particular Voronoi clustering model
in detail, we turn our attention to the differences between the
models. While this is still the subject of ongoing research,
we find substantial differences on a few particular aspects.
For example, β0 decreases monotonically with α for all
models, but the range over which the number of gaps is
substantially positive, and the rate with which it decrease
are highly sensitive to the underlying distribution. In fact,
the approximate derivative, ∂β0/∂α, contains interesting
features. Examples are a minimum and a varying width,
both potentially interesting for discriminating between the
underlying topologies.

Most interesting is the difference in behavior of the second
Betti number. As one may infer from Figure 8, substantial
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Figure 9. Left: the alpha tracks for four stages of the kinematic Voronoi clustering model, evolving from almost uniform (red) to a distribution in which
most matter resides in cluster nodes (orange). The wall-like (blue) and filamentary (magenta) distributions form intermediate cases. Right: the alpha tracks
at different cosmic epochs in an evolving LCDM mass distribution. The redshift, z, is indicated in the top right corner, with the track at an early epoch
(a = 0.17, z = 5.0) bearing resemblance to the early Voronoi kinematic model, and the track at the current epoch (a = 1.0, z = 0.0) resembling the
Voronoi kinematic model at an intermediate distribution.

differences between models can be observed. This concerns
the values and range over which β2 reaches maxima, as
well as new systematic behavior. For kinematic models, we
find two or more peaks, each corresponding to different
morphological components of the particle distribution. It is
revealing to follow the changes in the dependence of β2 on
α, as we look at different evolutionary stages. The panels
from center left to bottom right in Figure 8 correspond
to four different stages of evolution. The center left panel
shows the dependence of β2 on α for a moderately evolved
matter distribution, which is dominated by walls. The center
right panel shows the dependence for a stage at which walls
and filaments are approximately equally prominent. In the
bottom left panel, the filaments represent more than 40% of
the mass, while the walls and the gradually more prominent
clusters each represent around 25% of the particles. The
final, bottom right panel shows the dependence for a highly
evolved mass distribution, with clusters and filaments each
representing around 40% of the particles.

The different morphological patterns of the Voronoi kine-
matic models are reflected in the behavior of β2. In the
center left panel, we find a strong peak at α roughly equal
to 5 times 10−4, with a shoulder at lower values. The peak
reflects the voids inside the walls in the distribution, while
the shoulder finds its origin in the somewhat smaller voids
inside the filaments. The identity of the peaks becomes more
clear when we turn to the two-peak distribution in the center
right panel. The strong peak at α roughly equal to 10−4 is a
manifestation of the strongly emerged filaments in the matter
distribution. As the shift to filaments and clusters continues,
we see the rise of a third peak at a much smaller value of
α; see the bottom two panels. This clearly corresponds to
the voids in the high density cluster regions.

C. Alpha Tracks

In Figure 9, we synthesize the homology information
by tracing curves in the 3-dimensional Betti space, whose

coordinates are the three Betti numbers. Each curve is
parametrized by α, with points (β0(α), β1(α), β2(α)) char-
acterizing the homology of the alpha shape at this given
scale. We call each curve an alpha track, using it to visualize
the combined evolution of the Betti numbers for a given
Voronoi cluster model. Note that the evolution of the Euler
characteristic, χ(α), is the projection of an alpha track onto
the normal line of the plane β0 − β1 + β2 = 0. The richer
structure of the full alpha track illustrates why patterns
with similar genus may still have a substantially different
topology.

The left frame of Figure 9 shows the alpha tracks for the
four Voronoi kinematic models. We notice that β0 varies
over a substantially larger range of values than β1 and
β2. The tracks reveal that the few components left after
an extensive process of merging still contain a substantial
number of tunnels and voids. More generally, we see that
the Betti numbers diminish to small values in sequence: first
β0, then β1, and finally β2.

As the matter distribution evolves, the tracks shift in
position. The four tracks in the left frame of Figure 9
form a good illustration of this effect. The red dashed track
corresponds to an early phase of the kinematic model, at
which the particle distribution is still almost uniform, while
the orange track represents the final time-step marked by a
pattern in which nearly all particles reside in the clusters.
In the intermediate stages, most of the particles are located
in the walls (blue) and in the filaments (magenta). The de-
creasing number of tunnels and voids at intermediate scales
is a manifestation of the hierarchical formation process, in
which small scale structures merge into ever larger ones; see
e.g. [52].

VI. TOPOLOGICAL ANALYSIS OF THE LCDM UNIVERSE

Having discussed the scale-dependent Betti numbers in
heuristic Voronoi clustering models, we turn to the analysis
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Figure 10. The evolution of the Betti numbers in an LCDM universe. We show the dependence of βp on α for dimensions p = 0, 1, 2 and for eleven
expansion factors running from a = 0.25 (z = 3.0) to the current epoch a = 1.0 (z = 0.0). From upper left to lower right: β0(α), β1(α), β2(α). Note
that all three curves gradually shift from smaller to larger scales.

of more realistic megaparsec cosmic mass distributions.
These are characterized by an intricate multiscale configura-
tion of anisotropic web-like patterns. The crucial question is
whether we can exploit the topological information toward
determining crucial cosmological parameters, such as the
nature of dark energy.

