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FUNCTIONALS ON TRIANGULATIONS OF DELAUNAY SETS
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Abstract. We study densities of functionals over uniformly bounded

triangulations of a Delaunay set of vertices, and prove that the minimum

is attained for the Delaunay triangulation if this is the case for finite sets.
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1. Introduction

A Delaunay set X ⊆ R
d has positive numbers r < R such that every open ball

of radius r contains at most one point, and every closed ball of radius R contains
at least one point of X . Such sets were introduced as (r, R)-systems by Boris N.
Delaunay in 1924. By a triangulation of X , we mean a simplicial complex, T , whose
vertex set is X and whose underlying space is Rd. This triangulation is uniformly

bounded if there is a real number q = q(T ) such that the circumsphere of every d-
simplex in T has radius smaller than or equal to q. A particular triangulation is the
Delaunay triangulation, denoted as DelX , whose d-simplices satisfy the additional
condition that all other vertices lie outside their circumspheres. It exists if X is
generic, as will be explained shortly. The Delaunay triangulation of a Delaunay
set is necessarily uniformly bounded. We also consider Delaunay triangulations of
finite sets of points, for which the underlying space of the simplicial complex is the
convex hull of the points.

Writing Sd for the set of all d-simplices in R
d, we consider functionals F : Sd → R

for which there are constants e = e(r, q, d) and E = E(r, q, d) such that e 6

F (σ) 6 E for every d-simplex σ whose edges are longer than or equal to 2r and
whose circumsphere has a radius smaller than or equal to q. Writing E for this class
of functionals, we define subclasses G ⊆ F ⊆ E by requiring additional conditions.
Briefly, F belongs to F if the sum of values over the d-simplices of the Delaunay
triangulation of d + 2 points in R

d is smaller than or equal to the sum over the
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d-simplices in the other triangulation, and F belongs to G if it satisfies a similar
condition for all finite sets of points. Following [4], for a triangulation we define the
density of the functional by taking sums and lower limits over a growing sequence
of balls:

f(T ) = lim inf
α→∞

1

Vol(Bα)

∑

Bα⊇σ∈T

F (σ), (1)

where Bα is the closed ball with radius α and center at the origin of Rd, and Vol(Bα)
is its volume. With these definitions, we can give our main result:

• in R
d, F ∈ G implies that the Delaunay triangulation minimizes the density

of F among all uniformly bounded triangulations of a Delaunay set, and in
R

2, F ∈ F suffices to reach the same conclusion.

There are many concrete functionals studied in the literature to which our result
applies. Here, we just mention two:

• the functional that maps every triangle in R
2 to the radius of its circum-

circle; see [9],
• the functional that maps every d-simplex to the sum of squares of its edge
lengths times the volume; see [12].

The remainder of this paper presents the detailed results in two sections.

2. Background

In this section, we introduce the background on Delaunay sets, their uniformly
bounded triangulations, and functionals on such triangulations.

2.1. Delaunay sets. We recall from Section 1 that X ⊆ R
d is a Delaunay set if

there are positive constants r < R such that (I) every open ball of radius r contains
at most one point of X , and (II) every closed ball of radius R contains at least one
point of X . Hence, X has no tight cluster and leaves no large hole.

Counting points. Condition (I) implies that every bounded subset of Rd contains
only finitely many points of X . Indeed, the subset can be covered by finitely many
open balls of radius r, and each such ball contains at most one point. Condition (II)
implies that every cone with non-zero volume contains infinitely many points of X .
Indeed, the cone contains an infinite string of disjoint closed balls of radius R, and
each such ball contains at least one point of X . We quantify the first observation
by giving concrete estimates. Let Bα(z) be the closed ball with radius α and center
z, and call the difference between two concentric balls an annulus.

Point Count Lemma. Let X be a Delaunay sets with parameters r < R in R
d.

(i) There are constants p = p(R, d) and P = P (r, d) such that the number of

points of X in Bα(z) is between pαd and Pαd.
(ii) There is a constant P ′ = P ′(r, d) such that the number of points of X in

Bα+1(z)− Bα(z) is at most P ′αd−1.

