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Abstract
We consider the simultaneous movement of finitely many
colored points in space, calling it aspatial sorting process.
The name suggests a purpose that drives the collection to a
configuration of increased or decreased order. Mapping such
a process to a subset of space-time, we use persistent homol-
ogy measurements of the time function to characterize the
process topologically.
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1 Introduction
Motivated by the observation of cell communities over time,
we propose a topological expression of the process that facil-
itates the identification and quantification of its features. In
this manuscript, we focus on the mathematical framework.

Motivation. The specific motivation for the work de-
scribed in this paper is the experimental data on cell seg-
regation in the developing zebrafish imaged by Heisenberg
and Krens [9]. Making cells of two populations observable
through fluorescent markers, they follow them through time,
assigning each population (cell type) its own unique color.In
this particular case, the two populations start spatially mixed
and end in spatially segregated configurations. The segrega-
tion is captured by a series of3-dimensional images, which
we turn into a shape in space-time.
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Spatial segregation is a special case of the broader class of
spatial sorting processes, in which we are given one or more
distinguishable populations of particles (points in space), and
we are interested in characterizing their spatial rearrange-
ment in time. We aim at characterizing the spatial sorting
process through detailed measurements of its features. The
quantification may be used to establish a classification of
spatial sorting processes or, on a finer scale, to differentiate
between realizations of the same process. A common biolog-
ical application is the establishment of phenotypes that can
help in the classification of genetic influences. Once we have
a description of the process beyond initial and final states,we
may ask more subtle questions, such as whether an observed
inverse process has a symmetric characterization.

Results. Our contributions are primarily mathematical,
with the goal of using the insights toward the quantitative
analysis of experimental time-series data:

(i) we modela spatial sorting process as a shape in space-
time with descriptive topological properties;

(ii) we measurethis shape using the persistent homology of
the time function;

(iii) we providea classification of the measurements, inter-
preting them as aspects of the process.

Note that measuring the process in space-time is different
from taking the trajectory of measurements of the sequence
of time-slices. Indeed, we will distinguish betweentempo-
rary space-time features, that can be observed in slices, from
fleetingfeatures that cannot be so observed. The latter re-
quire memory and temporal reasoning and are therefore less
readily accessible to an observer who lives in time.

The main idea of our approach is to turn the time-series of
geometric data into a4-dimensional topological space whose
connectivity is descriptive of the spatial sorting process. The
construction takes three steps to produce the measurements:



STEP 1: construct the Voronoi tessellation to turn the data
in a time-slice into a subset ofR3;

STEP 2: maintain the construction through time, effectively
sweeping out a subset ofR3 × [0, 1];

STEP 3: measure the constructed subset of space-time using
the persistent homology of its time function.

We explain the first two steps in Section 2 and the third step
in the Section 3. Details of the corresponding algorithms
and their implementations can be found in [10]. Section 4
discusses the information provided by persistent homology.
Section 5 illustrates the ideas by running the corresponding
algorithms on simulated data. Section 6 concludes the paper.

2 Geometry
In this section, we introduce the sets and complexes we use
to model spatial sorting processes. In Euclidean space, we
call them tessellations, triangulations, andcomplexes, and
in space-time, we call themmedusas. They all consist of
cells of various dimensions, but because we also talk about
cells in the biological sense, we will use special names, such
asVoronoi cellsandsimplicesin Euclidean space, andstacks
andprismsin space-time, whenever possible.

2.1 A Moment in Time

The input data is a finite set of colored points inR
3. Writing

the color as subscript, we letU be the union ofU1 to Uk,
assumingUi ∩ Uj = ∅ for all i 6= j.

Voronoi tessellation and Delaunay triangulation. The
Voronoi cellof u ∈ U consists of allx ∈ R

3 for which u
minimizes the Euclidean distance among all points inU :

vor(u) = {x ∈ R
3 | ‖x− u‖ ≤ ‖x− v‖, v ∈ U}.(1)

The set of Voronoi cells,V = V (U) = {vor(u) | u ∈ U}, is
theVoronoi tessellationof U . For each1 ≤ ℓ ≤ k, we write
Vℓ = {vor(u) | u ∈ Uℓ} for the subset of Voronoi cells of
that color. Note thatV is the disjoint union ofV1, V2, . . . , Vk.
It is often convenient to work with the dual instead of di-
rectly with the Voronoi tessellation. Abstractly, this is the
nerveof the set of Voronoi cells, that is: the system of sub-
sets whose Voronoi cells have a non-empty common inter-
section. Assuming general position of the points inU , the
number of Voronoi cells that can have a non-empty common
intersection is at most4. We represent each set in the nerve
by the convex hull of the points that generate its Voronoi
cells, which can be a vertex, and edge, a triangle, or a tetra-
hedron. Together, these convex hulls form a simplicial com-
plex, known as theDelaunay triangulationofU , and denoted

Figure 1: The full subcomplexes defined by the two colors of a
bi-chromatic Delaunay triangulation in the Euclidean plane.

asD = D(U). For each1 ≤ ℓ ≤ k, we writeDℓ for the
full subcomplex ofD that consists of all vertices of colorℓ
and all edges, triangles, and tetrahedra that connect them.As
illustrated in Figure 1 forR2, the full subcomplexes of dif-
ferent colors are disjoint, with multi-colored edges, triangles,
and tetrahedra between them.

Restricted Voronoi tessellation and alpha complex. In
a loose configuration, a biological cell would generally not
occupy the entire space alloted to it by the Voronoi cell of its
nucleus. To better approximate the space used by the cell,
we therefore choose a fixed positive radius,α0, and consider
the restrictionof the Voronoi cell to the ball centered at the
generating point:

res(u) = {x ∈ vor(u) | ‖x− u‖ ≤ α0}. (2)

Similar to before, we writeR = R(U) for the set of re-
stricted Voronoi cells, andRℓ ⊆ R for the subset of cells
generated by points of colorℓ. Clearly, R is the disjoint
union of R1, R2, . . . , Rk. Note thatres(u) ⊆ vor(u) for
each pointu ∈ U . It follows that the nerve ofR is iso-
morphic to a subsystem of the nerve ofV . Accordingly, we
define the dualalpha complexto consist of the simplices in
D whose corresponding restricted Voronoi cells have a non-
empty common intersection, denoting it asA = A(U). For
each1 ≤ ℓ ≤ k, we again have the full subcomplexAℓ ⊆ A
that contains all vertices of colorℓ and all simplices connect-
ing them. Figure 2 illustrates the definitions by restricting the
Voronoi cells in Figure 1 to their disks. Note thatAℓ is also
a subcomplex ofD, but not necessarily a full subcomplex.
Indeed, we haveAℓ = Dℓ ∩ A, soAℓ is a full subcomplex
of D iff Aℓ = Dℓ.

Homotopy equivalence. An important structural relation-
ship between unions of Voronoi cells and their dual com-
plexes follows from the Nerve Theorem; see e.g. [6, page
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Figure 2: The full subcomplexes defined by the two colors of a
bi-chromatic alpha complex in the Euclidean plane.

59]. To state the relationship, we ignore the difference be-
tween a set of Voronoi cells and their union, as well as the
difference between a simplicial complex and its underlying
space. We writeX ≃ Y if the setsX andY have the same
homotopy type; see [13, page 108] for a definition.