We concentrate on the analysis of computer simulations
of cosmic structure formation in the Universe, leaving the
analysis of the observed distribution in galaxy redshift
surveys for the future. The computer simulations follow the
nonlinear evolution of structure as it emerges from the near
uniform early Universe. Once the gravitational clustering
process has progressed beyond the initial linear growth
phase, we see the emergence of intricate patterns in the
density field; see Figure 1. The near homogeneous initial
conditions evolve into an increasingly pronounced clustering
pattern.

A. N -body Simulations

In cosmological N -body simulations, the cosmic mass
distribution is represented by a large number of particles,
which move under the influence of the combined gravita-
tional force of all particles. The initial conditions (location
and velocities of the particles) are a realization of the mass
distribution expected in the cosmological scenario at hand.
Since the majority of the matter in the Universe is non-
dissipative dark matter, a major aspect of cosmological N -
body simulations concerns itself with dark matter particles
that only interact via gravity. State-of-the-art computer sim-
ulations, such as the Millennium simulation [8], count in
the order of 1010 particles and are run on the most powerful
supercomputers available to the scientific community.

Figure 1 illustrates the matter distribution in the standard,
or “concordance” LCDM cosmological model. It shows the
dark matter distribution in a box of 80h−1Mpc co-moving



size, based on a 3843 particle N -body simulation. The
LCDM cosmological scenario assumes that most gravitating
matter in the Universe consists of as yet undetected and
unidentified cold dark matter, accounting for approximately
23% of the energy content of the Universe, i.e. Ωdm = 0.23.
The normal, baryonic matter, which consists mostly of
protons and neutrons, represents only 4.4% of the energy
content of the Universe, i.e. Ωb = 0.044. Most importantly,
the model assumes the presence of a cosmological con-
stant, Λ, or equivalent dark energy component, representing
73% of the density of the Universe, i.e. ΩΛ = 0.73; see
Section VII. The Hubble parameter, which specifies the
expansion rate of the Universe, is taken to be H0 = 70
km/s/Mpc. The amplitude of the initial fluctuation has been
normalized to a level at which the current density fluctuation
on a scale of 8h−1Mpc is equal to σ8 = 0.8.

The most prominent aspect of the cosmic mass distribu-
tion is the intriguing network of filaments and high-density
clusters, which surround low-density voids. The mass distri-
bution has a distinct multiscale character, marked by clumps
over a wide range of scales, reflecting the hierarchical
evolution of the distribution.

B. Homological Evolution

We follow the developing structure in the LCDM scenario
in eleven time-steps that run from an expansion factor
a = 0.25 (z = 3.0) to a = 1.0 (z = 0.0), i.e. from
around 3.4 Gigayears after the Big Bang to the current
epoch. At each time-step, we compute the alpha shapes
of a randomly sampled subset of the particle distribution
for α from 0.0 to 10.0h−1Mpc, and their Betti numbers,
from which we extrapolate the scale-dependent behavior of
homology. The resulting curves of the Betti numbers for
dimensions p = 0, 1, 2 are shown in Figure 10. The curves in
the upper left frame show that the value of β0 decreases for
α < 1.2h−1Mpc, while it increases for larger values of α.
This is a manifestation of the hierarchical structure formation
process. It reflects the progressively earlier merging of
clumps at small scale and the progressively later merging
of massive components at large scale.

The curves of β1 and β2 have a slightly different ap-
pearance. Both start as highly peaked distributions. Most
prominent in the near homogeneous initial conditions, the
peaks represent the imprint of a Poisson distribution with a
similar particle density. In principle, one should remove this
imprint via a persistence procedure; see Section IX. Here
we keep to the unfiltered version. As the mass distribution
evolves under the influence of gravity, the particles get more
and more clustered. This leads to a decrease in the number
of holes on small scales. As these merge into ever larger
supercluster complexes, their formation goes along with the
evacuation of ever larger tunnels and voids enclosed by the
higher density structures in the web-like network. All three
curves are marked by a steady shift toward higher values

of α. While we find a minor shift of the maximum of β1,
the shift is clear for β2. It is interesting that a similar shift
toward larger α values has has been predicted by Sheth
& van de Weygaert [52] in the context of their dynamical
model of the evolving void hierarchy. In their two-barrier
excursion set formalism, this shift is a manifestation of the
merging of smaller voids into ever larger ones, accompanied
by the destruction of a large number of small voids inside
gravitationally collapsing over-dense regions.

C. Alpha Tracks and Multiscale Homology

When assessing the corresponding evolution of alpha
tracks in Figure 9, we find a systematic behavior that is
similar to what we have seen for the Voronoi clustering
models. As the evolution proceeds, we find fewer tunnels and
voids at small scale, while their numbers are still substantial
at values of α at which we have only very few remaining
components.

However, as the mass distribution evolves, the shifts be-
tween the alpha tracks are relatively small compared to those
seen in the Voronoi clustering models. The mass distribution
retains its multiscale character. The hierarchical evolution
of the multiscale mass distribution leads to a more or less
self-similar mapping of the LCDM alpha tracks to higher
α values. At each phase, we find dominant clusters and
conspicuous filamentary features, although their scale shifts
as the mass distribution advances from the mildly linear to
the quasi-linear phase. This contrasts the evolution of the
Voronoi clustering models, which is characterized by clear
transitions between distinct topological patterns outlined by
the mass distribution.

