
Computational Geometry 48 (2015) 507–519
Contents lists available at ScienceDirect

Computational Geometry: Theory and 

Applications
www.elsevier.com/locate/comgeo

Triangulations from topologically correct digital Voronoi 
diagrams

Thanh-Tung Cao a,∗, Herbert Edelsbrunner b, Tiow-Seng Tan a

a School of Computing, National University of Singapore, Singapore
b Institute of Science and Technology, Klosterneuburg, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2013
Accepted 27 March 2015
Available online 2 April 2015

Keywords:
GPU
GPGPU
Digital geometry
Delaunay triangulation

We prove that the dual of the digital Voronoi diagram constructed by flooding the plane 
from the data points gives a geometrically and topologically correct dual triangulation. This 
provides the proof of correctness for recently developed GPU algorithms that outperform 
traditional CPU algorithms for constructing two-dimensional Delaunay triangulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the computational power of graphics processing units (GPUs) has surpassed that of central processing 
units (CPUs). Continuing the trend, the gap between the two is expected to widen in the foreseeable future. With the 
introduction of programming models, such as CUDA [8] and OpenCL [7], there are now more application areas that benefit 
from the computational power of GPUs. These areas include scientific computing, games, data mining, and computational 
finance [9]. In computational geometry, GPUs have been used to solve problems in discrete as well as in continuous space. 
An example is the digital Voronoi diagram approximating the corresponding Euclidean structure, which has a wide range 
of applications in image processing, computer vision, and graphics [2]. Another is the Delaunay triangulation, which has 
applications in mesh generation and scientific computing [5].

In Euclidean space, the Voronoi diagram and the Delaunay triangulation are but different geometric expressions of the 
same combinatorial structure. In digital geometry, the translation from one to the other is made difficult by the need to 
approximate. Indeed, it is easy to construct a digital Voronoi diagram, just by coloring the pixels or their higher-dimensional 
analogues. Early work in this direction uses graphics hardware [6] and the texture unit of the GPU [15]. More recent work 
takes the vector propagation approach [3], which leads to algorithms whose running time depends solely on the image 
resolution and not on the number of data points [1,11,13]. In contrast, computing the Delaunay triangulation with GPUs has 
been more challenging. While Hoff et al. [6] mention the possibility to dualize the digital Voronoi diagram, it was not until 
recently that a complete GPU algorithm for the Delaunay triangulation has been described [12]. With the tremendous power 
of GPUs, this algorithm outperforms all traditional CPU algorithms, including the optimized Triangle software of Shewchuk 
[14]. This work has also been improved and further extended to handle constraints [10]. The reason for the difficulty is the 
approximate character of digital Voronoi diagrams, which may lead to unwanted artifacts when dualized, such as crossing 

* Corresponding author at: School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417.
E-mail addresses: todd.t.cao@gmail.com (T.-T. Cao), edels@ist.ac.at (H. Edelsbrunner), tants@comp.nus.edu.sg (T.-S. Tan).
http://dx.doi.org/10.1016/j.comgeo.2015.04.001
0925-7721/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2015.04.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:todd.t.cao@gmail.com
mailto:edels@ist.ac.at
mailto:tants@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.comgeo.2015.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2015.04.001&domain=pdf


508 T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519
edges and missing triangles. However, there is experimental evidence suggesting that a careful implementation can avoid 
such artifacts.

In this paper, we present a detailed proof that dualizing the digital Voronoi diagram gives a topologically and geomet-
rically correct triangulation. Leaving the correction of non-locally Delaunay diagonals to a postprocessing step, we call the 
result of the dualization the digital Delaunay triangulation. We base our proof on the recent improvement of the GPU De-
launay triangulation algorithm described in [10]. The proof has been used in the latest implementation of that algorithm.1

After presenting a conceptual version of this algorithm in Section 2, we prove its correctness in Section 3. Specifically, we 
show that the digital Voronoi diagram obtained by flooding the pixel array can be dualized to give a topologically as well 
as geometrically valid triangulation in the plane. Our proof takes three steps to establish the validity of the digital Delaunay 
triangulation. The first step rationalizes the flooding algorithm by proving that the pixels are colored in the order of distance 
from the data points. The second step exploits this ordering to prove a technical topological result about loops. The third 
step uses this result to establish the desired properties of the digital Delaunay triangulation. We believe that our approach 
to proving the correctness of digital geometry algorithms by progressive abstraction is of independent interest.

2. The algorithm

In this section, we formally state the problem and give a conceptual but precise description of the algorithmic solution 
first presented in [10].

