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Abstract

We give evidence for the difficulty of computing Betti
numbers of simplicial complexes over a finite field.
We do this by reducing the rank computation for
sparse matrices with m non-zero entries to computing
Betti numbers of simplicial complexes consisting of at
most a constant times m simplices. Together with the
known reduction in the other direction, this implies
that the two problems have the same computational
complexity.

1 Introduction

The efficient computation of topological properties
of a space is one of the main goals of computational
topology [8,18]. Homology groups are important such
properties that encode the connectivity of a space.
For example, the zeroth homology group represents
the connected components, and if the space is em-
bedded in 3-dimensional Euclidean space, then the
second homology group represents the voids. The
computation of homology groups, and in particular
of their ranks – the Betti numbers – is of practical
importance. In most applications, homology groups
are computed using field coefficients, in which case
the groups are vector spaces and the Betti numbers
are their dimensions. Computing these numbers and
their more advanced persistent versions is central in
applications of computational topology [9]. Conse-
quently, hardness results and evidence for the diffi-
culty of computing Betti numbers imply similar re-
sults for all of the applications.

For a general finite simplicial complex, the ho-
mology groups can be computed by reducing the
boundary or incidence matrices using standard row-
and column-operations. Similarly, the Betti num-
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bers in the case of field coefficients can be computed
by finding the ranks of these matrices. However, in
some special cases, Betti numbers can be computed
by other means and more efficiently. For instance, if
the complex triangulates a 2-manifold, then the Betti
numbers can be computed using the Euler relation.
Another example is when the simplicial complex is
embedded in 3-dimensional Euclidean space and the
complement space is also triangulated; see [4]. In
this situation, the Betti numbers can be computed in
a time that is linear in the size of the complex. One of
the motivations of this paper is to understand what
can be said if the simplicial complex is embedded in
the 4-dimensional Euclidean space.

We use the term computational complexity to
refer to the run-time of an optimal algorithm solving
a problem. It is commonly described as a function of
the size of the problem instance. We reduce problems
to each other using worst-case linear-time reductions
on the common RAM model. However, our results
are valid when the underlying model of computation
allows these reductions to be done in linear time. For
example, this is the case for randomized algorithms
with expected run-time as computational complexity.

Here is an overview of our results, which concern
themselves with computing the Betti numbers of
finite 2-dimensional simplicial complexes, that is:
the ranks of the homology groups defined for F2-
coefficients. Recall that the Euler number of a
complex is the alternating sum of simplex counts
as well as the alternating sum of Betti numbers:
χ = β0 − β1 + β2. For a 2-dimensional complex with
m simplices, we can compute χ as well as β0 in O(m)
time. The complexity of computing the first Betti
number is therefore equal to that of the second Betti
number. We have two main results:

I. The complexity of computing the Betti numbers
of a 2-dimensional simplicial complex with m
simplices is the same as that of computing the
rank of an m-by-m 0-1 matrix with m 1s.

II. The complexity of computing the Betti numbers
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of a 2-dimensional simplicial complex with n
vertices is at least that of computing the rank
of an n-by-n 0-1 matrix.

Our first result says that computing the Betti num-
bers of a 2-dimensional complex has the same com-
plexity as computing the rank of a sparse matrix. To
prove this claim, we build a simplicial complex for a
given matrix such that the second Betti number of
the complex is the nullity of the matrix. The sim-
plicial complex in this construction embeds in the 4-
dimensional Euclidean space, which thus provides an
answer to the question stated above. Our second re-
sult says that if we ignore the number of simplices and
express run-time in terms of the number of vertices
of the complex, then we cannot do better than for
computing the rank of an n-by-n matrix. We remark
that we can harvest a sparsification of 0-1 matrices
as a side-product of our reductions; see Section 4.

The paper is organized as follows. Section 2 in-
troduces background material and definitions, includ-
ing a short review of the current best bounds for com-
puting the rank of a matrix. Section 3 presents the
reductions proving our two main results. Section 4
extends our results from F2 to other finite fields, and
it relates them to matrix sparsification.

2 Background

In this section, we recall basic definitions and facts
about simplicial and singular homology for general
d-dimensional simplicial complexes. We also define
vertical and horizontal homology classes. Unless
explicitly stated, we will limit ourselves to coefficients
in F2, the field of integer arithmetic modulo 2. All
homology groups will be finite rank vector spaces over
F2. They are determined up to isomorphism by their
ranks.