LEMMA A. We haveRℓ ≃ Aℓ, for each color1 ≤ ℓ ≤ k.

PROOF. All cells in Rℓ are closed and convex. It therefore
suffices to use the corresponding special version of the Nerve
Theorem. It says that the union of the sets and the nerve of
the collection have the same homotopy type. The claimed
relationships follow becauseAℓ is a geometric realization of
the nerves ofRℓ.

We getVℓ ≃ Dℓ as a special case. Lemma A implies
thatRℓ andAℓ have isomorphic homology groups. Instead
of dealing with the computationally more difficult union of
Voronoi cells, we can therefore compute the homology for
the dual complex, which is a purely combinatorial object.

2.2 Trajectories

Assuming a continuous trajectory for each data point, we
form subsets of space-time by taking unions of Voronoi cells,
both in space and in time. We begin with some definitions.
A trajectory is a continuous mappingu : [a, b] → R

3, with
0 ≤ a < b ≤ 1. We letU be a finite set of trajectories, as-
suming no two intersect in space-time; that is:v(t) 6= u(t)
for all v 6= u in U and allt ∈ [0, 1] for which both trajecto-
ries are defined. Writing[k] for the set{1, 2, . . . , k}, we let
χ : U → [k] be a coloring. At each timet ∈ [0, 1], we have
a finite set of points,U(t) = {u(t) | u ∈ U}, of course taking
only the trajectories witha ≤ t ≤ b. The finite set of points
is also colored, with coloring induced byχ.

Voronoi and Delaunay medusas. For each pointu(t) ∈
U(t), we writevor(u(t)) for its Voronoi cell inR3 × t. The

Voronoi tessellation at timet is denoted asV (t) = V (U(t)),
and the subset of Voronoi cells of colorℓ is denoted as
Vℓ(t) ⊆ V (t). Collecting Voronoi cells in time, we get a
1-parameter family of cells generated by a trajectory:

vor(u) =
⋃

t∈[a,b]

vor(u(t)). (3)

Noting that the Voronoi cells on the right hand side of (3)
lie in distinct parallel copies ofR3, we callvor(u) a stack.
While the Voronoi cell in each time-slice is a3-dimensional
convex polyhedron, the stack itself is neither necessarilycon-
vex nor necessarily polyhedral; see Figure 3 on the left.
Switching fonts, we writeV = V(U) for the set of stacks,
each defined by a trajectory inU. For each1 ≤ ℓ ≤ k, we
write Vℓ = Vℓ(U) for the subset of stacks generated by tra-
jectories of colorℓ. We callV themulti-chromaticand each
Vℓ amono-chromatic Voronoi medusa.

Figure 3: Left: four stack of2-dimensional Voronoi cells. Right:
the four corresponding prisms in the Delaunay medusa connected
by a3-simplex representing the flip between the two ways to trian-
gulate four points.

Similar to stacks of Voronoi cells, we also consider stacks
of Delaunay simplices, which we callprisms. There is an im-
portant difference caused by the occasional sudden change of
the Delaunay triangulation. Such a change is aflip, which ei-
ther replaces two tetrahedra by three, or three tetrahedra by
two; see e.g. [5, page 102]. In4-dimensional space-time,
a flip appears as a (degenerate)4-simplex that connects to
the preceding Delaunay triangulations along two tetrahedra
and to the succeeding Delaunay triangulations along three
tetrahedra, or the other way round. Reducing the insertion
or deletion of a point to a sequence of flips, as described
in [5, Section 5.3], we see that prisms and4-simplices suf-
fice to fully describe the history of the Delaunay triangula-
tion. We writeD = D(U) for the complex inR3 × [0, 1]
andDℓ = Dℓ(U) for the full subcomplex of colorℓ, calling
D the multi-chromaticandDℓ a mono-chromatic Delaunay
medusa. Figure 3 illustrates the definitions inR2 × [0, 1].
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Restricted Voronoi and alpha medusas. Following the
distinction between unrestricted and restricted Voronoi cells,
we extend the latter to space-time in the obvious way. We
thus introduce astackof restricted Voronoi cells,

res(u) =
⋃

t∈[a,b]

res(u(t)), (4)

the set of such stacks,R = R(U), and the complex of prisms
and4-simplices swept out by the simplices in the alpha com-
plex, A = A(U). Furthermore, we introduce the colored
subsets,Rℓ ⊆ R, and the colored subcomplexes,Aℓ ⊆ A,
with ℓ ∈ [k]. We callR the multi-chromaticand eachRℓ

a mono-chromatic restricted Voronoi medusa. Similarly, we
call A the multi-chromaticand eachAℓ a mono-chromatic
alpha medusa.

Homotopy equivalence. The structural relationship be-
tween unions of Voronoi cells and their dual complexes ex-
tends fromR

3 to R
3 × [0, 1]. As before, we simplify the

notation by ignoring the difference between a collection of
cells and its union.

LEMMA B. We haveRℓ ≃ Aℓ, for each colorℓ ∈ [k].

PROOF. As in the proof of Lemma A, we appeal to the Nerve
Theorem to give the claimed relationships. Since the cells
are no longer convex, we use the more general version that
applies to finite collections of closed, contractible sets whose
intersections (of any order) are again contractible.

While each stack inRℓ of any dimension is swept out by
a convex set and is therefore contractible, two stacks can
intersect in two or more (lower-dimensional) stacks, which
prevents the direct application of the Nerve Theorem. We
finesse the difficulty by shrinking each stack at its boundary
and thickening it into a4-dimensional body; see Figure 4.
There is more than one way to do this such that the bodies are
closed and contractible, their union is the same as the union
of the original stacks, and the common intersection ofi + 1
bodies is either empty or a contractible(4 − i)-dimensional
set. For example, we may use the mixed complex defined
for Voronoi cells in [4] to sweep out the bodies. LettingBℓ

be the resulting set of bodies, we consider the nerve, which
we denote byB̄ℓ. As illustrated in Figure 4, this nerve is the
barycentric subdivision of a complex of simplices whose ver-
tices correspond to the original4-dimensional stacks. Note
that this complex isnot necessarily a simplicial complex,
since two simplices may share more than just one common
face. Denoting this complex of simplices bȳAℓ, we have

Rℓ ≃ Bℓ ≃ B̄ℓ ≃ Āℓ, (5)

in which the only non-trivial, middle relation is furnishedby
the Nerve Theorem. To complete the argument, we still need

Figure 4: Three2-dimensional stacks (lightly shaded) giving rise to
a decomposition into nine bodies (shaded). The nerve of the bodies
forms the barycentric subdivision of two triangles.

to show thatĀℓ andAℓ have the same homotopy type. To
do this, we contract each prism inAℓ along the time direc-
tion. Indeed, each prism is a simplex times a time interval,
and the contraction glues the bottom to the top face, effec-
tively turning the prism into a simplex. We do this for all
prisms simultaneously in order to avoid temporary inconsis-
tencies between the prisms and their side faces, which are
lower-dimensional prisms. Eventually, when all prisms have
be contracted, we have turned the medusa intoĀℓ. Since
the contraction preserves the homotopy type, this implies the
claimed relation.