VII. PROBING DARK ENERGY

To assess the utility of our topological methods, we
look at the possibility to use the homology of the Cosmic
Web towards determining the nature of dark energy in the
Universe. The parameters for what might now be called “the
standard model for cosmology” have been established with
remarkable precision.

However, there remains the great mystery of the nature
of the so-called dark energy, which appears to make up
73% of the total cosmic energy. Dark energy, or the cos-
mological constant, has been dominating the dynamics of
the Universe since the last 7 Gigayears and has pushed it
into an accelerated expansion. The simplest model for the
dark energy is Einstein’s cosmological constant, Λ: it makes
a time-independent contribution to the total energy density in
the Friedman-Lemaitre equations. Such models are referred
to as LCDM models. However, there are numerous, possibly
more plausible models in which the dark energy evolves as
a function of time. These models are generally described in
terms of a time- or redshift-dependent function w(z) that



Figure 11. Homology and dark energy. The Betti number curves for three cosmological models with different dark energy models. The curves are
determined from the distribution of collapsed dark matter halos in the corresponding scenarios. Red: the standard LCDM scenario. Green: the Ratra-
Peebles quintessence model. Blue: the supergravity SUGRA model. From left to right: β0(α), β1(α), and β2(α). The curves demonstrate that homology
is capable of using the web-like matter distribution to discriminate between cosmological scenarios with different dark energy content.

describes the history of equation of state of the dark energy
component, i.e. the relation between pressure and density:

p = w(z)ρc2. (18)

Different models for dark energy produce different functions
w(z), and a number of simple parametrizations can be found
in the literature. The classical Einstein cosmological constant
corresponds to w(z) = −1.

In principle, the Cosmic Web should be one of the
strongest differentiators between the various dark energy

models. As a result of the different growth rates at com-
parable cosmic epochs, we will see different structures in
the matter distribution. To illustrate this idea, we run three
N -body simulations with identical initial conditions but
different dark energy equation of state: the standard LCDM
model and two quintessence models. The latter assume that
the Universe contains an evolving quintessence scalar field,
whose energy content manifests itself as dark energy. The
two quintessence models are the Ratra-Peebles (RP) model
and the SUGRA model; see [53], [54], [55] for a detailed



description.
While the general appearance of the emerging Cos-

mic Web is structurally similar, there are visible differ-
ences in the development. On small to medium scales, the
quintessence models are less clustered; see [25] for an illus-
tration. As a result, the alpha shapes contain a larger number
of small objects. In Figure 11, we see that this manifests
itself in values of β0 that are systematically higher for the
quintessence RP and SUGRA models than for the LCDM
model. The two right frames in Figure 11 concentrate on the
medium scale range, 1.5h−1Mpc < α < 3.0h−1Mpc for β1

(top righthand panel) and 3.0h−1Mpc < α < 6.5h−1Mpc
for β2 (bottom righthand panel). The error bars on the
obtained curves are determined on the basis of the obtained
values for independent samples. Particularly encouraging is
the fact that homology is sensitive to the subtle differences
we see in the pattern of the Cosmic Web. The size of the
error bars show that it is feasible to find significant and
measurable differences between the outcome of the different
cosmologies.

VIII. BETTI NUMBERS OF GAUSSIAN RANDOM FIELDS

To interpret our results for the web-like cosmic matter
distribution, we compare them with those for the initial
condition out of which our Universe arose. The behavior of
the Betti numbers in a Gaussian random field is a reference
point for any further assessment of their behavior in the more
complex environment of the Cosmic Web.

According to the current paradigm, structure in the Uni-
verse grew by gravitational instability out of tiny primordial
density perturbations. The evidence provided by the tem-
perature fluctuations in the cosmic microwave background
[56], [57], [58], [59] suggests that the character of the per-
turbation field is that of a homogeneous and isotropic spatial
Gaussian process. Such primordial Gaussian perturbations in
the gravitational potential are a natural product of an early
inflationary phase of our Universe.

Before proceeding to the Betti numbers of a Gaussian
random field, we present the necessary nomenclature, fo-
cusing on the three-dimensional situation. For fundamentals
on Gaussian random fields, we refer to the standard work by
Adler and Taylor [60], and for their cosmological application
to the seminal study by Bardeen, Bond, Kaiser, and Szalay
[61]. Here we follow the notation from van de Weygaert
and Bertschinger [62]. The first papers on the homology and
persistence of Gaussian random fields are Adler et al. [63]
and Park et al. [64]; see also [65]. Here, we discuss some
of the main findings, and we refer to the mentioned papers
for more detailed treatments. We alert the reader to the fact
that the analysis in this section concerns itself with density
fields, which is different from earlier sections in which we
studied distance fields defined by particle distributions.