Simplicial homology. Let K be a simplicial com-
plex, and write ni for its number of i-simplices. The
size of K is the total number of simplices:

∑
i ni.

Assuming an ordering, we write ∆i,` for the `-th i-
simplex, and we let

Si(K) = {∆i,` | ` = 1, 2, . . . , ni}

be the set of i-simplices in K. Any subset of Si =
Si(K) is called an i-chain of K. It can be written as
an ni-vector of 0s and 1s: c = (c(1), c(2), . . . , c(ni)),
where c(`) = 1 iff the simplex ∆i,` belongs to c, for
1 ≤ ` ≤ ni. Two i-chains, c and d, can be added by
vector addition modulo 2:

(c+ d)(`) = c(`) + d(`) (mod 2).

This means that the sum is the chain that consists
of all i-simplices in the symmetric difference of the
two chains: c + d = (c ∪ d) − (c ∩ d). With this
notion of addition, the set of i-chains forms a group,
denoted as Ci = Ci(K). More specifically, Ci is the
ni-dimensional vector space over F2 with basis Si.

The boundary of an i-simplex, denoted as
∂i(∆i,`), is the collection of its faces of dimension
i − 1. It is a chain in Ci−1. Since Si is a basis for
Ci, this definition can be extended to a unique ho-
momorphism between vector spaces, ∂i : Ci → Ci−1

defined by

∂i(c) =
∑

∆i,`∈c
∂i(∆i,`),

called the i-th boundary homomorphism. By defini-
tion, the zeroth boundary homomorphism, ∂0, is the
zero map. A chain with empty boundary is called a
cycle. Hence, the i-cycles are the chains in the kernel
of ∂i, and we write Zi = Zi(K) ⊆ Ci for this kernel.
For example, if K is a triangulation of a 2-manifold
(without boundary), then the chain c that includes
all triangles in K is a 2-cycle. Indeed, every edge
of K belongs to the boundary of exactly two trian-
gles, which implies that the sum of the boundaries of
all triangles is empty. A chain that is the boundary
of another chain – necessarily of one higher dimen-
sion – is called a boundary. Hence, the i-boundaries
are the chains in the image of ∂i+1, and we write
Bi = Bi(K) ⊆ Ci for this image. Note that the
Zi and Bi are also vector spaces over F2, and that
Bi ⊆ Zi because the boundary of a boundary is nec-
essarily empty. We can therefore form the quotient,
Hi = Hi(K) = Zi/Bi, called the i-th homology group
of K. This quotient is again a vector space over F2,
and its dimension is called the i-th Betti number of
K, denoted as βi = βi(K). Since Hi is a quotient,
its elements are not cycles but rather classes of ho-
mologous cycles. If such a class contains a cycle c,
then we denote the class by [c], and we call c a repre-
sentative of the class. Note that the sum of any two
representative cycles of the same class is a boundary.

Computing simplicial homology. We already
have a basis for the vector space Ci, namely Si or,
equivalently, the vectors of length ni with only a sin-
gle 1 each. We need to find bases for Zi and Bi.
Let Di be the matrix of the i-th boundary homomor-
phism, ∂i, with respect to the bases Si and Si−1. The
rows of Di are indexed by (i − 1)-simplices and the
columns by i-simplices. The `-th column of Di cor-
responds to ∆i,` and is the vector ∂i(∆i,`). It follows
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that we can write the boundary of a chain c ∈ Ci in
matrix notation as ∂i(c) = Dic. To find a basis for
Zi, we only need to find a basis for the null-space of
Di. We thus reduce the matrix Di to diagonal form
using the usual row- and column-operations. In this
form, an initial segment of the diagonal consists of
1s and all other matrix entries are zero. Let Ri and
Ri−1 be the new bases with respect to which the i-th
boundary matrix is diagonal. The vectors in Ri asso-
ciated with zero columns form a basis of Zi, and the
vectors in Ri−1 associated with non-zero rows form
a basis of Bi−1. After reducing all boundary matri-
ces, we have a basis for each Zi and each Bi. If our
interest is in the Betti numbers, we can count basis
vectors and this way get the ranks of the Di and the
dimensions of the vector spaces:

dimZi = ni − rankDi,

dimBi = rankDi+1,

dimHi = dimZi − dimBi.