We getVℓ ≃ Dℓ as a special case. Lemma B also im-
plies that we get isomorphic homology groups and can there-
fore do the computation on the dual medusa, or indeed the
complex of simplices,Āℓ, which is a purely combinatorial
object. We refer to it as thedata structurefor the mono-
chromatic alpha medusa; beyond being instrumental in the
proof of Lemma B, it is the main computational tool we use
to implement that algorithms that are only sketched in this
paper; see [10].

2.3 Filtered Sequences

We use the restricted Voronoi medusa to explain filtered se-
quences of spaces, and free up to subscript by focusing the
discussion on the multi-chromatic version.

Sub- and superlevel sets. The appropriately restricted
time function, f |R : R → [0, 1], maps every pointx ∈ R
to its time coordinate,f |R(x). Given a moment in time,
t ∈ [0, 1], the correspondingsublevel setis Rt = f |−1

R [0, t],
and the correspondingsuperlevel setis Rt = f |−1

R [t, 1]. We
will be interested in the filtered sequences:

∅ ⊆ R0 ⊆ . . . ⊆ Rt ⊆ . . . ⊆ R1 = R, (6)

∅ ⊆ R1 ⊆ . . . ⊆ Rt ⊆ . . . ⊆ R0 = R. (7)
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They capture the evolution of the restricted Voronoi medusa
in a way that allows us to compare different states without
the burden of computing a correspondence. Similarly, we
consider the time function restricted to the alpha medusa,
define sub- and superlevel sets,At andAt, and form filtered
sequences as before. Importantly, the transformation from
the stacks to the prisms does not change the homotopy type.

LEMMA C. We haveRt ≃ At as well asRt ≃ At, for
all t ∈ [0, 1].

We omit the proof which is similar to that of Lemma B. It
is important to realize that Lemma C extends to all mono-
chromatic medusas.

Complexes of simplices. Following the proof of Lemma
B, we find it convenient to replace the sub- and superlevel
sets of the alpha medusa by complexes of simplices. Specif-
ically, we write Āt for the complex obtained by contract-
ing all prisms inAt in time direction. Symmetrically, we
write Āt for the complex obtained by contracting all prisms
in At. There is an alternative description. Letϕ be a prism
in A, and writefmin(ϕ) andfmax(ϕ) for the minimum and
maximum time values of the points inϕ. We assign these
two values asσmin ≤ σmax to the simplexσ in Ā obtained
by contractingϕ. ThenĀt is the subcomplex of simplices
with σmin ≤ t, andĀt is the subcomplex of simplices with
σmax ≥ t. Note thatĀt and Āt overlap in the simplices
that correspond to the prisms withfmin(ϕ) ≤ t ≤ fmax(ϕ).
Similar to the sub- and superlevel sets, the complexes of sim-
plices form filtered sequences:

∅ ⊆ Ā0 ⊆ . . . ⊆ Āt ⊆ . . . ⊆ Ā1 = Ā, (8)

∅ ⊆ Ā1 ⊆ . . . ⊆ Āt ⊆ . . . ⊆ Ā0 = Ā, (9)

Again, the transformation does not affect the homotopy type.
Indeed, the complexes forming the filtered sequences in (8)
and (9) are reminiscent of the lower- and upper-star filtra-
tions we find in [6].

3 Algebra
In this section, we turn the spaces of Section 2 into alge-
braic information. The foundation of the transformation is
the classical notion of homology, which we review. The in-
formation is summarized in persistence diagrams, which we
introduce for modules obtained from sub- and superlevel sets
of the time function.

3.1 Measuring Connectivity

Homology groups detect and count holes in a single space.
We begin with a brief introduction of this classical subject;
see [13] for more information.

Homology groups. Consider a simplicial complex, per-
haps an alpha complex,A, which consists of simplices of
dimension0 ≤ p ≤ 3. Fixing a field of coefficients,F,
we call a formal sum of the formγ =

∑
ciσi a p-chain, in

which theci are elements ofF and theσi arep-simplices in
A, each with a fixed orientation. Theboundaryof thep-chain
is the similarly weighted sum of boundaries of the simplices:
∂pγ =

∑
ci∂pσi, in which ∂pσi is the sum of the(p − 1)-

simplices that are its faces. We callγ a p-cycleif ∂pγ = 0,
and we callγ ap-boundaryif there is a(p+ 1)-chainδ with
γ = ∂p+1δ. The chains thus formchain groupsconnected by
boundary homomorphisms,∂p : Cp → Cp−1. Similarly, the
cycles formcycle groups, the kernels of the boundary homo-
morphisms,Zp = ker ∂p, and the boundaries formbound-
ary groups, the images of the boundary homomorphisms,
Bp = im ∂p+1. Since the boundary of a boundary is neces-
sarily zero, we haveBp ⊆ Zp and we can take the quotient,
Hp = Zp/Bp, which is thep-th homology group. Homology
groups can be defined quite generally, for example, as ex-
plained above for triangulations of topological spaces. Since
we choose the coefficients from a field, all groups we men-
tioned are vector spaces, which are characterized by their
ranks. For thep-th homology group, the rank is called the
p-th Betti number, denoted asβp = rankHp.

For a space of dimensionk, the only possibly non-zero
Betti numbers areβ0 to βk. In our case,A has dimension at
mostk = 3, and we haveβ3 = 0 because every3-chain inR3

has non-zero boundary. The remaining three possibly non-
zero Betti numbers have intuitive interpretations:β0 counts
components,β1 counts loops, andβ2 counts completely sur-
rounding walls. We get additional intuition by observing that
the connectivity of the complement space,R

3 − A, depends
on the connectivity ofA, a relation formalized by Alexander
Duality [13, p. 424]. We refer to the elements of the homol-
ogy group of the complement space as theholesof A. Dis-
tinguishing between the different dimensions,β0 − 1 counts
gaps between the components,β1 counts tunnelspassing
through the loops, andβ2 countsvoidssurrounded by walls.
We will compute Betti numbers for medusas inR3 × [0, 1].
While more complicated than in3-dimensional space, we
can still interpret the Betti numbers in terms ofevolutions
of gaps, tunnels, and voids, as we will explain in Section 4.

In addition to single spaces, we take the homology of pairs
in which the second space is a subset of the first, such as
(R,Rt), for example. Thep-th relative homology group,
denoted asHp(R,Rt), is defined the same way asHp(R)
except that differences inRt are ignored. In other words, two
chains are the same if they agree on all simplices inR−Rt,
etc. To get an intuition for these groups, we may add the cone
over Rt. Then the rank ofHp(R,Rt) is the same as the
rank of thep-th absolute homology group for the modified
complex, except forp = 0, where it is one less.
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Ordinary and extended persistence modules. In the lan-
guage of category theory, homology is a functor that maps
a space, or a pair of spaces, to a sequence of groups, one
for each dimension. To simplify the notation, we writeH =⊕

p Hp for the direct sum of the individual groups. This frees
up the subscript, which we use to index the homology groups
of a filtered sequence. Letting0 = t1 < t2 < . . . < tm = 1
be the homological critical values offR, we note that the
homology group is constant for allti ≤ t < ti+1. Hence, it
suffices to list the finitely many groupsRi = H(Rti) to de-
scribe the entire1-parameter family, giving a finite sequence
of homology groups connected by homomorphisms induced
by inclusion:

0 = R0 → R1 → . . . → Rm = H(R). (10)

We call (10) apersistence module, or more specifically the
ordinary persistence moduleof f . As described in [6, Sec-
tion VII.1], we can use the persistence module to define
births anddeathsof homology classes and arrange them in
pairs. Specifically, a class isborn atRi if it does not belong
to the image ofRi−1, and itdies enteringRj if j is the small-
est index for which the image of the class lies in the image
of Ri−1. The birth-death pair describes a coset of homology
classes and specifies theirpersistenceas the absolute differ-
ence between the function values at the two events, in this
casetj − ti.