Proof. To prove (i), we note that Bα(z) can be covered by some constant times
(α/r)d balls of radius r, and that we can pack some other constant times (α/R)d

balls of radius R in it. The lower and upper bounds follow.
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To prove (ii), we cover the annulus with a constant times αd−1/rd balls of ra-
dius r. The upper bound follows. �

It should be clear that the bound in (ii) also holds for annuli of constant width,
but not for annuli whose width is a positive fraction of the radius.

Delaunay triangulations. Following the original idea of Boris N. Delaunay, we con-
sider d-simplices with vertices from X such that the open ball bounded by the
(d−1)-dimensional circumsphere contains no points of X . We call such d-simplices
empty. Here, it is convenient to assume that X is generic in the sense that no d+2
points in X lie on a common (d − 1)-sphere. Under this assumption, the empty
d-simplices fit together without gap and overlap. Now consider two not necessarily
empty but non-overlapping d-simplices that share a (d− 1)-simplex which is a face
of both. Assuming the two d-simplices belong to a triangulation, we call this face
locally Delaunay if the (d + 1)-st vertex of the second d-simplex lies outside the
circumsphere of the first d-simplex. Note that the condition is symmetric because
the two circumspheres intersect in the (d − 2)-sphere that passes through the ver-
tices of the face, and either both (d+1)-st vertices lie outside or both lie inside the
respective other circumsphere. Delaunay considered both conditions and proved
that they are equivalent [2], [3] (see also [5] for the formal justification).

Delaunay Triangulation Theorem. Let X be a generic Delaunay set in R
d.

(i) The collection of empty d-simplices together with their faces form a trian-

gulation of X, commonly known as the Delaunay triangulation, DelX.

(ii) If all (d− 1)-simplices of a triangulation T of X are locally Delaunay, then

T = DelX.

The equivalence between the local and the global conditions expressed in (ii)
also holds for finite sets X . In the plane, it means that a triangulation of a generic
set X is Delaunay iff for each edge the sum of opposite angles in the two incident
triangles is less than π.

2.2. Uniformly bounded triangulations. Let X be a generic Delaunay set in
R
d, and let T be a triangulation of X . We recall that this means that T is a

simplicial complex with vertex set X whose underlying space is R
d. Recall also

that T is uniformly bounded if there is a real number q = q(T ) such that the radius
of the circumsphere of every d-simplex in T is smaller than or equal to q. It follows
that no edge of T is longer than 2q. Note that the Delaunay triangulation of X is
uniformly bounded with q = R.

Not every triangulation is uniformly bounded. We begin by showing that every
Delaunay set has triangulations that are not uniformly bounded. Given X , we
construct such a triangulation in three steps.

1. For every point x ∈ X and every L > 0, we can find many points y ∈ X
such that the edge xy is longer than L and does not pass through any other
points of X . Indeed, there is such an edge near every direction out of x.
To see this, we consider the set of points in X that lie within the closed
ball of radius L around x. There are only finitely many such points, which
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implies that within each cone with non-zero volume and apex x, we can find
a subcone, again with non-zero volume and apex x, that does not contain
any of the points ofX inside the ball. However, as argued in Section 2.1, the
cone contains infinitely many points of X , so they must all be at distance
larger than L from x. Among these, let y be the point closest to x.

Using the knowledge about long edges, we construct a triangulation inductively,
one phase at a time. After the k-th phase, we will have a triangulation Tk of a
finite subset of X that includes all points at distance k or less from the origin. In
addition, we will make sure that Tk contains at least one edge longer than k, and
that every point of X that belongs to the underlying space of Tk is a vertex of Tk.
We start with T0 consisting of a single edge connecting the two points of X that
are closest to the origin of Rd.