Problem specification The setting is a rectangular array of pixels. To talk about it, we define a pixel as the closed unit square 
centered at an integer point in the plane: A + [− 1

2 , 12 ]2, with A ∈ Z
2. It has four sides: east, north, west, south, and four 

corners: north-east, north-west, south-east, south-west. We say two pixels are neighbors if they share a side or a corner. The 
decomposition of the plane into pixels is denoted by Z2 + [− 1

2 , 12 ]2. Since computers are finite, we consider only a finite 
rectangular piece of the thus decomposed plane and call this piece the texture within which all computations are performed. 
Now suppose we are given a subset of the pixels in the texture. We call the center of each such pixel a seed point and write 
S = {x1, x2, . . . , xn} for the set of seed points. We assume that the points do not all lie on a single straight line. Equivalently, 
at least three of the seed points span a proper triangle. The goal is to connect the seed points in S with edges and triangles 
to form a simplicial complex. It will be convenient to add a dummy seed point, x0, which we imagine at infinity and use as 
an additional vertex when we form the simplicial complex. With this modification, we consider a simplicial complex a valid 
solution to our problem if it satisfies the following three conditions:

I. The set of vertices is S ∪ {x0}.
II. The simplicial complex triangulates the sphere.

III. Removing x0 gives a geometric realization in the plane.

Condition I prescribes the relationship between input and output. Condition II summarizes the required topological proper-
ties. It includes the local requirements of a 2-manifold, that every edge belongs to two triangles and every vertex belongs 
to a ring of triangles. It also prescribes the global topology of the simplicial complex to that of the 2-dimensional sphere. 
Condition III summarizes the required geometric properties, namely that the edges do not intersect other than at shared 
vertices, and the triangles do not intersect other than along shared edges. Note that Condition III applies only to the finite 
portion of the simplicial complex, obtained by removing the star of x0, that is, x0 together with all edges and triangles that 
connect to x0. Since removing a single vertex star from a triangulated sphere keeps the rest connected, the finite portion of 
the simplicial complex is thus required to be connected.

Digital Voronoi diagrams Our approach to solving the problem mimics the computation of the Euclidean case. Recall that 
the (Euclidean) Voronoi region of a point xi is the set of points for which xi is the closest seed points, that is,

V i = {x ∈ R
2 | ‖x − xi‖ ≤ ‖x − x j‖,∀ j}.

It is easy to see that V i is convex. The collection of V i is the (Euclidean) Voronoi diagram of S . Finally, the (Euclidean) 
Delaunay triangulation is the dual of this diagram. Working with integer instead of real coordinates, we can only approximate 
this Euclidean construction. We do this with two types of digital Voronoi diagrams. To construct the first, we color each pixel 
with the index of the closest seed point:

Ei = {A ∈ Z
2 | ‖A − xi‖ ≤ ‖A − x j‖,∀ j}.

We assume a fixed tie-breaking rule so that each pixel receives only one color. The bulk of Ei is the component Bi that 
contains the seed point, xi . All the other pixels of Ei are debris, which exist only inside a sharp corner of the Euclidean 
Voronoi region; see Fig. 1. The debris is a serious drawback as it makes it difficult to turn the decomposition into a valid 

1 URL: http :/ /www.comp .nus .edu .sg /~tants /delaunay2DDownload .html.

http://www.comp.nus.edu.sg/~tants/delaunay2DDownload.html


T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519 509
Fig. 1. A region with a sharp corner. Its corresponding digital region consists of the bulk and one debris pixel.

Fig. 2. The seven types of colorings of a 2-by-2 array of pixels. The first two are digital Voronoi vertices.

solution to our triangulation problem.
This difficulty is alleviated by introducing a second kind of digital Voronoi diagram. It is obtained by growing the regions 

simultaneously until they run into each other. In other words, we run n versions of breadth-first search in parallel, making 
sure they do not invade each other’s territory. To make this process precise, we say a pixel A is eligible to be colored i
if A = xi or A has a neighboring pixel of color i. Initially, after s = 0 steps, all pixels are uncolored. Write Fi,s for the 
set of pixels colored i after s steps, and Q s for the set of eligible pixel-color pairs (A, i). Writing N(A) for the set of 
pixels neighboring A. We implement Q s as a priority queue and allow it to contain additional pairs whose pixels are 
already colored. These pairs do not interfere with the proper execution of the algorithm. Let min(Q s) be the operation 
that removes and returns the pair with minimum distance between the pixel center and the seed point of the color, 
with respect to a tie-breaking mechanism. We now state the algorithm more formally, suppressing the counter for the 
number of steps, which is implicit. We initialize the regions to Fi = ∅ and the queue to the set of pairs (xi , i), for all i.

repeat
(A, i) = min(Q );
if A is not colored then

Fi = Fi ∪ {A};
Q = Q ∪ {(B, i) | B ∈ N(A)};

end if
until Q = ∅.