The ordinary module (10) allows for homology classes
that are born but never die. These are the classes that de-
scribe the entire medusa,R, which are of particular interest
to us. To get a finite measurement of duration, we extend
the module using the relative homology groups of the form
H(R,Rt). Writing Rm+i = H(R,Rtm−i+1), we get

0 = R0 → . . . → Rm → . . . → R2m = 0, (11)

which we call theextended persistence moduleof f |R. It
begins and ends with the trivial group, which implies that
everything that is born also dies. We thus get a more com-
plete set of measurements of the alpha medusa from (11)
than from (10).

Isomorphic relative homology groups. Lemma C implies
that the (absolute) homology groups of the sublevel sets of
the restricted Voronoi medusa are isomorphic to those of the
alpha medusa. We now show that the same is true for the
relative homology groups.

LEMMA D. The relative homology groupsH(R,Rt) and
H(A,At) are isomorphic, for allt ∈ [0, 1].

PROOF. Recall the exact sequences of the two pairs, which
we write from left to right and in parallel:

Hp(At)→Hp(A)→Hp(A,At)→Hp−1(At)→Hp−1(A)
↓ ↓ ↓ ↓ ↓

Hp(Rt)→Hp(R)→Hp(R,Rt)→Hp−1(Rt)→Hp−1(R).

By Lemma C, the vertical maps between the first, second,
fourth, and fifth groups are isomorphisms. The diagram
commutes because all maps are induced by inclusion. The
Steenrod Five Lemma thus implies that the vertical maps be-
tween the middle groups is also an isomorphism [13, p. 140].

Similar to Lemma C, Lemma D extends to the mono-
chromatic case.

3.2 Persistent Homology

It is instructive to display the information contained in a per-
sistence module as a finite multi-set of points (referred to as
dots) in the plane. After explaining how this is done, we
prove that the sequences of homotopy equivalent spaces in-
troduced above give the same diagram.

Persistence diagram. As before, we consider the re-
stricted Voronoi medusa,R, the time functionf |R : R →
[0, 1], and the extended module defined by the sub- and su-
perlevel sets. Thepersistence diagramof f |R, which we de-
note asDgm(f |R), is a multi-set of dots in a double covering
of the plane; see Figure 5. Each dot has two coordinates and
represents a coset of homology classes. These classes have a
homological dimension, which we use to label the dot. Very
often, we consider subdiagrams by limiting ourselves to dots
of a particular dimension. For example,Dgm0(f |R) is the
multiset of dots of homological dimension0, which there-
fore only represents components. The arrows in our draw-
ing indicate the direction of increasing time. Since we have
two phases, one sweeping forward and the other backward
in time, we get every pair of coordinates twice. To explain
this in more detail, we call the two coordinates thebirth and
the deathof the dot (or of the homology classes it repre-
sents). The birth axes appear as−45◦ lines in the figure, and
the death axes as45◦ lines. We decompose the persistence

0 1

0 1

2

2

1 2

1 2

3

3

Dea
th

Ord

Birth

Rel

VclHor

Figure 5: From left to right: the ordinary, the horizontal, the verti-
cal, and the relative subdiagram of the persistence diagram. The
types of dots that can exist in the diagram of a medusa in4-
dimensional space-time are shown.
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diagram into four triangles, referred to as theordinary, hori-
zontal, vertical, relative subdiagrams, denoted asOrd(f |R),
Hor(f |R), Vcl(f |R), Rel(f |R). A dot in Ord(f |R) repre-
sents classes that are born and die during the first phase, a
dot inHor(f |R) orVcl(f |R) represents classes that are born
during the first phase and die during the second phase, and
a dot inRel(f |R) represents classes that are born and die
during the second phase. The difference between a dot in
Hor(f |R) and inVcl(f |R) is that for the former the birth
coordinate is smaller than the death coordinate, while for the
latter it is the other way round. We believe this difference is
important, as we will explain later.

Equivalence. Using Lemmas A to D, we can now make
sure that the diagrams we get from the different medusas are
the same. As before, we limit the discussion to the multi-
chromatic restricted Voronoi and alpha medusas. Letf |R
andf |R be the corresponding time functions.

LEMMA E. Dgm(f |A) andDgm(f |R) are the same.

PROOF. The main tool in this proof is the diagram that con-
nects the homology groups in the two modules:

H(A0)→ . . .→H(A1)→H(A,A1)→ . . .→H(A,A0)
↓ ↓ ↓ ↓

H(R0)→ . . .→H(R1)→H(R,R1)→ . . .→H(R,R0).

By Lemmas C and D, the vertical maps are isomorphisms.
Since the diagram commutes, the claim follows by the Per-
sistence Equivalence Theorem in [6, p. 159].

Similar to Lemmas C and D, Lemma E extends to the
mono-chromatic case, and it implies the same relation for
Delaunay and Voronoi medusas as a special case.

3.3 Images

We expect the measurements for the alpha medusa to be
more meaningful than for the Delaunay medusa, but there
is additional information in the difference. We compare by
studying the images of the homomorphisms induced by the
inclusion of the one in the other medusa. While we use this
ability for mono-chromatic medusas, we simplify the nota-
tion by describing it in the multi-chromatic case.

Image persistence. Recall thatRt, Rt, Vt, andVt are
the sublevel and superlevel sets of the Voronoi medusas, for
t ∈ [0, 1]. By construction, we haveRt ⊆ Vt andRt ⊆ Vt.
Applying the homology functor, we get finitely many dis-
tinct groups, which we denote asRi for the restricted and as
Vi for the unrestricted Voronoi medusa. Aligning the two

modules, we repeat groups as necessary and arrange them in
a commuting diagram:

R0 → R1 → . . . → RN

↓ ↓ ↓
V0 → V1 → . . . → VN .

Writing ιi : Ri → Vi for the homomorphism induced by the
inclusion, we are interested in the sequence of images:

0 = im ι0 → im ι1 → . . . → im ιN = 0. (12)

Similar to the module of homology groups, (12) is a se-
quence of vector spaces connected by homomorphisms. We
can therefore define births and deaths. We refer to the corre-
sponding multiset of dots as theimage persistence diagram,
denoted asDgm(im f |R → f |V); see [2] for a detailed dis-
cussion of this construction and for an algorithm.