2. In the (k+1)-st phase, we let x be a vertex in the boundary of Tk. Let y be
another point of X such that the edge xy is longer than k+1 and does not
intersect the simplices in Tk other than at x. Since Tk is a triangulation,
its underlying space is convex, and its boundary is triangulated. Let σ be
an i-simplex in the boundary of Tk that is visible from y. We extend Tk by
adding the (i + 1)-simplex formed by y and the vertices of the i-simplex.
Doing this for y and all visible simplices in the boundary of Tk, we obtain
a simplicial complex T ′

k by starring from y. Similarly, we add a point z
at distance k + 1 or less from the origin that lies outside the underlying
space by starring to the triangulation. Repeating this operation for all such
points z, we eventually get a simplicial complex T ′′

k .
3. While T ′′

k is a valid simplicial complex in R
d, some of the new simplices may

contain points of X in their interiors. By construction, xy is not among
these simplices. Let w ∈ X be such a point, and σ ∈ T ′′

k the simplex of
lowest dimension, j, that contains w in its interior. Note that j > 1. We
fix the situation by decomposing σ into j + 1 j-simplices, each the convex
hull of w and j vertices of σ. Similarly, we decompose each simplex that
contains σ as a face into j + 1 simplices of the same dimension by starring
from w. Repeating this procedure for all such points w, we eventually get a
triangulation Tk+1 such that all points in X that belong to the underlying
space of Tk+1 are in fact vertices of Tk+1.

Observe that the edge xy added to Tk in Step 2 remains undivided until the end.
This implies that Tk+1 indeed contains an edge longer than k + 1, as required.
It follows that the triangulation thus constructed by transfinite induction is not
uniformly bounded.

Measuring volume. The remainder of this section states and proves properties of
uniformly bounded triangulations. We begin with the volume of their simplices.

Volume Lemma (Volume Lemma). Let X be a Delaunay set with parameters

r < R in R
d, and let T be a uniformly bounded triangulation with parameter q

of X.

(i) In R
2, there is a positive constant v = v(r, q) such that v 6 Area(σ) for

every triangle σ in T .
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(ii) In R
d, there is a constant V = V (q, d) such that Vol(σ) 6 V for every

d-simplex σ in T .

Proof. We prove (i) by expressing the area of a triangle in terms of the three edge
lengths and the radius of the circumcircle: Area(σ) = abc

4̺ . The edges cannot be

shorter than 2r, and the radius cannot be larger than q, which implies v(r, q) =
2r3/q 6 Area(σ).

To prove (ii), we note that every d-simplex is contained in the ball bounded by
its circumsphere. Since the radius is at most q, this ball is smaller than V (q, d) =
(2q)d > Vol(σ). �

If we remove the requirement of uniform boundedness, then the proof of the
Volume Lemma breaks down. It is not clear whether the upper bound fails. In
this context, we mention a related question asked by L. Danzer and independently
by M. Boshernitzan: “is it true that for every planar Delaunay set there exists a

triangle with arbitrarily large area that contains no points in its interior?” This
question is still open.

Next, we describe a Delaunay set in R
3 that has tetrahedra of arbitrarily small

volume in the Delaunay triangulation. It shows that the limitation of the lower
bound in (i) to two dimensions is necessary. Consider the standard cubic lattice,
Z
3. Let δℓ = 1

2+|ℓ| , for every ℓ ∈ Z, and move every point (i, j, k) ∈ Z
3 to

(i, j, k + (−1)i+jδk), denoting the new point set by X . To study the volume of
the tetrahedra in the Delaunay triangulation, we consider a single integer cube,
for which we get a tetrahedron of volume about 1

3 in the middle, four tetrahedra

of volume about 1
6 across each face, and two flat tetrahedra at the top and the

bottom; see Figure 1. These volume estimates assume arbitrarily small values of

Figure 1. A distorted cube decomposed into seven tetrahedra.
The arrows indicating the distortion are exaggerated for better
visibility.

δℓ. If the third coordinates of the original vertices are k and k+1, then the volume
of the top tetrahedron is 2

3δk+1, and that of the bottom tetrahedron is 2
3δk. Since

among the δℓ there are arbitrarily small numbers, there are tetrahedra in DelX
whose volume is arbitrarily close to 0. It is not difficult to extend this example to
four and higher dimensions.
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Counting simplices. Recall the Volume Lemma, which states that every triangle in
a uniformly bounded triangulation of a Delaunay set in R

2 has an area that exceeds
a positive constant. Since a disk of radius α has area α2π, this implies that the
number of triangles contained in this disk is at most some constant times α2. A
similar result holds in three and higher dimensions, but the lack of a lower bound
on the volume of a d-simplex requires a different argument, which we present as
the proof of the following bounds.