However, to get bases for the homology groups,
we need to do a bit more work. One possibility
is to express the basis vectors of Bi in terms of
the basis of Zi, for 0 ≤ i ≤ d, which can be
done by matrix multiplication. Alternatively, we
can rewrite Di before reducing it such that its rows
correspond to the computed bases of Ci−1 after
reducing Di−1. The latter method avoids the need
for matrix multiplication at the cost of doing the
reduction on matrices that are possibly dense from
the beginning. To summarize, assuming a constant
dimension of K, bases for all homology groups can be
computed in a constant number of matrix reductions,
and all Betti numbers can be computed with a
constant number of rank computations for sparse
matrices.

Singular homology. Recall that a cycle in simpli-
cial homology is a collection of simplices in a given
triangulation of the space. We also need cycles that
possibly cross over simplices in the triangulation and
therefore introduce the formalism of singular homol-
ogy. Formally, a singular i-simplex is a (continuous)
map σ : ∆i → |K|, where ∆i is the standard i-
simplex. We write S̄i for the set of all such maps.
A singular i-chain, c̄, is a finite subset of S̄i. Equiv-
alently, the chain is a function, c̄ : S̄i → {0, 1} with
finite support. Thinking of such a function as an in-
finite vector, and using F2, we again define addition
by setting

(c̄+ d̄)(σ) = c̄(σ) + d̄(σ) (mod 2).

The i-th singular chain group, C̄i, is the set of
singular i-chains together with addition, which is
again a vector space over F2. The boundary of a
singular i-simplex mapping ∆i to |K| is the sum of
the restrictions of the map to the (i− 1)-dimensional
faces of ∆i. Extending this definition to chains, we
get the boundary homomorphism, ∂̄i : C̄i → C̄i−1.
With this, we define the i-th singular cycle group, Z̄i,
as the kernel of ∂̄i, and the i-th singular boundary
group, B̄i, as the image of ∂̄i+1. As before, we
have ∂̄i ◦ ∂̄i+1 = 0, which implies that all singular
boundaries are singular cycles. Finally, we define the
i-th singular homology group by taking the quotient,
H̄i = Z̄i/B̄i.

The simplices of K can also be thought of as
members of S̄i. This inclusion induces homomor-
phisms Ci → C̄i, which in turn define homomor-
phisms between the homology groups, Hi → H̄i. A
well-known result in algebraic topology asserts that
these homomorphisms are isomorphisms; see e.g. [11,
Theorem 2.27]. For a finite simplicial complex, the
simplicial and singular homology groups are isomor-
phic and a basis for simplicial homology is also a ba-
sis for singular homology. The reason for introducing
singular in addition to simplicial homology is that it
simplifies our definitions and proofs. From this point
on, we write S for S̄, c for c̄, etc.

Remark. Besides facilitating the comparison of
spaces with each other, homology groups in low di-
mensions also have intuitive meanings. For example,
the rank of the zeroth homology group is the num-
ber of connected components. For a graph, the rank
of the first homology group is the number of inde-
pendent cycles, which for a connected graph is the
number of edges minus the number of vertices plus
one. Note that for a tree, this number is zero.

Horizontal and vertical homology. Let K be a
2-dimensional simplicial complex, and f : |K| → R
a piecewise linear function on K. It is defined by
assigning values to the vertices and then extending
the map by linear interpolation on the simplices.
We assume f is generic, by which we mean that it
has distinct values on the vertices. We distinguish
between homology classes that are represented by
cycles carried by level sets of the functions, and
classes that have no such cycles. This distinction has
been introduced in [2] and studied in [5].

More formally, we call a homology class α ∈
Hi horizontal if it has a representative cycle, c,
whose image under f is a finite set of values in R.
The horizontal classes form a subgroup of homology,
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called the i-th horizontal homology group of K with
respect to f , denoted as Hhor

i = Hhor
i (K, f). The

i-th vertical homology group is Hvcl
i = Hi/H

hor
i . The

ranks of the horizontal and vertical homology groups
are called the horizontal and vertical Betti numbers,
denoted as βhor

i and βvcl
i . Note that the i-th Betti

number of K satisfies βi = βhor
i + βvcl

i .