A. Gaussian Random Fields

A random field, f , on a spatial volume assigns a value,
f(x), to each location, x, of that volume. The fields of
interest, such as the primordial density or velocity field,
are smooth and continuous. The stochastic properties of a
random field are defined by its N -point joint probabilities,
where N can be any arbitrary positive integer. To denote
them, we write X = (x1,x2, · · · ,xN ) for a vector of N
points and f = (f1, f2, . . . , fN ) for a vector of N field
values. The joint probability is

Prob[f(x1) = f1, . . . , f(xN ) = fN ] = PX(f) df ,

(19)

which is the probability that the field f at the locations xi

has values in the range fi to fi + dfi, for each 1 ≤ i ≤ N .
Here, PX(f) is the probability density for the field realiza-
tion vector f at the location vector X = (x1,x2, · · · ,xN ).
For a Gaussian random field, the joint probabilities for
N = 1 and N = 2 determine all others. Specifically, the
probability density functions take the simple form

PX(f) = C · exp
[−fM−1fT /2

]
, (20)

where C = 1/[(2π)N (detM)]1/2 normalizes the expression,
making sure that the integral of PX(f), over all f ∈ RN , is
equal to 1. Here, we assume that each 1-point distribution
is Gaussian with zero mean. The matrix M−1 is the inverse
of the N ×N covariance matrix with entries

Mij = 〈f(xi)f(xj)〉 , (21)

in which the angle bracket denotes the ensemble average of
the product, over the 2-point probability density function. In
effect, M is the generalization of the variance of a 1-point
normal distribution, and we indeed have M = [σ2

0 ] for the
case N = 1.

Equation (20) shows that a Gaussian random is fully spec-
ified by the autocorrelation function, ξ(r), which expresses
the correlation between the density values at two points
separated by a distance r = |r|,

ξ(r) = ξ(|r|) ≡ 〈f(x)f(x + r)〉 . (22)

Here we use the statistical cosmological principle, which
states that statistical properties of e.g. the cosmic density
distribution in the Universe are uniform throughout the Uni-
verse. It means that the distribution functions and moments
of fields are the same in each direction and at each location.
The latter implies that ensemble averages depend only on
one parameter, namely the distance between the points. In
other words, the entries in the matrix are the values of the
autocorrelation function for the distance between the points:
Mij = ξ(rij), with rij = ‖xi − xj‖ .

An impression of a typical Gaussian random field may
be obtained from the three-dimensional realization shown
in the left panel of Figure 12. The field is chosen using



Figure 12. Left: five slices through a realization of a Gaussian random field, with the color reflecting the density, running from bright yellow (high)
to dark red (low). It is an LCDM density field in a box of 100h−1Mpc, Gaussian filtered on a scale of 5h−1Mpc. Right: expected Betti numbers and
expected reduced genus of the superlevel sets in a Gaussian random field, as functions of the density threshold, ν.

the power spectrum for the standard LCDM cosmology
with some Gaussian filtering; see e.g. [61], [66]. The image
illustrates that Gaussian random fields are symmetric, i.e.
negative values are as likely as positive values.

B. Power Spectrum

A stochastic random density field is composed of a
spectrum of density fluctuations, each of a different scale.
The relative amplitudes of small-scale and large-scale fluc-
tuations is of decisive influence on the outcome of the
subsequent gravitational evolution of the density field and
on the emerging patterns in the spatial density distribution.

To describe the multiscale composition of a density field,
we write it as a sum of individual harmonic waves, i.e. in
terms of its Fourier sum. Each of the waves is specified by its
wave vector k = (kx, ky, kz) ∈ R3, describing the direction
and spatial frequency of the wave. The latter is determined
by the magnitude of the wave vector,

k = |k| =
√

k2
x + k2

y + k2
z , (23)

which is the inverse of the wavelength, λ = 2π/k. Subse-
quently, we write the field f(x) as the Fourier integral,

f(x) =
∫

dk
(2π)3

f̂(k) e−ik·x , (24)

where eiϕ = cos ϕ + i sin ϕ, as usual, and k · x the
inner product between the wave vector, k, and position
vector, x. The Fourier components, f̂(k) ∈ C, represent
the contributions by the harmonic wave exp(ik · x) to the
field f(x). They are given by the inverse Fourier transform,

f̂(k) =
∫

dx f(x) eik·x . (25)

Because the density field is always real, f(x) ∈ R, the
Fourier components f̂(k) ∈ C obey the symmetry constraint

f̂(k) = f̂∗(−k) . (26)

It identifies f̂(k) with the complex conjugate of the Fourier
component of the wave vector −k, i.e. of the wave with the
same spatial frequency oriented in the opposite direction.

The power spectrum is formally defined as the mean
square of the Fourier components, f̂(k), of the field. It can
be computed from the Fourier components using the Dirac
delta function, δD : R→ R, which is the limit of the normal
distribution, whose variance goes to zero. Most importantly,
the integral of the Dirac delta function is assumed to be 1.
Now, we have

〈f̂(k)f̂(k′)〉 = (2π)3/2 P (k) δD(k− k′) , (27)

and we can compute the power spectrum accordingly. We
note that because of the statistical isotropy of the field, we
have P (k) = P (k′), whenever |k| = |k′|. We can therefore
introduce the 1-dimensional power spectrum, defined by
P (k) = P (k) for every k, which we refer to by the same
name, for convenience.

The power spectrum is the Fourier transform of the
autocorrelation function ξ(x), which is straightforward to
infer from equations (22) and (27),

ξ(x) =
∫

dk
(2π)3

P (k)e−ik·x , (28)

where x is a point in the volume with |x| = x.
Because of the (statistical) isotropy of the field f(x), it

is straightforward to perform the angular part of the integral



over the 2-sphere, to yield the following integral expression
for the autocorrelation function:

ξ(x) =
∫

k2 dk

2π2 P (k)
sin kx

kx
, (29)

with k = |k| and x = x..
From the above we find that the power spectrum is a

complete characterization of a homogeneous and isotropic
Gaussian random field. Within its cosmological context, the
power spectrum encapsulates a wealth of information on the
parameters and content of the Universe. Its measurement is
therefore considered to be a central key for the understanding
of the origin of the cosmos.