Simplex Count Lemma. Let X be a Delaunay set with parameters r < R in R
d,

and let T be a uniformly bounded triangulation with parameter q of X.

(i) The number of d-simplices sharing a common vertex is bounded from above

by a constant S′′ = S′′(r, q, d).
(ii) There are positive constants s = s(R, q, d) and S = S(r, q, d) such that

the number of simplices contained in a ball of radius α > 4q is between sαd

and Sαd.
(iii) There is a constant S′ = S′(r, q, d) such that the number of d-simplices

contained in a ball of radius α + 1 but not in the concentric ball of radius

α is at most S′αd−1.

Proof. To prove (i), we let x be the shared vertex, and we note that all incident
d-simplices are contained in the ball of radius 2q centered at x. By the Point Count
Lemma, the number of points in this ball is bounded from above by P (r, d) · (2q)d.
We have at most one d-simplex for every combination of d of these points, which
gives S′′(r, q, d).

The upper bound in (ii) is now easy: by the Point Count Lemma, the number
of points inside the ball of radius α is at most P (r, d) · αd. Multiplying P (r, d)
with S′′(r, q, d) gives S(r, q, d). To get the lower bound, we restrict ourselves to
the ball of radius α − 2q. By the Point Count Lemma, the number of points in
this smaller ball is at least p(R, q) · (α − 2q)d. Every d-simplex incident to one of
these points is contained in the ball of radius α. Each point belongs to at least
d+1 d-simplices, which implies that the lower bound on the number of points also
applies to the d-simplices. Finally, (α− 2q)d is at least αd/2d.

To prove (iii), we use the upper bound of P ′(r, d) ·αd−1 on the number of points
in the annulus. Each d-simplex we count is incident to at least one of these points.
Multiplying P ′(r, d) with S′′(r, q, d) gives S′(r, q, d). �

2.3. Functionals. Recall that Sd denotes the set of simplices, including degen-
erate ones. We are interested in functionals that have constant upper and lower
bounds for the simplices that arise in uniformly bounded triangulations of Delaunay
sets. For other degenerate simplices we also allow infinity as a value.

Definition. Let E be the class of functionals F : Sd → R for which there are
constants e = e(r, q, d) and E = E(r, q, d) such that e 6 F (σ) 6 E for all d-
simplices σ with edges of length at least 2r and radius of the circumsphere at
most q.

In this section, we extend the functionals from simplices to triangulations, and
we introduce subclasses that favor Delaunay triangulations for finite sets of points.
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Densities. As already mentioned in Section 1, we define the density of a functional
on a triangulation by taking the lower limit over a growing ball, of the sum of values
over all d-simplices in the ball divided by the volume of the ball:

f(T ) = lim inf
α→∞

1

Vol(Bα)

∑

Bα⊇σ∈T

F (σ). (2)

There are other possibilities, such as taking the upper limit, or taking the average
over the simplices. Our results extend to both modifications of the definition. One
of Delaunay’s motivations for defining (r, R)-systems was to generalize lattices in
R
d to a larger class of sets. For the Delaunay triangulation of any lattice Λ ⊆ R

d,
the limit of the expression in (2), in which we substitute Del Λ for T , is well defined.
Unfortunately, this is not generally the case for Delaunay triangulations of Delaunay
sets, which is the reason for taking the lower limit. Since this might not be entirely
obvious, we will prove shortly that for a broad class of functionals in E , the limit
does not generally exist. Before that, we prove some positive results, namely that
the density of every functional is bounded and independent of the choice of origin.
Specifically, we define

fz(T ) = lim inf
α→∞

1

Vol(Bα(z))

∑

Bα(z)⊇σ∈T

F (σ) (3)

for every point z ∈ R
d, and we prove that all choices of z give the same result.

Properties. Let F be a functional in E.

(i) There is a constant C = C(r, q, d) such that f(T ) 6 C for every uniformly

bounded triangulation of a Delaunay set in R
d.