Reeb graphs. The distinction between first hori-
zontal and first vertical homology classes is signifi-
cant because there are fast algorithms for comput-
ing the latter but no such algorithms for comput-
ing the former. To explain this, we now introduce
a map from a simplicial complex, K, and a func-
tion, f : |K| → R, to a graph that sends horizon-
tal classes to zero. We call two points x, y ∈ |K|
equivalent, denoted as x ∼ y, if f(x) = f(y) and the
two points belong to the same component of f−1(t),
where t = f(x) = f(y). The Reeb graph of K and f
is the quotient space obtained by identifying equiv-
alent points, denoted as K/∼. Intuitively, the Reeb
graph has a point for each connected component of
each level set, and these points are connected like the
corresponding components of the level sets. The map
from K to K/∼ is continuous and induces a homo-
morphism from the first homology group of K to the
first homology group of K/∼. It is clear that this
homomorphism sends horizontal classes to zero. It is
also true that it preserves the 1-dimensional vertical
classes. More specifically, the first vertical homol-
ogy group of the complex and the function is isomor-
phic to the first homology group of the Reeb graph:
Hvcl

1 (K, f) ∼= H1(K/∼); see [5, Theorem 3.2].
The Reeb graph of a generic function on a

simplicial complex of size m can be computed in
O(m logm) time; see [6, 10, 13]. Writing n′ for the
number of nodes, m′ for the number of arcs, and `′

for the number of connected components of the Reeb
graph, we have β1(K/∼) = m′ − n′ + `′. It follows
that we can compute the rank of the first vertical
homology group of K and f in O(m logm) time.

Complexity of rank computation. To get the
first homology of K, we still need to compute the first
horizontal homology of K and f . The main point of
this paper is to show that this is more difficult than
computing the vertical homology.

It is known that the rank of an arbitrary matrix
can be computed in matrix multiplication time [1].
The best asymptotic run-time for multiplying two
matrices is a major open problem in algebraic com-
plexity theory. Let ω be a number such that a worst-

case optimal algorithm that multiplies two n-by-n
matrices runs in O(nω+ε) time, for each ε > 0. The
number ω is called the exponent of matrix multiplica-
tion. The currently best upper bound is ω < 2.3727;
see [3, 15]. However, it is not known whether the
sparsity of matrices can help in computing the rank.
While there exists a theoretical algorithm for multi-
plying two n-by-n matrices each with O(n) non-zero
entries in O(n2+ε) time, for every ε > 0 [17], it is
not known whether this helps in rank computation
or Gaussian elimination for sparse matrices.

It is worth mentioning that there is a random-
ized algorithm that computes the rank of a matrix
in time roughly proportional to n2. Specifically,
Wiedemann’s Monte Carlo algorithm computes the
rank of an n-by-n matrix with m non-zero entries in
O(n2+ε +nm) time [14]. Moreover, there exists a Las
Vegas algorithm whose expected run-time for matri-
ces with O(n) non-zero entries is O(n2.28) ; see [7]
but also [16].

3 Main Results

In this section, we state and prove our main results.
They consist of reductions from computing the rank
of a matrix to computing the Betti numbers of a com-
plex. For simplicity, we consider only square matri-
ces, while the generalization to rectangular matrices
is straightforward. Any n-by-n matrix, M , deter-
mines a linear map from Rn to Rn. The kernel of
this map is the null-space, and the dimension of the
kernel is the nullity of the matrix, denoted as nullM .
Since the rank of the matrix is the dimension of the
image of this map, we have nullM = n−rankM . The
nullity is therefore the maximum number of indepen-
dent solutions to the equations Mx = 0.

Statements. We begin by formally stating our first
theorem. It assumes a representation of the input
matrix that gives amortized constant time access to
its non-zero entries. It also assumes that the matrix
contains no zero rows or columns, which implies that
n ≤ m.

Theorem 3.1. Let M be an n-by-n 0-1 matrix with
m non-zero entries. In time O(m), it is possible to
build a 2-dimensional simplicial complex, K, of size
O(m) and a piecewise linear function f : |K| → R,
such that Hhor

1 (K) is isomorphic to the null-space of
M and H2(K) is isomorphic to the null-space of the
transpose, M t.