C. Fourier Decomposition

The unique nature of Gaussian fluctuations is particularly
apparent when considering the stochastic distribution of the
field in terms of its Fourier decomposition. The assumption
of Gaussianity means that the stochastic distribution of the
Fourier components

f̂(k) = f̂ re(k) + if̂im(k)
= |f̂(k)| ei θ(k) (30)

involves a random phase, θ(k), in the complex plane.
This follows from the mutual independence of its real and
imaginary parts, each of which is a Gaussian variable.
While the phase, θ(k), has a uniform distribution over the
interval [0, 2π], the amplitude, r = |f̂(k)|, has a Rayleigh
distribution:

P(r) =
r

s
exp

[
− r2

2s

]
, (31)

where s = P (k) is the power spectrum value at spatial
frequency k.

Subsequently determining the probability of the field
realization f(x) in terms of the probability density func-
tion of its Fourier decomposition, one finds the interesting
result that it is the product of the individual probability
distributions of each of the individual Fourier components
f̂(k), each Gaussian distributed with zero mean and variance
σ2(k) = P (k). It is most straightforward to appreciate this
by assessing the probability of the entire field f(x).

To infer the probability P[f ] of f(x), we take the N -point
joint probabilities for the limit of N → ∞ with uniform
spatial sampling, the summations appearing in equation (20)
may be turned into integrals. The resulting expression for the
infinitesimal probability P[f ] with measure D[f ],

P[f ] = e−S[f ]D[f ] , (32)

involves the probability density of the field, exp (−S[f ]).
The square brackets in P[f ] and S[f ] indicate that these are
functionals, i.e., they map the complete function f(x) to one
number. The probabilit density is similar to the quantum-
mechanical partition function in path integral form, where

S is the action functional (see [62]). For a Gaussian random
field the expression for the action S may be inferred from
equation (20),

S[f ] =
1
2

∫
dx1

∫
dx2 f(x1)K(x1 − x2)f(x2) , (33)

where K is the functional inverse of the correlation function
ξ, ∫

dxK(x1 − x)ξ(x− x2) = δD(x1 − x2) , (34)

and δD the Dirac delta function. By transforming this
expression for the action S[f ] to Fourier space, one finds
the integral expression (see [62], appendix B),

S[f ] =
∫

dk
(2π)3

|f̂(k)|2
2P (k)

. (35)

This immediately demonstrates that a Gaussian field has the
unique property of its Fourier components being mutually
independent. It has the practical virtue of considerably
simplifying the construction of Gaussian fields by sampling
its Fourier components.

D. Betti Numbers

To determine the Betti numbers of a Gaussian field, we
consider the density values sampled on a regular grid and as-
sess the topology of the superlevel sets. We adopt a 643 grid,
and sample the field inside a box of size 100h−1Mpc. The
density values are smoothed on a filter scale 2.0h−1Mpc.
Subsequently, we determine the Betti numbers of superlevel
sets, the agglomerate of regions consisting of the voxels
whose density is in excess of νσ(Rf ), where σ2(Rf ) is
the variance of the density field on the filter scale Rf .

Having outlined the superlevel sets, parameterized by the
threshold value ν, we subsequently determine their Betti
numbers. To this end, we use the code of Kerber [67],
which determines the cycles for the superlevel sets sampled
on a grid, and subsequently produces the corresponding
homology groups and their ranks, i.e. the Betti numbers
βp(ν). By following this procedure over a threshold level
range ν ∈ [−5.0, 5.0], we can evaluate the systematic
behavior of the Betti numbers as function of ν. Note that a
different algorithm was used in [64]. The fact that the results
are similar is reassuring.

The right panel of Figure 12 depicts the curves for β0(ν),
β1(ν), and β2(ν). The first major impression is the dominant
peak of β1(ν) at ν = 0 (green dashed curve). This relates
to the fact that tunnels prevail the topological structure of
the outlined regions, which in a Gaussian field are known
to possess an intricate sponge-like topology [9]. The region
of points with density value at most ν = 0 consists of very
few massive structures that percolate through the volume
and, by symmetry, the same is true for the region of points
with density value at least ν = 0. It is not hard to imagine
that this goes along with a large number of tunnels.



Going away from ν = 0 in either direction, we see
that β1 quickly drops to a negligible level. This marks the
transition towards a topology marked by individual objects,
either clumps for positive ν or voids for negative ν, and this
goes along with the disappearance of tunnels. Proceeding to
higher levels, we find a quick rise of β0 (blue dotted curve),
the number of over-dense regions in the volume. This is a
manifestation of the breaking up into individual high-density
regions of the percolating volume at ν = 0. The number of
components reaches its maximum for ν approximately equal
to
√

3. Beyond that value, the number of individual clumps
decreases rapidly, as a result of the decreasing probability
of regions having a density that high. It is interesting that
the behavior of β2 (red solid curve) is an almost perfect
reflection of the behavior of β0 through the zero density
level. It documents the growing prominence of voids for
negative and shrinking density threshold. Here we find a
maximum value for ν approximately equal to −√3.

We note that we would get perfect symmetry if we
replaced the number of components by the number of gaps
between them, which is β0 − 1. As mentioned, β2 goes to
zero rapidly as ν increases beyond 0, and β0 − 1 goes to
zero rapidly as ν decreases below 0. However, at ν = 0,
both are small but clearly positive. The expected number of
components at ν = 0 is thus small but larger than 1, with
an expected number of voids that is precisely one less than
for the components.