What does the diagram measure? In the assumed case
of the multi-chromatic restricted included in the multi-
chromatic unrestricted Voronoi medusa, it measures nothing
interesting, simply because the groupsVi are not interest-
ing. This is different in the mono-chromatic case. Here,
we may have a cycle defined by data points of colorℓ sur-
rounding points of color different fromℓ. In this case, we
have a non-trivial class in a (closed or open) sublevel set
of the restricted Voronoi medusa whose image in the cor-
responding sublevel set of the unrestricted Voronoi medusa
is still non-trivial. Indeed, a cycle inRℓ gives rise to a dot in
Dgm(im f |Rℓ

→ f |Vℓ
) iff it corresponds to a hole formed by

points of color different fromℓ. If the hole is not formed by
such points, then it does not exist in the unrestricted Voronoi
medusa, the class maps to0, and there is no corresponding
dot in the image persistence diagram.

Instead ofRℓ ⊆ Vℓ, we can use the inclusion ofRℓ in
R to recognize when holes are caused by interactions be-
tween different colors. The algebraic set-up is the same, so
we do not need to repeat it. As described in the experimen-
tal Section 5, the latter inclusion seems to be more effective
than the inclusion in the mono-chromatic Voronoi medusa.
This is perhaps related to the fact that the most interestingis
also the most difficult case in this respect, namely that of a
1-dimensional homology class inR3.

Equivalence. Similar to the conventional case, the image
persistence diagrams do not depend on the representation of
the space and the time function we use. Specifically, we get
the same diagrams for the inclusion ofR in V as for the
inclusion ofA in D.

LEMMA F. Dgm(im f |R → f |V) andDgm(im f |A →
f |D) are equal as diagrams.
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PROOF. Arrange the four modules in a3-dimensional dia-
gram, in which the2-dimensional section at timet consists
of the (absolute) homology groups of the sublevel sets:

H(At) → H(Rt)
↓ ↓

H(Dt) → H(Vt),

or of the relative homology groups if the section is taken
during the second phase. In all three directions, the maps
are induced by inclusion, so the diagram commutes. This
implies that we have maps between the corresponding two
modules of images. By Lemmas C and D, the horizontal
maps in the3-dimensional diagram are isomorphisms, which
implies that the maps connecting the two modules of images
are isomorphisms. The claimed relation is implied by the
Persistence Equivalence Theorem.

Similar to Lemmas C, D, and E, Lemma F extends to the
mono-chromatic case. We note that the two derived persis-
tence diagrams are best computed using the complexes of
simplices,Ā and D̄. Indeed, these can be connected by a
mapping cylinder, giving a complex of simplices and prisms,
not unlike but different from the alpha medusa. From this
complex, we get the image persistence diagrams by standard
matrix reduction; see [2].

4 Classification

In this section, we discuss the information contained in the
extended persistence module defined by the time function,
interpreting the corresponding events in static space-time as
well as in dynamic temporal language.

4.1 Plane× Time

We begin with the2-dimensional case as a warm-up exercise,
but also to facilitate the comparison with the3-dimensional
case. Here, the medusa is embedded inR

2 × [0, 1], and the
time function, denoted asf , maps each point to its time co-
ordinate. We can have dots in the diagram for dimensions0,
1, 2, except forOrd2(f), Hor2(f), Vcl0(f), andRel0(f).
Recall that the persistence of the class represented by a dot
X = (a, b) is the absolute difference between the two co-
ordinates, which we denote aspers(X) = |a − b|. In the
ordinary and relative subdiagrams,pers(X) is

√
2 times the

distance from the baseline, while in the horizontal and verti-
cal subdiagrams, it is

√
2 times the distance from the vertical

axis that goes through the middle of the diagram. As es-
tablished in Section 3, we have the choice between several
filtrations, all giving the same persistence diagram. To focus

the discussion, we limit ourselves to the medusa that best ap-
proximates the reality of biological cells, namely the mono-
chromatic restricted Voronoi medusa. In the text below, we
usecell in the biological meaning of the word.

Type analysis. The classes recorded in the ordinary sub-
diagram are illustrated in Figure 6 (a). A dotX = (a, b)
in Ord0(f) corresponds to a component born att = a that
merges with another, older component att = b. If a = 0,
then a non-empty subset of the cells that make up the compo-
nent exist at the very beginning of the observed time-series.
Its death marks the merger with another component also born
at 0, and the tie in the decision who dies and who lives is
broken arbitrarily. Ifa > 0, the component is born because
of a new cell that is either created by cell division or en-
ters the observation for technical reasons. A dotX = (a, b)
in Ord1(f) corresponds to a ring (an annulus) that forms at
t = a and whose hole fills up att = b.

The classes in the horizontal subdiagram are illustrated in
Figure 6 (b). A dotX = (a, b) in Hor0(f) corresponds to
a component born on the way up att = a and dying on the
way down att = b. We havea < b sincea is the minimum
andb is the maximum time value of the points in the compo-
nent. Assuming some cells of colorℓ live from the beginning
to the end of the observations, we have at least one dot with
coordinates0 and1 in Hor0(f). In the case of a success-
ful segregation, in which colorℓ eventually forms a single
component, we have exactly one such dot and no other other
dots with second coordinate equal to1 in the0-dimensional
horizontal subdiagram. A dotX = (a, b) in Hor1(f) corre-
sponds to a ring that forms att = a and breaks up att = b.
The breaking up of the ring is not detected by the homology
of the growing sublevel set, but rather later by the relative
homology during the down phase. The classes recorded in
the vertical subdiagram are illustrated in Figure 6 (c). A dot
X = (b, a) in Vcl1(f) corresponds to a tunnel born on the
way up att = b which dies on the way down att = a, where
a < b. The tunnel is the plane-time expression of a gap that
temporarily opens up between two subpopulations of a com-
ponent that later closes again. A dotX = (b, a) in Vcl2(f)
corresponds to a void born on the way up att = b which
dies on the way down att = a, wherea < b. The void is
formed by a temporary ring structure we see within an inter-
val of level sets. In contrast to the rings discussed earlier, this
ring is formed by puncturing. First, the hole expands until it
eventually shrinks back to a point and disappears att = b.

The classes recorded in the relative subdiagram are illus-
trated in Figure 6 (d). A dotX = (b, a) in Rel1(f) corre-
sponds to a component of the level set that splits off another
component att = a, and dies off att = b. Since this event
is detected in the down phase of the module, we see the birth
of a 1-dimensional class att = b and its death att = a. A
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(a) Ordinary subdiagram. Left: a gap appears when a new component
is born and disappears when this component merges with anothercom-
ponent. Right: a ring appears when two ends of a component meet and
disappears when the surrounded hole fills up.

(b) Horizontal subdiagram. Left: a gap appear and disappearswhen a new
components is formed and ends. Right: a ring appears when two ends of
a component meet and disappears when the ring breaks open.

(c) Vertical subdiagram. Left: a gap appears when a component splits
in two and disappears when the two merge back together into a single
component. Right: a ring appears when a disk is punctured, which creates
a hole that first grows and later fills up.

(d) Relative subdiagram. Left: a gap appears when a new component is
split off and disappears when the component ends. Right: a ring appears
when the disk is punctured and disappears when the ring breaks open.

Figure 6: The classes recorded in the four subdiagrams of the persistence diagram.

dot X = (b, a) in Rel2(f) corresponds to ring formed by
puncturing a disk att = a. The hole expands and eventually
disappeared because of the breaking up of the ring att = b.