Theorem 3.1 implies

b(m) = Ω(r(n,m)),(3.1)
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where b(m) is the complexity of computing the Betti
numbers of a 2-dimensional simplicial complex of size
m, and r(n,m) is the computational complexity of
computing the rank of an n-by-n 0-1 matrix with
m non-zero entries. The constructed complex, K =
K(M), embeds in R4. Equation (3.1) implies the
result labeled I in the introduction. Recall that for a
complex of sizem the Betti numbers can be computed
by a constant number of rank computations for
matrices which are at most m-by-m and have O(m)
non-zero entries. Therefore, b(m) = O(r(m,m)).
The theorem shows b(m) = Ω(r(m,m)) which gives
b(m) = Θ(r(m,m)).

The second construction focuses on the number
of entries of the matrix, ignoring the difference be-
tween sparse and dense. Again, we assume access in
constant amortized time to the non-zero entries of the
input matrix.

Theorem 3.2. Let M be an n-by-n 0-1 matrix with
m non-zero entries. In time O(m), we can build a 2-
dimensional simplicial complex, L, with O(n) vertices
and a piecewise linear function g : |L| → R, such that
Hhor

1 (K) is isomorphic to the null-space of M and
H2(K) is isomorphic to the null-space of M t.

Theorem 3.2 implies our second main result,
labeled II in the Introduction:

B(n) = Ω(r(n)),(3.2)

where B(n) is the complexity of computing the Betti
numbers of a 2-dimensional simplicial complex with
n vertices, and r(n) is the complexity of computing
the rank of an n-by-n 0-1 matrix. The complex,
L = L(M), does not necessarily embed in R4.

The first reduction. We interpret M as the matrix
of a system of linear equations. The nullity is the
dimension of the space of solutions to the equations∑n

`=1M(k, `)x` = 0, for 1 ≤ k ≤ n.

Construction. We start by constructing a cycle made
out of a constant number of edges for each column.
We refer to the cycle corresponding to column ` by
x`. Placing these cycles in a 2-dimensional plane Π
in R4, we set the function values of their vertices to
0. For each row, we add a sphere with as many holes
as there are non-zero entries, gluing the boundaries
of the holes to the cycles corresponding to the non-
zero entries; see Figure 1. Letting p be the number of
holes, we call this surface a p-cap, since it is obtained
by removing p disks from a sphere. It generalizes a
cap, which is a sphere with a single disk removed. It

Figure 1: Starting with three cycles, the simplicial com-
plex that corresponds to the 3-by-3 matrix is constructed
by adding one cap at a time.

is easy to construct a triangulation of the p-cap that
consists of O(p) vertices, edges, and triangles and
embeds in a 3-dimensional plane containing Π. The
function values of the vertices in the triangulation
that are glued to the initial cycles are 0, and those of
all other vertices are chosen to be strictly larger than
0 and smaller than 1. As suggested in Figure 1, we
can think of the function values as the heights of the
vertices above Π. Choosing a pencil of 3-dimensional
planes, all passing through Π, we get n caps that
are pairwise disjoint except for possibly shared cycles
in Π. It follows that the k-th cap is a 2-chain that
introduces the relation

∑n
`=1M(k, `)[x`] = 0 on the

classes of cycles, for 1 ≤ k ≤ n. After adding the n
caps, we obtain a simplicial complex, which we call
K = K(M).

Analysis. At the beginning, after adding the cycles
and before adding any caps, every x` represents a
1-dimensional horizontal homology class. The class
remains horizontal throughout the construction, but
it can of course become null-homologous. Indeed, the
effect of a cap is to render the corresponding sum of
cycles to be null-homologous. We show that the cap
does not affect the first horizontal homology group in
any other way.

Lemma 3.1. For every 1 ≤ k ≤ n, the addition
of the k-th cap does not create any new horizontal
homology class, and it kills only one class, namely∑n

`=1M(k, `)[x`].

Proof. Let p be the number of non-zero entries in
the k-th row of M , and recall that the corresponding
p-cap is a sphere with p holes. To show that the
addition of the p-cap does not add any new horizontal
classes, we construct the p-cap from the p circles that
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bound its holes as follows. Connect the p circles
with p − 1 arcs whose interior points have function
values strictly larger than 0. Because each arc covers
an interval of function values that has a non-empty
interior, these arcs do not change the horizontal
homology. We can form a closed curve that traverses
each circle once and each arc twice, once in each
direction. The p-cap can now be completed by adding
a disk whose boundary is glued to the closed curve.
Finally, we note that the boundary cycle of the added
disk is homologous to

∑n
`=1M(k, `)x`. This is the

only relation implied by the disk, which finishes the
proof.