E. Gaussian Fields Versus the Cosmic Web

It is interesting to compare these results with the homol-
ogy we find in the web-like configuration of the evolved Uni-
verse. Besides the disappearance of symmetry between high-
density and low-density regions, reflected in a substantially
different behavior of β0 and β2, there are a few additional
differences as well as similarities.

In evolving LCDM density fields, we find that β1 is almost
always in excess of β2: the number of tunnels in the Cosmic
Web tends to be several factors higher than the number
of enclosed voids; see Figure 10. However, the advanced
nonlinear mass distribution is marked by a substantially
higher number of individual components than found in the
Gaussian field. This partially reflects the difference of an
alpha shape based analysis and one based on level sets
defined for a fixed Gaussian filter radius. In the alpha shape
analysis, the substructure of an intrinsically multiscale mass
distribution emerging through an hierarchical is not lost.
At small values of α one finds the small clumps that in
a Gaussian filtered field have been removed.

F. Genus and Homology

It is interesting to relate the results on the Betti numbers
depending on a threshold value with the analytically known

expression for the expected reduced genus11 in a Gaussian
random field [9], [10]. This expression is

g(ν) = − 1
8π2

( 〈k2〉
3

)3/2

(1− ν2)e−ν2/2, (36)

where 〈k2〉 = 〈|∇f |2〉/〈f2〉. Other than its amplitude, the
shape does not depend on the power spectrum but only on
whether or not the field is Gaussian. Recall from (10) that the
genus of an isodensity surface is directly related to the Betti
numbers of the enclosed superlevel sets, via the alternating
sum

g(ν) = −β0(ν) + β1(ν)− β2(ν). (37)

We may therefore compare the outcome of our superlevel set
study to the expected distribution for the genus in (36). In
Figure 12, the magenta dotted dashed line is the genus g(ν)
computed from the alternating sum (37). It closely matches
the predicted relation (36); see [64]. It is most reassuring
that the peaks of β0 and β2 are reached at the threshold
value where, according to (36), g(ν) has its two minima, at
ν = −√3 and ν =

√
3.

Having established the cosmologically crucial Gaussian
basis of the Betti number analysis, a few more interesting
findings follow from our analysis in [64]. While the shape
of the genus function is independent of the power spectrum,
it turns out that the Betti numbers do reflect the power
spectrum. In particular, for small absolute values of ν, there
are substantial differences between the Betti numbers in
Gaussian fields with different power spectra. This makes
them potentially strong discriminators between cosmological
scenarios. On the other hand, the differences are perfectly
symmetric between β0−1 and β2, and β1 is symmetric itself.
The Betti numbers may therefore be useful for tracing non-
Gaussianities in the primordial Universe, a major point of
interest in current cosmological studies.

G. Gaussian Betti Correlations

Finally, [64] also assess the correlations in Gaussian fields
between the various Betti numbers. They find that the Betti
numbers are not independent of one another. For example,
β0 near its maximum (ν = 1.7) is positively correlated with
β1 at low threshold levels, while there are other levels where
β0 and β1 are anti-correlated.

The important implication is that we need to take into
account the mutual dependence of the Betti numbers. This
will be largely dependent on the nature of the density field.
On the other hand, in general the correlation is not perfect.
In other words, the Betti numbers contains complementary

11In section II-A we remarked that the genus g in cosmological studies is
slightly differently defined than the usual definition of the genus G (eqn. 1).
The genus, g, in these studies has been defined as the number of holes minus
the number of connected regions: g = G− c. In this review we distinguish
between these definitions by referring to g as the reduced genus.



Figure 13. Illustrating the idea of persistence. The alpha shapes of a set of points randomly chosen in a 2-dimensional annulus. Left: for a small value of
α, the alpha shape has 18 holes. Right: for a somewhat larger value of α, the alpha shape has only two holes. One of these holes is new, while the other
already existed on the left, albeit in somewhat different form. We say the latter hole persists over the entire interval delimited by the two alpha shapes.

information on the topological structure of e.g. the cosmic
mass distribution.

IX. PERSISTENCE

The one outstanding issue we have not yet addressed
systematically is the hierarchical substructure of the Cosmic
Web data. In standard practice, the multiscale nature of the
mass distribution tends to be investigated by means of user-
imposed filtering. Persistence rationalizes this approach by
considering the range of filters at once, and by making
meaningful comparisons. At the same time, it deepens the
approach by combining it with topological measurements:
the homology groups and their ranks.

Persistence entails the conceptual framework and lan-
guage for separating scales of a spatial structure or density
distribution. It was introduced by Edelsbrunner, Letscher and
Zomorodian [68]; see also the recent text on computational
topology [43] of which persistent homology forms the core.
By separating the scales in a mass distribution, one may
analyze and map the topological hierarchy of the cosmos.
Within this context, substructures can be separated by deter-
mining the range of scales over which they exist. Here, we
find a close link to Morse theory, in which the crucial new
idea contributed by persistence is the pairing of all critical
points depending on a global topological criterion. A recent
discussions of persistence in the cosmological context can
be found in the work of Sousbie et al. [29], [69].