(ii) f(T ) = fz(T ) for every z ∈ R
d.

Proof. To prove (i), we recall the Simplex Count Lemma, which implies that the
number of d-simplices contained in Bα is bounded from above by S(r, q, d). Mul-
tiplying with E(r, q, d) gives C(r, q, d).

To prove (ii), we let f(T, α) and fz(T, α) be the expressions in (2) and (3)
without taking the lower limit, so that f(T ) = lim infα→∞ f(T, α), and similarly
for fz(T ) and fz(T, α). It suffices to prove

lim
α→∞

[f(T, α) − fz(T, α)] = 0, (4)

which we do in two steps, namely by proving

lim
α→∞

[f(T, α+ L)− f(T, α)] = 0, (5)

lim
α→∞

[f(T, α+ L)− fz(T, α)] = 0, (6)

where L = ‖z‖ is the distance between z and the origin. To prove (5), we write Vd for
the volume of the unit ball in R

d, and we note that Vol(Bα) = Vdα
d. Furthermore,

we write ΣB and ΣA for the sums over the d-simplices contained in the smaller ball
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and the extra d-simplices contained in the larger ball:

ΣB =
∑

Bα⊇σ∈T

F (σ), (7)

ΣA +ΣB =
∑

Bα+L⊇σ∈T

F (σ). (8)

By the Simplex Count Lemma, ΣB is at most some positive constant times αd,
while ΣA is at most some constant times αd−1. Hence,

∆ = f(T, α+ L)− f(T, α) (9)

=
ΣB +ΣA
Vd(α+ L)d

−
ΣB
Vdαd

(10)

=
ΣA

Vd(α+ L)d
−

(α+ L)dΣB − αdΣB
Vd(α + L)dαd

. (11)

The first term in (11) goes to zero because ΣA grows slower than αd, and the second
term goes to zero because (α + L)d − αd grows slower than αd. The argument for
(6) is similar. Indeed, all we need is to notice that the set of d-simplices contained
in Bα+L but not contained in Bα(z) is a subset of those contained in Bα+L but not
contained in Bα−L. By the Simplex Count Lemma, the number of simplices thus
defined is bounded from above by a constant times αd−1, so that the argument goes
through as before. �

Non-existence of limits. We now show that taking the lower limit in the definition of
density is necessary because the limit does not generally exist. Indeed, functionals
for which the limit exists, even just for all Delaunay triangulations of Delaunay sets,
are the exception. This is true in particular for the functionals that are invariant
under isometries, which include all examples we discuss in this paper.

We begin by exhibiting a construction in R
2 that acts as a stepping stone in

our argument. Let σ and τ be two compatible triangles, by which we mean that
they share an edge, the two angles opposite that edge add up to less than π, and
the remaining four angles are all acute. The condition implies that at least one of
the triangles is acute, and we assume σ is. Using a linear sequence of congruent
copies of σ, we form a strip Tσ, which we call wide, and using copies of τ , we form
a strip Tτ , which we call narrow ; see Figure 2. Gluing strips together so that they
match up at boundary edges, we get a Delaunay triangulation, provided no two
narrow strips are glued to each other. Let m1, m2, . . . be an infinite sequence of
odd integers. We construct a Delaunay triangulation D inductively, starting with
a block of m1 wide strips. On each side, we add a block of m2 strips alternating
between narrow and wide, then a block of m3 wide strips, then a block of m4 strips
again alternating between narrow and wide, and so on. For each i > 1, let 2αi be
the total width of the first 2i − 1 blocks. Making sure that the origin lies on the
center line of the first block, Bαi

is the largest disk centered at the origin that is
still contained in the union of the first 2i− 1 blocks. We consider the sequence

fi =
1

α2
iπ

∑

Bαi
⊇σ∈D

F (σ). (12)
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Figure 2. A Delaunay triangulation made of a block of three wide
strips in the center and two blocks alternating between narrow and
wide strips glues on both sides.