Lemma 3.1 implies that the first horizontal ho-
mology group of K is generated by [x1], [x2], . . . , [xn]
subject to Mx = 0, where x = ([x1], [x2], . . . , [xn]).
The number of independent generators is therefore
n − rankM = nullM . The cap added for row k cre-
ates a new 2-cycle iff its boundary can be written as
a linear combination of the boundaries of the preced-
ing caps. It follows that the second Betti number is
equal to the the number of rows minus the rank of
M , which is the nullity of matrix M t.

Complexity. We recall that M provides constant
amortized time access to its non-zero entries, imply-
ing that the above construction can be done in O(m)
time. This completes the proof of Theorem 3.1.

Remarks. (1) As explained above, the complex
embeds in R4. In the O(m) time needed for its
construction, we can also triangulate the entire space,
keeping K as a subcomplex of the triangulation.
In sharp contrast to the 3-dimensional situation,
this implies that even the availability of such a
triangulation does not make it easy to compute the
Betti numbers.

(2) The particular structure of K makes it possi-
ble to construct the first vertical Betti number of K
in linear time, without running the Reeb graph algo-
rithm. Indeed, the Reeb graph is homotopy equiva-
lent to the bipartite graph whose nodes are the rows
and the columns of M , with an arc from a row to
a column iff they intersect in a non-zero entry of M .
We have 2n nodes and m arcs, and we can compute `,
the number of connected components, in O(m) time.
The number of independent loops in the Reeb graph
is m−2n+`, which is also the first vertical Betti num-
ber of K. We note that Equation (3.1) now follows
from Theorem 3.1 in two ways: first by combining
the above calculation of vertical Betti number with
βhor

1 = nullM and β1 = βhor
1 + βvcl

1 , and second by

using β2 = nullM t.
(3) The assumption of access in constant amor-

tized time to the non-zero entries of the matrix is not
essential. Without it, we can construct the complex
K in O(n2 +m) time, which implies a slightly weaker
claim that suffices for our purposes.

The second reduction. Similar to Theorem 3.1, we
prove Theorem 3.2 by interpreting the matrix M as
a system of linear equations from which we construct
a simplicial complex. The main difference is that
we now allow ourselves only O(n) vertices, which
limits the possibilities. We still manage to construct a
simplicial complex, L = L(M), and a piecewise linear
function, g : |L| → R, such that the first horizontal
homology group of L and g is isomorphic to the null-
space of M . However, L will not necessarily embed
in R4.

Construction. We start by creating n square cycles,
denoted as y`, one for each column of M . We as-
sign the same function value, g`, to all four vertices
of y`, making sure that different square cycles receive
different function values. For each row k of M , we in-
troduce the relation

∑n
`=1M(k, `)[y`] = 0 by adding

some edges and triangles to the complex. We can-
not afford adding a cap, as in the proof of Theorem
3.1, because this would require an additional num-
ber of vertices proportional to the number of non-
zero entries in row k. Instead, we connect the square
cycles by pairs of triangles, as illustrated in Figure
2. In particular, if the non-zero entries in row k be-

Figure 2: Top: a step in the construction connecting the
middle three square cycles and representing [y2+y3+y4] =
0 by adding the cone over the dashed cycle. Bottom:
another step doing the same for [y1 + y2 + y3 + y5] = 0.

long to columns `1 < `2 . . . < `p, then we connect
the right edge of y`j with the left edge of y`j+1

, for
j = 1, 2, . . . , p − 1. We add the connecting pair of
triangles unless the two square cycles are already so
connected.
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Finally, we consider the cycle, ck, that goes
around the sequence of connected squares (the ones
corresponding to non-zero entries in row k) and added
triangles, and we add a cone over ck. Assuming row
k has p non-zero entries, ck has 4p vertices and 4p
edges. The cone over ck thus consists of 4p edges
and 4p triangles, and it adds only one new vertex
to the complex. We choose the function value of
this vertex different from the function values of all
previous vertices.

Analysis. We argue that L has the desired homology
groups. Indeed, adding a pair of connecting triangles
does not alter the first horizontal homology group. To
see this, we add the three edges and the two triangles
in sequence. The first edge does not affect the first
horizontal homology group for the simple reason that
it connects vertices with different function values,
say g`j < g`j+1

. The function values of the points
on the edge thus cover the interval [g`j , g`j+1

], which
has non-empty interior. We now add the other two
edges and the two triangles using two anti-collapses,
which preserve the homotopy type of the complex,
and therefore also its homology groups.