A. Persistence of Alpha Shapes
Alpha shapes provide the perfect context to illustrate the

essential idea of persistence, which is to follow components,

tunnels, and voids over the entire range of the parameter,
α. The 2-dimensional illustration in Figure 13 shows how
the small scale holes in the left frame disappear when we
increase the parameter in the right frame. This is not to say
that the value of α chosen on the right is perfect for the
data set; indeed, we see a new, larger hole appear that did
not yet exist on the left. The key point is that each feature
is born at some value of α, and dies at another value of
α. The interval between birth and death sets the position of
the feature within the structural hierarchy. In particular, the
length of the interval, that is, the absolute difference between
the values of α at the birth and at the death, is called the
persistence of the feature.

The full implementation of persistence in our topological
study will be addressed in future publications; e.g. [65].
Here, we briefly address its effect on the Betti number analy-
sis. We assess the matter distribution for three cosmological
scenarios: LCDM, and RP and SUGRA quintessence. Each
is used in a many-body simulation, generating a discrete
point distribution in 3-dimensional space that reflects the
intricate multi-scale organization of matter. For each dataset,
we compute the entire range of alpha shapes, encoded
for efficiency reasons in the Delaunay triangulation of the
points, and we follow each cycle through the sequence of
alpha shapes, recording when it is born and when it dies.
Separating the results for different homological dimensions
(p = 0 for components, p = 1 for tunnels, and p = 2 for
voids), we show the statistics for p = 1 in Figure 14. On
the left, we see the 1-dimensional persistence diagrams of
the three datasets. Each dot represents a 1-cycle in the alpha



Figure 14. Persistent homology for the Cosmic Web simulations. Left: the 1-dimensional persistence diagrams of the LCDM simulation and of two
quintessence simulations representing the RP and SUGRA dark energy models. Right: the curves describing the evolution of the first and second Betti
numbers for growing value of α. In addition to giving the Betti numbers, at every value of α, we show how many of the counted features belong to the
top 90%, 70%, 50%, 30%, 10% most persistent features in the entire population.

shape filtration. Its horizontal coordinate gives the value of
α at which the 1-cycle is born, which happens when its last
edge is added to the alpha shape. The vertical coordinate of
the dot gives the value of α at which the 1-cycle dies, which
happens when the last triangle completes a membrane filling
the tunnel formed by the cycle.

In all three diagrams, we see a substantial number of 1-
cycles that die shortly after they are born. They correspond
to dots close to and right above the diagonal line in the
diagram. This is typical for natural data, in which we
see features appear and disappear in rapid progression at
all times. This “topological noise” creates a deceivingly
complicated picture, obscuring the cleaner picture of more
persistent features. In our datasets, there are also a good
number of 1-cycles that remain for a while after they
are born. They correspond to dots that are further up in
the persistence diagram, with the vertical distance to the

diagonal representing the measured persistence.

B. Persistence and Scale

The promise of persistence is that it gives access to data
on different scale levels. This is particularly important for the
Cosmic Web, where we observe structure on almost every
scale. The goal would be to separate scales, or quantify them
in such a way that relations between scales become explicit.

To probe this aspect of persistence, we use a persistence
parameter, λ, that restricts our attention to features of
persistence at least λ. In our experiment, we adjusted the
parameter so that a specified percentage of the features (dots)
have persistence at least λ. All dots with persistence less
than λ are removed. The effect on the Betti numbers of the
LCDM simulation data is illustrated in the two right frames
of Figure 14. The top frame shows six evolutions of β1 for
increasing values of α: for 100%, 90%, 70%, 50%, 30%,



and 10% of the most persistent 1-cycles. The bottom frame
shows the same information for β2.

The features with small persistence can be considered
noise. They may be reflections of numerical inaccuracies in
computations, artefacts of the data representation, measuring
errors, or genuine features that are too small for us to dis-
tinguish them from noise. In practical astrophysical circum-
stances, datasets are indeed beset by a variety of artefacts.
As a result, the alpha shapes of discrete point distributions,
such as the galaxies in our local cosmic environment, will
reflect the noise. The induced irregularities in the number
of components, tunnels, and voids do not represent any
real topological structure but nonetheless influence the Betti
numbers we collect. Persistence diagrams offer the real
opportunity to remove the noise without introducing side-
effects, and they may help in defining the usually ill-
specified noise distribution.

X. CONCLUSIONS AND PROSPECTS

In this overview we have discussed and presented an
analysis of the homology of cosmic mass distributions. We
have argued that Betti numbers of density level sets and
of the corresponding isodensity surfaces provide us with a
far more complete description of the topology of web-like
patterns in the megaparsec Universe than the well-known
genus analysis or the topological and geometric instruments
of Minkowski functionals. The genus of isodensity surfaces
and the Euler characteristic, the main topological Minkowski
functional, are directly related to Betti numbers and may be
considered as lower-dimensional projections of the homo-
logical information content in terms of Betti numbers.

We have established the promise of alpha shapes for mea-
suring the homology of the megaparsec galaxy distribution
in the Cosmic Web. Alpha shapes are well-defined subsets of
Delaunay tessellations, selected following a strictly defined
scale parameter α. These simplicial complexes constitute a
filtration of the Delaunay tessellations, and are homotopy
equivalent to the distance function field defined by the point
distribution. Alpha shape analysis has the great advantage of
being self-consistent and natural, involving shapes and sur-
faces that are entirely determined by the point distribution,
independent of any artificial filtering.