Assuming that the limit in (2) exists, the sequence of fi must converge for every
sequence of mi. This is indeed the case if we measure area, because the number
of triangles that intersect Bα but are not contained in it is bounded from above
by a constant times α. Hence, limα→∞

1
α2π

∑

A(σ) = 1, where we abbreviate
A(σ) = Area(σ) and take the sum over all triangles contained in Bα, as usual. This
motivates us to consider the ratios of the terms in the two sequences. Assuming
Bαi

contains ki congruent copies of σ and ℓi congruent copies of τ , this gives

gi =

∑

Bαi
⊇σ∈D F (σ)

∑

Bαi
⊇σ∈D A(σ)

=
kiF (σ) + ℓiF (τ)

kiA(σ) + ℓiA(τ)
. (13)

Define Qσ = F (σ)
A(σ) , Qτ = F (τ)

A(τ) , and Q = F (σ)+F (τ)
A(σ)+A(τ) . Assuming Qσ 6= Qτ , we have

Qσ 6= Q and define ∆ = |Qσ − Q|. By definition, g1 = Qσ. We choose m2 large
enough so that |g2 −Q| < ∆

3 , which is possible because ℓ2/k2 goes to 1 as m2 goes

to infinity. Then we choose m3 large enough so that |g3 − Qσ| <
∆
3 , and so on,

alternating between being close to Qσ and Q. We thus arrive at a contradiction
because there is a gap of size ∆

3 between the terms with odd and even indices. In

other words, we need F (σ)
A(σ) = F (τ)

A(τ) for the limit to exist.

We finally show that the non-existence of the limit is not an artifact of the
particular Delaunay set we used in the construction of D. Let σ′ and τ ′ be arbitrary
triangles with longest edges of lengths a and c and opposite angles 2ϕ and 2ψ.
Setting L > max{ a

2 cosϕ ,
c

2 cosψ}, we construct triangles σ with edges of length

L, L, a and τ with edges of length L, L, c. It is easy to verify that σ′ and σ are
compatible, and so are σ and τ , and τ and τ ′. Repeating the construction with
the strips and blocks three times, we see that if F is invariant under isometries
of R

2 and the limit exists for the Delaunay triangulations of all Delaunay sets,

then F (σ′)
A(σ′) = F (τ ′)

A(τ ′) . Conversely, among the functionals invariant under isometries,

only the ones proportional to the area have the limit defined for the Delaunay
triangulations of all Delaunay sets.
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Subclasses. We are interested in two subclasses of functionals, G ⊆ F ⊆ E , which
we now introduce. To define F , let Y be a generic set of d+2 points in R

d such that
no point lies inside the convex hull of the others. The non-degenerate d-simplices
spanned by the points cover the convex hull twice; see Radon [11]. Indeed, we
can split them into two collections such that each forms a triangulation of Y : the
Delaunay triangulation, D = DelY , and the other triangulation, T . Changing one
triangulation into the other is a flip, a name motivated by the planar case, in which
it replaces one diagonal of a convex quadrilateral with the other. We give the flip
a direction, leading from T to D. Let now F be a functional, let ΣT be the sums
of F (σ) over all d-simplices in T , and define ΣD similarly.

Definition. The class F consists of all functionals F ∈ E for which ΣD 6 ΣT .

In R
2, the extra property of functionals in F suffices to prove our main result. In

R
d, for d > 3, we need more structure. The reason is the existence of triangulations

that cannot be turned into the Delaunay triangulation by a sequence of directed
flips; see [6] for finite examples in R

3. Such examples do not exist in R
2; see [8].

Let now Y be a finite set of points in R
d. As before, we assume that Y is generic.

Let T ′ be a simplicial complex with vertex set Y , but note that we do not require
that T ′ be a triangulation of Y . For example, we could start with a triangulation of
Y and construct T ′ as the subset of d-simplices that do not belong to the Delaunay
triangulation together with their faces. Let D′ be the subset of simplices in DelY
contained in the underlying space of T ′. Finally, let ΣT ′ be the sum of F (σ) over
all d-simplices in T ′, and define ΣD′ similarly.

Definition. The class G consists of all functionals F ∈ E for which ΣD′ 6 ΣT ′ .