The cone over ck is single disk, and adding it to
the complex does not affect the first homology other
than by introducing the relation [ck] = 0. We argue
that ck is homologous to dk =

∑n
`=1M(k, `)y`. In

other words, ck + dk is a boundary. But this is clear
because ck+dk is the boundary of the sum of triangles
connecting square cycles of non-zero entries in row k.

In summary, the first horizontal homology group
of the final complex L is generated by the [y`], for
` = 1, 2, . . . , n, subject to the relation My = 0, where
y = ([y1], [y2], . . . , [yn]). The first horizontal Betti
number is therefore βhor

1 (L) = n − rankM = nullM .
In the case in which ck is null-homologous before the
cone is added, the addition of the cone creates a new
2-cycle. Hence, we also have β2(L) = nullM t, as
required.

Complexity. The number of vertices in the complex
L = L(M) is 5n, namely 4 for each column and 1 for
each row. The number of edges is at most 4n + 7m,
and the number of triangles is less than 6m. All these
simplices can be constructed in O(m) time, assuming
again a representation that permits access to the non-
zero entries of M in constant amortized time. This
completes the proof of Theorem 3.2.

Remarks (2) and (3) given after the proof of
Theorem 3.1 also apply here.

4 Extensions

In this section, we consider three extensions of our
results: from simplicial to more general complexes,
from F2 to more general finite fields, and from sparse
matrices to matrices that have at most three non-zero
entries per row and per column.

More general complexes. Given a matrix, M ,
with integer entries, there is a standard construction
of a 2-dimensional CW complex whose second bound-
ary matrix is M ; see for example [11, Corollary 1.28].
To construct this complex, we start with a wedge of n
oriented circles pinned together at a common point,
which we denote as ω. We order the circles and write
z` for the `-th circle in this ordering. Each circle cor-
responds to a column of the matrix. Consider any
loop that starts at ω and ends at ω. We can write
this loop as

∑
` a`z`, in which a` is the number of

times the path traverses z` (using the sign to distin-
guish traversals with or against the orientation). To
complete the construction, it suffices to attach a disk
by gluing its boundary to the loop corresponding to
the row, for each row. It is not difficult to see that the
first homology group of the final complex is generated
by the circles z` subject to the relations given by the
equations Mz = 0, in which z = ([z1], [z2], . . . , [zn]) is
a column vector. In particular, the Fq-Betti numbers
of the complex give the nullity and hence the rank of
the matrix M over Fq, for q prime.

The above construction is related to computing
the homology of a simplicial complex by simplifica-
tion that merges simplices into larger and more com-
plicated cells. The number of cells is reduced but
at the cost of making the boundary matrix denser,
albeit smaller in size. Eventually, we compute the
rank of a smaller but denser matrix. This approach
to homology computation is justified as long as the
complexity of computing the rank of a sparse matrix
is not known to be less than that of computing the
rank of a dense matrix.

Finite fields. Our two theorems and the implied
complexity bounds for computing Betti numbers ex-
tend from F2 to general finite fields. Assume we are
given a matrix, M , with elements in Fq; that is: in-
teger numbers modulo q, with q a prime number.
Let mk =

∑
`M(k, `) be the sum of entries in row

k, where we take the sum in Z and not modulo q.
We construct the simplicial complex, K = K(M),
as before but with an mk-cap added for the k-th
row such that the number of legs that are attached
to the cycle x` is M(k, `). The same proof then
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shows that after attaching the mk-caps, we will have∑
`M(k, `)[x`] = 0 in homology with Fq coefficients.

It follows that the first horizontal Fq-Betti number
of K is the nullity of M , and similarly for the sec-
ond Betti number of K. In other words, we have a
statement for Fq like that given in Theorem 3.1 for
F2. It follows that the complexity of computing the
Betti numbers over Fq is at least that of computing
the rank of an n-by-n matrix with entries in Fq whose
sum of entries is m.

Figure 3: Left: the complex constructed for the matrix
on the right assuming the entries are in F2. Middle: the
complex constructed for the same matrix but assuming
the entries are in F3.