Interaction between colors. The appearance and disap-
pearance of a hole may or may not be facilitated by in-
teractions with cells of different color. For example, a
gap recorded in the ordinary subdiagram may disappear by
squeezing out cells of color different fromℓ, or simply by
locally consolidating the configuration. In the former case,
it is likely that the gap also existed inVℓ and unlikely that
it existed inR. Accordingly, the gap inRℓ would be repre-
sented by a dot in the image persistence diagram ofRℓ ⊆ Vℓ

but not in that ofRℓ ⊆ R. In the latter case, it would of
course be the other way round. Similar distinctions can be
made for gaps recorded inHor0, Vcl1, andRel1. The analy-
sis of rings formed by cells of colorℓ is similar. A ring may
form around a population of cells of color different fromℓ,
or around empty space. In the former case, the ring can only
disappear by killing the surrounded cells or by breaking up

to release these cells. Since killing seems unlikely, this may
mean that such rings are rare in the ordinary and more com-
mon in the horizontal subdiagram. Similarly, the latter case
is likely to be the preferred configuration for rings recorded
in the vertical and the relative subdiagrams. Indeed, these
rings form by puncturing and can therefore not be invaded
by cells from the outside. Note, however, that the suggestion
that a dot in the persistence diagram ofRℓ either appears or
does not appear in the image persistence diagram is an over-
simplification. Thinking of a dot as an interval, it can break
up into shorter intervals, or merge with others into a longer
interval. Similarly, there is generally no simple relationship
between the image persistence diagram and the diagram of
the containing medusa.

4.2 Space× Time

Similar to the planar case, we discuss the time function on a
mono-chromatic restricted Voronoi medusa,f : Rℓ → [0, 1]
with Rℓ ⊆ R

3 × [0, 1].

9



Types. Compared to the planar case, we have one more
dimension and therefore one additional case in each subdi-
agram; see Figure 5. In temporal language, we follow the
evolution of0-, 1-, and2-dimensional holes, which we refer
to asgaps, tunnels, andvoids. There are two ways a hole
can appear: byclosing the surrounding cycle, or bypunc-
turing. Of course, a hole can already exist at the beginning,
at t = 0.0, in which case its birth coordinate is0.0. Simi-
larly, there are two ways a hole can disappear: bybreaking
up the surrounding cycle, or byfilling up the hole. In ad-
dition, it may remain to the end, att = 1.0, in which case
the death coordinate is1.0. We observe that ap-dimensional
hole in the level set gives rise to either ap-dimensional or
a (p + 1)-dimensional class in the persistence module, and
which it is depends on how the hole comes into existence:
either by closing ap-dimensional cycle or by puncturing a
(p + 1)-dimensional chain; see Table 1. A hole recorded
in the ordinary subdiagram is formed by closing a cycle, al-
lowing for the case that it exists already at the beginning,
and it disappears by filling up. We refer to this action as
aggregation. Symmetrically, a hole recorded in the relative
subdiagram is formed by puncturing, and the surrounding
cycle either breaks up or the hole remains until the end. We
refer to this action asdisaggregation. In contrast, the holes
recorded in the vertical and horizontal subdiagrams represent
aggregations and disaggregations that are either transient or
incomplete. Specifically, a hole recorded in the vertical sub-
diagram appears by puncturing, but instead of breaking up,
it disappears by filling. Finally, a hole in the horizontal sub-
diagram forms by closing a cycle that breaks up later, which
allows for the case that the hole exists already at the begin-
ning or that is remains to the end.

Ord Hor Vcl Rel
close/fill close/break punct/fill punct/break

0 gap gap
1 tunnel tunnel gap gap
2 void void tunnel tunnel
3 void void

Table 1: The twelve cases that arise from four kinds of evolutions
possible for each of three different types of holes in a1-parameter
family of spaces inR3.

Rings and tunnels. The0- and2-dimensional holes inR3

behave like the0- and1-dimensional holes inR2, while the
tunnels introduce behavior that cannot be observed in the
planar case. Drawing the ring passing around a tunnel as
a solid torus, Figure 7 shows the four different evolutions
recorded by dots in the four subdiagrams ofDgm(f).

As in the other cases, it is interesting to distinguish be-
tween tunnels formed by interactions with cells of color dif-

t

Ord1 Hor1 Vcl2 Rel2

Figure 7: From left to right: the evolution of a ring/tunnel with
recording dot in the ordinary, horizontal, vertical, relative subdi-
agram ofDgm(f). The critical configurations in the second and
fourth rows separate the regular configurations in the other rows.

ferent fromℓ, from tunnels formed without such interactions.
As before, we use the image persistence diagrams induced by
Rℓ ⊆ Vℓ orRℓ ⊆ R. If the tunnel corresponds to a dot in the
diagram induced by the inclusion inVℓ, then this is evidence
for a different color cell squeezing through an opening in the
wall of color ℓ. Similar evidence for this event is provided
by the absence of this dot in the diagram induced by the in-
clusion inR. The different color cell may be successful and
move from one side of the wall to the other, or it may be
repelled by the force holding the wall together and bounce
back. Which case it is may sometimes be apparent but can
generally not be read off the diagrams.

5 Experiments
This section presents results for datasets generated with a
software that simulates the spatial motion of cells. It serves
as an illustration of our topological methods, and as a proof
of concept. The results encourage us to proceed to the orig-
inal goal of applying the method to cells of developing ze-
brafish embryos in the near future.

Cell segregation. Cell sorting involves both the segrega-
tion of a mixed population of cells with different properties
into distinct domains, and the active maintenance of their
segregated state. It has been described to occur in vivo in
a wide variety of biological processes, such as the early em-
bryonic development of multi-cellular organisms. The segre-
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gation behavior can be studied in vitro – in artificial cell cul-
ture conditions – by mixing cells with different properties,
and observing their subsequent sorting behavior. Such stud-
ies have been instrumental in revealing the cellular properties
driving the segregation process. Different theories have been
postulated and experimentally tested to explain the mecha-
nism that drive cell sorting both in vitro and in vivo. How-
ever, to determine relative contributions of cellular properties
requires the accurate recording as well as a quantitative and
descriptive analysis of the sorting process in space and time.
This is the purpose of this paper, namely a refined measure-
ment of the spatial process that will allow us to compare dif-
ferent experimental conditions and quantify similaritiesand
differences to wild type processes.

Here we use the zebrafish gastrulation as a case-study, in
which mesoderm cells are induced and segregate from the
overlying ectoderm germ layer. This process can be recapit-
ulated in vitro by randomly mixing population of ectoderm
and mesoderm cells in culture, and using advanced time-
lapse microscopy imaging techniques [11] to observe how
mesoderm cells engulf the ectoderm cells.

Simulations. Because of the difficulties of accurately
tracking the trajectories of cell nuclei in real data, we concen-
trate on simulated data to demonstrate our methods. We use
the publicly available simulation softwareCompuCell3D1

[14] to get data sets that imitate the cell segregation process.
The software uses a3-dimensional version of the widely
applied Cellular Potts model(also known asGlazier and
Graner model[8]) to describe in vitro segregation of ecto-
derm and mesoderm cells. Each cell is represented by a set
of voxels (unit integer cubes inR3), and randomly tries to
extend into the empty space or a neighboring cell. Anele-
mentary changeis the alteration of the membership status of
a single voxel. The decision whether or not to accept such a
change depends on an energy function that encodes the char-
acteristics of the dynamic process. Evaluating the energy
before and after the change, the difference is translated into
the probability of acceptance. It is higher for negative differ-
ences, which drive the configuration toward smaller energy.