It is easy to see that this algorithm succeeds in coloring all pixels. Writing Fi for the set of pixels colored i after the last 
step of the algorithm, this is equivalent to saying that the union of the Fi covers the entire texture. Indeed, in any other 
case there would be an uncolored pixel neighboring a colored pixel and the algorithm could continue coloring.

An important aspect of the algorithm is its tie-breaking mechanism. Any total order of the pixel pairs consistent with 
the Euclidean distance between pixel centers will do. For example, we may exploit the total order of the integers as follows. 
A pair of pixels is specified by four coordinates, which we sort into a vector of length four and write (A, B) <lex (C, D)

if the vector obtained from A, B ∈ Z
2 is lexicographically smaller than the vector obtained from C, D ∈ Z

2. We say 
(A, B) has higher priority than (C, D), denoted as ‖A − B‖≺‖C − D‖, if ‖A − B‖ < ‖C − D‖ or ‖A − B‖ = ‖C − D‖ and 
(A, B) <lex (C, D). Note that ‖A − B‖≺‖C − D‖ implies ‖A − B‖ ≤ ‖C − D‖ but not always ‖A − B‖ < ‖C − D‖. This will 
be important in our analysis of the algorithm.

Digital Delaunay triangulation Similar to the Euclidean case, we dualize the digital Voronoi diagram, and in particular the 
regions Fi . The key concept is that of a digital Voronoi vertex. This is a corner shared by four pixels that have either four 
different colors or three different colors in which the two pixels sharing the color also share a side. Equivalently, a digital 
Voronoi vertex is a 2-by-2 array of the type which is shaded in Fig. 2. We note that the third type of array, which is not a 
digital Voronoi vertex, is called a neck of the region whose color is repeated. We will see in Section 3 that the fourth type, 
with two crossing necks, does not arise. This is important when we dualize the colored regions as follows:

• For each digital Voronoi vertex with three different colors, i, j, k in counterclockwise order, we add the edges xi x j , x j xk , 
xkxi to E and the triangle xi x j xk to T .

• For each digital Voronoi vertex with four different colors, i, j, k, � in counterclockwise order, we add the edges xi x j , 
x j xk , xkxi and xi xk , xkx� , x�xi to E and the triangles xi x j xk , xi xkx� to T .



510 T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519
Fig. 3. The digital Delaunay triangulation superimposed on the digital Voronoi diagram obtained by flooding.

Note that in the second case, we have a choice between the two diagonals, which we make arbitrarily. Here, E and T are 
multisets. We will prove that T is in fact a set and E contains each edge exactly twice. Identifying the edges in pairs thus 
gives a simplicial complex; see Fig. 3 for an example. We call this the digital Delaunay triangulation of S . Its finite portion is 
obtained by removing x0 together with all edges and triangles that share x0.

3. The proof

In this section, we present the proof that the digital Delaunay triangulation is a valid solution to our triangulation 
problem. It consists of three consecutive steps, explained in the following three subsections.

3.1. Flooding sorts

In this subsection, we rationalize flooding by proving some basic properties. Recall our tie-breaking mechanism and that 
‖A − B‖≺‖C − D‖ implies ‖A − B‖ ≤ ‖C − D‖.

Order by distance The main technical result in this section is a proof that flooding colors the pixels in the order of their 
distance from the seed points. This is plausible but difficult to establish. We consider two versions of this claim, a weak 
version that claims the ordering separately within each color, and a strong version that claims one order for the entire 
collection of pixels. The proof is inductive, moving from the weak version after s steps to the strong version after s steps to 
the weak version after s + 1 steps.

Ordered Coloring Lemma For every s ≥ 0 and every two colors i and j, we have ‖A − xi‖≺‖Y − x j‖ for all A ∈ Fi,s and 
all uncolored pixels Y that are eligible to be colored j after s steps.