We illustrate the construction in Figure 3, which
shows two complexes for the same matrix, the com-
plex on the left for the 2-element field, and the com-
plex in the middle for the 3-element field. For F2,
we have −1 = 1 and a complex that consists of a
2-sphere and a circle. Its first horizontal and its sec-
ond Betti numbers equal the nullity of the matrix,
as claimed. For F3, we have −1 = 2 and a complex
that consists of a Klein bottle with an additional disk
attached and an isolated cycle. As before, the first
horizontal and the second Betti numbers equal the
nullity of the matrix.

Matrix sparsification. Let A be an n-by-n matrix
with m non-zero entries. Following [16], we call an
N -by-N matrix B with N = O(m) and O(m) non-
zero entries a sparsification of A if we can compute
the rank of A from that of B. If the reduction of
A to B and the computation of the rank of A from
the rank of B can both be done efficiently, say in
O(m) time or almost O(m) time, then we say the
rank computation problem has been reduced to a
sparse problem. In [16], the sparse matrix has the
property that each row and each column contains at
most three non-zero entries. Here we show that the
first construction in Section 3 can be used to obtain
a similar sparsification of a 0-1 matrix.

We view our construction of a 2-dimensional
simplicial complex given in the proof of Theorem 3.1
as a process that from M generates two matrices,
namely the boundary matrices of K, such that rank
of M can be computed from the ranks of these

matrices. The first boundary matrix, D1, relates
edges with vertices and thus has two non-zero entries
per column. The second boundary matrix, D2,
relates triangles with edges and has three non-zero
entries per column. The rows of D2 correspond to
edges of the complex. Most of these edges belong to
exactly two triangles. However, if an edge belongs
to x`, the number of incident triangles equals the
number of rows with non-zero entries in position `,
which can be more than two.

If we apply the construction again, to D1 and to
D2, we obtain four matrices, D11, D12, D21 and D22.
Consider K(D1). In D1, each column has exactly
two non-zero entries, which implies that K(D1) is a
2-manifold without boundary of size O(m). Hence its
Betti numbers can be determined in O(m) time using
its Euler characteristic. This corresponds to the fact
that the rank of D1 can be computed easily since each
column has only two non-zeros.

On the other hand, K(D2) is a complex which
may not be a manifold. Therefore, the difficulty is
in finding the Betti numbers of this complex. This
we can do by computing the rank of the boundary
matrices. The rank of D21 can again be computed
efficiently. So we turn to D22, whose columns and
rows have at most three non-zero entries each. After
computing the rank of D22 and an additional O(m)
work, we obtain the rank of the original matrix, M .
Therefore, we have a sparsification of a 0-1 matrix
that is a special case of Theorem 1.1 in [16]:

Theorem 4.1. Let A be an n-by-n 0-1 matrix with
m non-zero entries. Another 0-1 matrix B of size
O(m)-by-O(m) and at most three non-zero entries in
each row and each column can be constructed in O(m)
time such that the rank of A can be computed from
the rank of B in O(m) time.

Remark. Recall that the Betti numbers of a trian-
gulated 2-manifold are easy to compute. Every edge
in such a manifold belong to two triangles, and the
same is true for most edges of the complex K(D2), ex-
cept for the edges that belong to the cycles x`, which
belong to three triangles each. While this may be a
small deviation from being a manifold, computing the
Betti numbers is already difficult, namely equivalent
to computing the rank of a sparse matrix.

5 Discussion

In this paper, we explain how the computation of
the rank of a matrix with entries from a finite field
can be reduced to computing the Betti numbers of a
simplicial complex. The first vertical Betti number
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for any generic piecewise linear function has a fast
algorithm via the Reeb graph, but the computation of
the first horizontal Betti number is at least as difficult
as computing the rank. This splitting of homology
might have additional applications.

The relations with matrix multiplication is of
special interest. Since complexes provide geometric
interpretations of algebraic problems in matrix mul-
tiplication, we hope that such reductions can give new
insights into the exponent of matrix multiplication.

We close this paper with a question about the size
of a 2-dimensional simplicial complex with n vertices
that is embedded in R4; see [12, Section 5.1]. It is
conjectured that such a complex has at most some
constant times n2 triangles, but currently no upper
bound better than a constant times n3 is known. A
positive answer would imply that the complexity of
computing the Betti numbers of simplicial complexes
embedded in R4 is indeed lower than for simplicial
complexes with the same number of vertices that are
not necessarily embedded in R4.
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