The condition for F to belong to G is at least as strong as that for F to belong
to F , which implies G ⊆ F .

3. Results

In this section, we state and prove our Main Theorem and some of its implica-
tions.

3.1. Main theorem. As already mentioned in Section 1, the main result of this
paper is an extension of optimality results for Delaunay triangulations from finite
sets to Delaunay sets, which are necessarily infinite. Section 2 provides all the
technical concepts needed to give a formal proof of the theorem that facilitates this
result.

Main Theorem. Let X be a Delaunay set in R
d.

(i) In R
2, F ∈ F implies f(DelX) 6 f(T ) for all uniformly bounded triangu-

lations T of X.

(ii) In R
d, F ∈ G implies f(DelX) 6 f(T ) for all uniformly bounded triangu-

lations T of X.

Proof. Fix a uniformly bounded triangulation T with parameter q of X . We prove
the inequalities by comparing subsets of d-simplices of T and D = DelX . We
begin with (ii). For every radius α, we write T (α) ⊆ T and D(α) ⊆ D for the
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sets of simplices contained in Bα. Furthermore, we write D′(α) ⊆ D(α) for the
set of simplices contained in the underlying space of T (α). Summing F over the
d-simplices in these sets, we have

ΣT (α) = [ΣT (α) − ΣD′(α)] + [ΣD′(α) − ΣD(α)] + ΣD(α). (14)

The first difference on the right-hand side is non-negative by assumption of F ∈ G.
We prove shortly that the second difference is bounded from above by a constant
times αd−1. This implies that dividing by Vdα

d and taking the lower limit gives
f(T ) > f(D), as required. To prove the bound for the second term, we assume
α > 4q, so that the Simplex Count Lemma implies that the number of d-simplices
in D(α)−D(α− 2q) is bounded from above by a constant times αd−1. We get the
same bound for D(α)−D′(α) because T (α) is uniformly bounded, with parameter
q, so it covers all of Bα−2q, which implies D(α− 2q) ⊆ D′(α).

The proof of (i) is similar, except that we have to do more work to construct the
sets of d-simplices, now triangles needed for the comparison. We assume α > 8q and
let T (α) and D(α) be as before. We construct T ′(α) by modifying T (α) through
a sequence of directed flips applied to non-locally Delaunay edges. Iterating the
directed flip, we can guarantee that all interior edges of T ′(α) are locally Delaunay.
A directed flip does not increase the size of the larger circumcircle (see e.g. [10]),
so flipping does not take us outside the class of uniformly bounded triangulations.
Importantly, the flips turn a large portion of T (α) into Delaunay triangles, namely
D(α − 6q) ⊆ T ′(α). To see this, we note that every triangle σ ∈ T ′(α) contained
in Bα−4q is also in D. Indeed, its circumsphere is contained in Bα−2q, which is
contained in the underlying space of T ′(α). If σ were not empty, we would have
a vertex inside the circumcircle, which would imply an edge that is not locally
Delaunay between this vertex and σ, which is a contradiction; see also [2], [3], where
this argument is used to prove part (ii) of the Delaunay Triangulation Theorem.
Finally, the triangles of T ′(α) contained in Bα−4q cover Bα−6q, which implies D(α−
6q) ⊆ T ′(α), as required. For the comparison, we consider

ΣT (α) = [ΣT (α) − ΣT ′(α)] + [ΣT ′(α) − ΣD(α−6q)] + [ΣD(α−6q) − ΣD(α)] + ΣD(α).

The first difference is non-negative, and the second and third differences are bounded
from above by a constant times αd−1. Dividing by V2α

2 and taking the lower limit,
as α goes to infinity, we get f(T ) > f(D), as required. �

3.2. Implications in the plane. There are many functionals on triangles that
are known to be in F . Applying the Main Theorem thus gives many optimality
results for Delaunay triangulations of Delaunay sets.

Corollary A. Let σ be a triangle in R
2, with edges of length a, b, c, let c1 > 0 and

c2 > 1 be constants, and consider the following list of functionals:

• F1(σ) = Circumradiusc1(σ).
• F2(σ) = Circumradiusc2(σ) · Area(σ).
• F3(σ) = −Inradius(σ).
• F4(σ) = (a2 + b2 + c2)/Area(σ).
• F5(σ) = (a2 + b2 + c2) · Area(σ).