By studying the Betti numbers and several Minkowski
functionals of a set of heuristic Voronoi clustering models, as
well as dark energy cosmological scenarios (LCDM, and RP
and SUGRA quintessence), we have illustrated the potential
for exploiting the cosmological information contained in
the Cosmic Web. We have analyzed the evolution of Betti
numbers in an LCDM simulation, and compared the dis-
criminative power of Betti curves for distinguishing between
different dark energy models. In addition, we have addressed
the significance of Betti numbers in the case of Gaussian
random fields, as these primordial density fields represent

the reference point for any further analysis of the subsequent
cosmic structure evolution.

Related Work
The mathematical fundamentals of our project, including a
full persistence analysis, will be extensively outlined and
defined in the upcoming study of Pranav, Edelsbrunner et
al. [65]. In addition to an evaluation on the basis of the
simplicial alpha complexes, it also discusses and compares
the homology analysis on the basis of isodensity surfaces,
superlevel and sublevel sets, and their mutual relationship.
This includes an evaluation of the results obtained on the
basis of a piecewise linear density field reconstructions on
Delaunay tessellations, following the DTFE formalism [26],
[27], [28].

In related work, [29] and [69] recently published an im-
pressive study on the topological analysis of the Cosmic Web
within the context of the skeleton formalism [70], [71], [72].
Their study used the DTFE density field reconstructions and
incorporated the complexities of a full persistence analysis
to trace filamentary features in the Cosmic Web.

In two accompanying letters we will address cosmological
applications of homology analysis. In [25] the ability of
Betti numbers to discriminate between different dark energy
cosmological scenarios will be demonstrated. Crucial for
furthering our understanding and appreciation of the signifi-
cance of measured Betti numbers in a cosmological context,
is to know their values in Gaussian random density fields.
With cosmic structure emerging from a primordial Gaussian
field, the homology of these fields forms a crucial reference
point. In the study by Park et al. [64] we have analyzed this
aspect in more detail.
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J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page,
H. V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut,
M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L.
Weiland, E. Wollack, and E. L. Wright, “Three-Year Wilkin-
son Microwave Anisotropy Probe (WMAP) Observations:
Implications for Cosmology,” Astrophys.J.Suppl., vol. 170, pp.
377–408, Jun. 2007.

[59] E. Komatsu, K. M. Smith, J. Dunkley et al., “Seven-Year
Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions: Cosmological Interpretation,” eprint arXiv:1001.4538,
January 2010.

[60] R. J. Adler and J. E. Taylor, “Random fields and geometry,”
2007.

[61] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, “The
statistics of peaks of Gaussian random fields,” Astrophys.J.,
vol. 304, pp. 15–61, May 1986.

[62] R. van de Weygaert and E. Bertschinger, “Peak and gravity
constraints in Gaussian primordial density fields: An appli-
cation of the Hoffman-Ribak method,” Mon. Not. R. Astron.
Soc., vol. 281, pp. 84–+, Jul. 1996.

[63] R. J. Adler, O. Bobrowski, M. S. Borman, E. Subag, and
S. Weinberger, “Persistent homology for random fields and
complexes,” Collections, vol. 0, no. 0000, pp. 1–6, 2010.
[Online]. Available: http://arxiv.org/abs/1003.1001

[64] C. Park, P. Chingangbam, R. van de Weygaert, G. Vegter,
I. Kim, J. Hidding, W. Hellwing, and P. Pranav, “Betti
numbers of gaussian random fields,” Astrophys. J., 2011, to
be subm.

[65] P. Pranav, H. Edelsbrunner, R. van de Weygaert, and G. Veg-
ter, “on the alpha and betti of the universe: Multiscale
persistence of the cosmic web,” Mon. Not. R. Astron. Soc.,
2011, to be subm.

[66] D. J. Eisenstein and W. Hu, “Baryonic Features in the Matter
Transfer Function,” Astrophys.J., vol. 496, pp. 605–+, Mar.
1998.

[67] P. Bendich, H. Edelsbrunner, and M. Kerber, “Computing
robustness and persistence for images,” IEEE Trans. Vis.
Comput. Graph., vol. 16, no. 6, pp. 1251–1260, 2010.

[68] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topolog-
ical persistance and simplification,” Discrete and Computa-
tional Geometry, vol. 28, pp. 511–533, 2002.

[69] T. Sousbie, C. Pichon, and H. Kawahara, “The persistent
cosmic web and its filamentary structure - II. Illustrations,”
Mon. Not. R. Astron. Soc., pp. 530–+, Apr. 2011.

[70] T. Sousbie, C. Pichon, H. Courtois, S. Colombi, and
D. Novikov, “The Three-dimensional Skeleton of the SDSS,”
Astrophys. J. Lett., vol. 672, pp. L1–L4, Jan. 2008.

[71] T. Sousbie, C. Pichon, S. Colombi, D. Novikov, and
D. Pogosyan, “The 3D skeleton: tracing the filamentary
structure of the Universe,” Mon. Not. R. Astron. Soc., vol.
383, pp. 1655–1670, Feb. 2008.

[72] T. Sousbie, S. Colombi, and C. Pichon, “The fully connected
N-dimensional skeleton: probing the evolution of the cosmic
web,” Mon. Not. R. Astron. Soc., vol. 393, pp. 457–477, Feb.
2009.