We give more details on our specialization and refer to
[14] for the general simulation framework. The first term of
our energy function constrains the shape of the cells. Setting
the target volume to49.0, each cell increases the energy by
the square of its deviation from the target value. The same
holds for the surface area, where we set the target to26.0.
The software allows for weights to control the relative influ-
ence of these terms, and we use weights100.0 for the volume
and3.0 for the area. The second term of our energy function
influences the inter-cellular behavior. We call two neighbor-
ing voxels aninterfaceif they belongs to different cells, or

1http://www.compucell3d.org/

to a cell and empty space. In our setup, an interface between
two cells decreases the energy, so that cells tend to stick to
each other. Specifically, we define two cell types, which we
call red (simulating ectoderm) andblue (simulating meso-
derm). An interface between two blue cells, or between a red
and a blue cell decreases the energy by200.0, while an in-
terface between two red cells decreases the energy by400.0.
This results in red cells sticking to each other stronger than
blue cells. Finally, an interface between a cell and empty
space increases the energy by20.0 for a blue cell, and by
100.0 for a red cell, with the effect that cells generally avoid
contact with the surrounding space, and red cells do so with
more determination than blue cells.

Datasets. We construct the initial configuration of our ex-
periments by tiling the domain into6 × 6 × 6 = 216 cubes
and placing one cell into each cube to fill it completely. This
setup leads to cells that are larger than the target volume, re-
sulting in a high initial value of the energy function. In the
first steps of the simulation, the cells shrink and cluster in
the middle of the available space. However, some of them
lose contact and stay separated from the bulk for a long time,
if not the entire time. We consider three simulations. In the

Figure 8: The restricted Voronoi tessellation at four moments in
time. At the beginning, the cells form a cubical grid (upper-left).
Next, the cells move toward the middle of the available space, leav-
ing some outliers behind (upper-right). Thereafter, the blue cells
begin to engulf the red cells (lower-left). Finally, the blue cells
form a sphere surrounding a ball of red cells (lower-right).

first, we color each cell either red or blue according to a fair
coin flip; see Figure 8. This intermixed configuration mimics
the biologically interesting process of cell segregation.The
second and third are control experiments in which all cells
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are of the same type, either red or blue. To obtain trajecto-
ries, we compute the center of gravity of each cell at various
moments in time and interpolate them piecewise linearly. In
all experiments, we set the radius of the ball approximating
one cell toα0 = 4.0, and we model the arrangement of cells
by the thus defined restricted Voronoi tessellation.

As explained in the preceding sections, the behavior of the
cell population in time is characterized by the persistenceand
image persistence diagrams of the time function restrictedto
the various medusas. There are too many diagrams to fit in
this paper, so we show a subset, selected to illustrate inter-
esting behavior of the data. For each diagram, we count the
dots and we compute the1-norm, which we define as

‖Dgm(f)‖1 =
∑

X∈Dgm(f)

pers(X). (13)

These numbers are collected for each dimension and each
subdiagram separately, giving a good overall impression of
the activity recorded in the diagram.

Figure 9: The2-dimensional persistence diagrams of the restricted
Voronoi medusa ofB.

Multi-chromatic data. We start with the discussion of the
intermixed simulation, lettingR andB denote the corre-
sponding sets of red and blue cells. See Figure 8 for il-
lustrations of the restricted Voronoi tessellation, Figure 9
for one of the persistence diagrams, and Table 2 for the
quantitative summaries of all diagrams, divided up into di-
mensions and subdiagrams. The only high-persistence fea-
ture inR is recorded in the horizontal subdiagram and sim-
ply represents the component itself. There are additional
high-persistence features recorded in the1-dimensional ver-
tical and relative subdiagrams ofB, representing the isolated
(blue) cells that lose contact to the bulk during the initial
phase. Cells recorded in the vertical subdiagram merge back
into the bulk, while cells recorded in the relative subdiagram
remain separate until the end of the simulation. In addition,
the 2-dimensional horizontal subdiagram ofB records fea-
tures whose persistence adds up to a value of0.76. They
describe the sphere of blue cells that wrap around the red

cells. The fact that it is represented by several instead of a
single dot indicates that the sphere is pinched from time to
time during the simulation; compare with Figure 8.

To cast additional light on the process, we show results
for the blue restricted Voronoi medusa included in the blue
unrestricted Voronoi medusa; compare the two bottom pan-
els of Table 2. We no longer see any persistent features in
the vertical or relative subdiagrams because the outliers are
merged with the bulk by the unrestricted medusa. Further-
more, the image persistence diagram features a single hori-
zontal void with high persistence, which is the consolidation
of the many low-persistence horizontal voids of the blue re-
stricted Voronoi medusa.

R Ord Hor Vcl Rel sum
gaps 17 0.03 1 1.00 7 0.03 0 0.00 25 1.07

tunnels 103 0.04 5 0.00 0 0.00 1 0.00 109 0.05
voids 21 0.00 0 0.00 2 0.00 0 0.00 23 0.00
sum 141 0.08 6 1.00 9 0.03 1 0.00 157 1.12

B

gaps 10 0.02 1 1.00 22 1.58 3 2.55 36 5.15
tunnels 237 0.27 37 0.05 21 0.04 41 0.02 336 0.40
voids 32 0.00 61 0.76 0 0.00 0 0.00 93 0.76
sum 279 0.30 99 1.82 43 1.62 44 2.57 465 6.32

B, Vor
gaps 0 0.00 1 1.00 0 0.00 0 0.00 1 1.00

tunnels 9 0.02 4 0.01 3 0.00 7 0.00 23 0.04
voids 1 0.00 1 0.95 0 0.00 0 0.00 2 0.95
sum 10 0.02 6 1.96 3 0.00 7 0.00 26 2.00

Table 2: From top to bottom: the sizes and1-norms of the persis-
tence diagrams of the red and blue restricted Voronoi medusas, and
of the image persistence diagrams defined by the inclusion of the
blue restricted Voronoi medusa in the blue Voronoi medusa. Bold-
face numbers correspond to dots in Figure 9.

Figure 10: The1-dimensional persistence diagrams of the restricted
Voronoi medusa ofBB.

Mono-chromatic data. The control experiments use sim-
ulations with cells of a single type, which is either red or
blue. To avoid confusion with the data from the previous ex-
periment, we denote the mono-chromatic sets of cells byRR

andBB. Table 3 presents the quantitative summaries of the
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topological analysis. The process looks similar for both col-
ors: there is a component formed by the majority of the cells
(represented by a dot in horizontal subdiagram), and there
are several outlier cells (represented by dots in the vertical
and relative subdiagram). Moreover, many low-persistence
ordinary tunnels are created in the initial phase, whose per-
sistence adds up to a significant number.