• F6(σ) = ‖Centroid(σ)− Circumcenter(σ)‖2 · Area(σ).
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Then fi(DelX) 6 fi(T ) for every Delaunay set X ⊆ R
2, for every uniformly

bounded triangulation T of X, and for 1 6 i 6 6.

Proof. It is easy to see that all listed functionals belong to E . For finite sets, the
optimality of the Delaunay triangulation for f1 and f4 was proved in [9], for f2 and
f6 it was proved in [10], for f3 it was proved in [7], and for f5 it was proved in
[12]. It follows that Fi ∈ F for 1 6 i 6 6, so the claim follows from (i) in the Main
Theorem. �

3.3. Implication in d dimensions. We have one example of a functional on d-
simplices that is in G, namely the extension of F5 to three and higher dimensions.
Writing a1 to ak for the lengths of the k =

(

d+1
2

)

edges of a d-simplex σ, we define

FR(σ) = Vol(σ)
∑

i a
2
i ; see also [1]. Rajan proved that for finite sets in R

d, the
density of FR attains its minimum for the Delaunay triangulation. We will extend
his proof to show that FR belongs to G. With this, we get another consequence of
the Main Theorem.

Corollary B. We have fR(DelX) 6 fR(T ) for every Delaunay set X ⊆ R
d and

for every uniformly bounded triangulation T of X.

Proof. The main tool in this proof is the lifting of a point y ∈ R
d to the point

y+ = (y, ‖y‖2) ∈ R
d+1, an idea that goes back to Voronoi [13]. Note that y+ lies

on the graph of the function ̟ : Rd → R defined by ̟(x) = ‖x‖
2
. For Y ⊆ R

d,
write Y + for the corresponding set of lifted points, and let convY + be its convex
hull. Assuming Y is finite and generic, convY + is a convex polytope whose faces
are simplices. We distinguish between lower faces whose outward normals point
down—against the direction of the (d + 1)-st coordinate axis—and upper faces
whose outward normals point up. Importantly, if we project all lower faces vertically
to R

d, then we obtain the Delaunay triangulation of Y .
Consider now the functional FL that maps a d-simplex σ in R

d to the (d + 1)-
dimensional volume between the convex hull of the d + 1 lifted vertices and the
graph of ̟. More precisely, it is the volume of the portion of the vertical (d + 1)-
dimensional prism over σ that is bounded above by the convex hull of the lifted
vertices and below by the graph of ̟. It is not difficult to prove that FL is invariant
under isometries of Rd, and to use this fact to show that FL ∈ E . The reason for
our interest in FE is the relation

FR(σ) = (d+ 1)(d+ 2)FE(σ) (15)

proved in [12]. Since the two functionals differ only by a multiplicative constant, it
follows that FR also belongs to E . It remains to prove that FR belongs to G, which
we do by showing that FE belongs to G. Indeed, this should be clear from the
lifting result: the lifted images of the d-simplices in the Delaunay triangulation are
closer to the graph of ̟ than those of other d-simplices. More specifically, if T ′ is
a simplicial complex with finite vertex set Y in R

d, and all simplices of D′ ⊆ DelY
are contained in the underlying space of T ′, then the total (d + 1)-dimensional
volume we get for T ′ is larger than or equal to that we get for D′. But this implies
FE ∈ G, and therefore FR ∈ G, as required. �
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4. Discussion

The main contribution of this paper is an extension of optimality results that hold
for Delaunay triangulations of finite sets to Delaunay sets, which are necessarily
infinite. In the plane, this extension holds for all functionals that improve upon
flipping an edge that is not locally Delaunay. In three and higher dimensions, we
need stronger properties to prove the extension. It would be interesting to know
whether these stronger properties are necessary. Specifically, is it true that F ∈ F
implies that the density of F attains its minimum at the Delaunay triangulation of
a Delaunay set in R

d, also for d > 3? Similarly, are there functionals in G that are
not in F , or is F = G?
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