There are also differences. First, the blue cells create
many vertical gaps (components that split and re-merge dur-
ing the simulation), while they are rare for the red cells. An
inspection of Figure 10 reveals that most of these splits hap-
pen early in the simulation, when the cells still shrink. This
effect can be explained by the smaller stickiness of the blue
cells, which makes it more likely for them to lose contact
with the bulk. Once separated, outliers move randomly in
space and find contact with the bulk only by chance. Curi-
ously, the red medusa has the same number of relative gaps
(components that split and the pieces stay separate) as the
blue medusa. It suggests that the red outliers find it more
difficult to merge back into the bulk. One reason may be
their stickiness to each other, and their phobia of the empty
space, which limits their search activity.

A second difference can be observed in the vertical voids,
which only exist for the red cells. Recall that they are created
by puncturing and destroyed by filling. As we can read off
the table, these holes are short-lived. There is no biological
reason why cells would create such holes, and they should
indeed be considered an artifact of the abstraction of cellsas
relatively inflexible restricted Voronoi regions. Nevertheless,
even this artifact tells us something about the simulation pro-
cess. The presence of such holes means that the red cells tend
to deviate more form the shape of a round ball than the blue
cells. This is consistent with the energy function in our setup
in which red-red interfaces are more favorable than blue-blue
interfaces. Therefore, the red cells get more reward for in-
creasing their interface area at the expense of deviating from
the target volume and surface area.

RR Ord Hor Vcl Rel sum
gaps 0 0.00 1 1.00 2 0.01 3 2.99 6 4.01

tunnels 607 0.60 47 0.04 1 0.00 3 0.00 658 0.64
voids 339 0.03 0 0.00 24 0.02 10 0.00 373 0.06
sum 946 0.64 48 1.04 27 0.04 16 2.99 1037 4.72

BB

gaps 0 0.00 1 1.00 15 1.52 3 2.56 19 5.08
tunnels 582 0.55 81 0.09 0 0.00 16 0.00 679 0.65
voids 310 0.02 0 0.00 0 0.00 4 0.00 314 0.02
sum 892 0.58 82 1.09 15 1.52 23 2.56 1012 5.76

Table 3: The sizes and1-norms of the persistence diagrams of the
red medusa at the top and the blue medusa at the bottom. Boldface
numbers correspond to dots in Figure 10.

(a) Image diagram induced by the inclusion of the restricted Voronoi
medusa ofB1 in unrestricted Voronoi medusa of the same set of cells.

(b) Image diagram induced by the inclusion of the restricted Voronoi
medusa ofB1 in the restricted Voronoi medusa ofBB.

Figure 11: The1-dimensional image persistence diagrams of the
inclusion ofB1 in its corresponding Voronoi medusa at the top,
and the blue combined medusa at the bottom.

Image diagrams. We create a randomly intermixed pro-
cess by decomposingBB into two sets of cells,B1 andB2,
with fair coin flips. There is no reason to expect a sorting
process similar to the simulation with red and blue cells. In-
stead, the two (identical) cell types form a random pattern
with arbitrary neighbor exchanges over time.

The quantitative results forB1 are given in Table 4; those
for B2 are similar. Note the large number of tunnels, which
are distributed over the entire simulation. Recall that we
have two possibilities for computing image persistence: by
mapping the restricted Voronoi medusa ofB1 into the un-
restricted Voronoi medusa of the same set of cells, or into
the restricted Voronoi medusa ofBB. For comparison, we
display the quantitative results of both inclusions in Table 4,
showing the corresponding1-dimensional diagrams in Fig-
ure 11. The majority of features – both in terms of num-
ber and persistence – carry over to the unrestricted Voronoi
medusa, which suggests that most of the holes in the medusa
of B1 are caused by the presence of cells inB2. This is
consistent with the relative sparsity of the image diagrams
defined by the inclusion ofB1 in BB. Notable exceptions
are the gaps recorded in the1-dimensional vertical and rela-
tive subdiagrams, which describe the outliers separated from
the bulk mentioned earlier.
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B1 Ord Hor Vcl Rel sum
gaps 11 0.00 1 1.00 42 1.28 1 0.76 55 3.05

tunnels 1406 4.32 629 5.41 648 6.021273 4.603956 20.36
voids 32 0.00 0 0.00 0 0.00 0 0.00 32 0.00
sum 1449 4.33 630 6.41 690 7.311274 5.364043 23.42

B1, Vor
gaps 0 0.00 1 1.00 10 0.66 0 0.00 11 1.66

tunnels 1113 4.05 445 3.70 627 5.921183 4.473368 18.15
voids 0 0.00 2 0.00 0 0.00 0 0.00 2 0.00
sum 1113 4.05 448 4.70 637 6.581183 4.473381 19.82

B1, BB

gaps 0 0.00 1 1.00 15 1.04 1 0.76 17 2.80
tunnels 149 0.11 15 0.01 0 0.00 1 0.00 165 0.13
voids 32 0.00 0 0.00 0 0.00 0 0.00 32 0.00
sum 181 0.11 16 1.01 15 1.04 2 0.76 214 2.94

Table 4: From top to bottom: the sizes and1-norms of the per-
sistence and image persistence diagrams of the first blue medusa.
Boldface numbers correspond to dots in Figure 11.

6 Discussion
This paper introduces the persistent homology analysis of a
medusa as a novel method to measure cell segregation. To
provide a proof of concept, we have computed these mea-
surements for simulated time series of 3D data. The appli-
cation of the method to imaged cell segregation in zebrafish
embryos is forthcoming.

The medusa introduced in this paper is related to the vine-
yard described in [6, Section VIII.1]; see also [3]. How-
ever, there are differences. Specifically, the vineyard would
be constructed for two parameters, the restricting radius,α,
and the time,t. The result is a richer structure, namely a
collection of curves inR2 × [0, 1], which is therefore more
difficult to understand. In contrast, the medusas fixα to α0

and in this way facilitate a more compact representation of
a subset of the vineyard. This is appropriate for biological
cells whose size does not vary substantially with time, and
it gives topological information that is easier to interpret and
more directly relevant to the object of study. However, we
need to keep in mind that with this choice, the persistence
diagrams are not stable under the bottleneck distance. The
results are particularly sensitive to the radius, which leaves
holes if chosen too small and absorbs holes if chosen too big.

The work in this paper has motivated the extension of
Alexander duality from spaces to functions, as proved in
[7]. In particular, the Euclidean Shore Theorem in that pa-
per states that the persistence diagram of the time function
restricted to the boundary of a Voronoi medusa can be ob-
tained from the diagram of the time function on the Voronoi
medusa. Generically, the boundary is a3-manifold with-
out boundary, so that the time function can be understood
in Morse theoretic terms, which is sometimes convenient.

In conclusion, we note that the framework introduced in
this paper applies to general point processes that unfold
in time. The latter model a variety of problems of which

we mention a few: molecules of two fluids mixing after a
shock-wave; microbes forming microfilms; a flock of birds
getting into formation; two teams competing in a soccer
game; galaxies moving under the influence of gravity. The
measurements taken within this framework are significantly
coarser than what could be said by studying braids [12] or the
loop spaces of configuration spaces needed to detect topo-
logical differences for particles moving in3 dimensions [1].
This is not necessarily a disadvantage since the coarser in-
formation is easier to compute as well as to comprehend.
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