Proof. This is the strong version of the claim and we get the weak version as a special case, when i = j. We begin by 
proving that the weak version implies the strong version. The only reason the latter is not trivial is that at step s a pixel A
is colored with i. Since we use a priority queue to select A, all other existing pixel-color pairs in Q have priorities lower 
than the priority of (A, i). On the other hand, for a pixel Y ∈ N(A) newly eligible to be colored i, by the weak version after 
s steps, (Y , i) also has priority lower than that of (A, i). By the strong version after s − 1 steps, the priority of (A, i) is lower 
than that of all colored pixels we have seen so far. This implies the strong version after s steps.

We now prove that the strong version after s steps implies the weak version after s + 1 steps. To get a contradiction, we 
let Y0 be the first uncolored pixel that violates the claimed inequality for the weak version and we let s0 be the number 
of steps after which this violation arises. We define a predecessor of a colored pixel as a neighboring pixel that received 
the same color earlier. By assumption, after s < s0 steps, all predecessors of a pixel colored i are at least as close to xi
as this pixel. After s0 steps, Y0 has a neighbor A with color i that satisfies ‖Y0 − xi‖≺‖A − xi‖. Note that A is the only 
neighbor with color i, else Y0 would have contradicted the inequality before the s0 steps or it would have been colored 
before A. There are two cases to consider: when A and Y0 share a side and when they share only a corner. Both cases are 
further decomposed into subcases, and for each subcase, we either derive a contradiction directly, or we reduce it to another 
subcase working our way up a path of predecessors one pixel closer to xi . Since this path is finite, we get a contradiction 
eventually. To discuss the two cases, we assume the positions of A and Y0 are as depicted in Fig. 4.

Case 1. A is the neighbor to the west of Y0. Without loss of generality, assume that xi lies in the lower right quadrant 
of Y0. A has a predecessor at least as close to xi but not neighboring Y0. The only possibility is the south-west 
neighbor B . This further constrains the location of xi to within a 45◦ wedge. The neighbor U to the south of A
must have been colored before B , but with a different color k, else it would have violated the claimed inequality 
before Y0 did. By inductive assumption, ‖U − xk‖≺‖B − xi‖≺‖B − xk‖. Similarly, ‖U − xk‖≺‖A − xi‖≺‖A − xk‖. 



T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519 511
Fig. 4. Illustration of Case 1 on the left and Case 2 on the right. In both cases, the shaded right-angled wedge represents the possible locations of xi .

We now have two constraints that express that A and B lie on the same side of the perpendicular bisector of xi
and xk , namely

‖A − xi‖ ≤ ‖A − xk‖,
‖B − xi‖ ≤ ‖B − xk‖.

Since U lies inside the triangle xi AB but not on the edge AB , the two inequalities imply ‖U − xi‖ < ‖U − xk‖ and 
therefore ‖U − xi‖≺‖U − xk‖. But this is only possible if U has no neighbor of color i at the time it is colored. 
We consider three subcases:

Case 1.1. The south-east neighbor W of B is a predecessor of B . Therefore, U must have been colored before W . 
By inductive assumption, we have ‖U − xi‖≺‖U − xk‖≺‖W − xi‖. But this contradicts the inequality 
‖W − xi‖≺‖U − xi‖, which we get from the restriction of xi to the 45◦ wedge.

Case 1.2. The neighbor V to the south of B is a predecessor of B , and W is not. Therefore, we get 
‖U − xi‖≺‖U − xk‖≺‖V − xi‖ as U must have been colored before V . This implies ‖U − xi‖ ≤ ‖V − xi‖, 
which further limits xi to within a narrow diagonal strip, as indicated in Fig. 4 on the left. Let the 
color of W be � �= i, and observe that W must have been colored before V , else it would have vi-
olated the claimed inequality before Y0 did. Therefore, ‖W − x�‖≺‖V − xi‖≺‖V − x�‖, and similarly, 
‖W − x�‖≺‖B − xi‖≺‖B − x�‖, which implies

‖B − xi‖ ≤ ‖B − x�‖,
‖V − xi‖ ≤ ‖V − x�‖.

Recalling that xi lies inside the diagonal strip, we observe that W lies inside the triangle xiBV but not 
on the edge BV . Hence, the two inequalities imply ‖W − xi‖≺‖W − x�‖. We now repeat the analysis of 
Case 1, substituting V , W for B, U .

Case 1.3. The south-west neighbor C of B is a predecessor of B , and V and W are not. The neighbor V to the 
south of B must have been colored before C , else it would have contradicted the claimed inequality 
before Y0 did. We repeat the analysis of Case 1, substituting C, V , B for B, U , A.

We will shortly relax the condition on xi by adding the column of pixels below A to the quadrant that contains xi . 
Indeed, the only reason for not doing so right from the start is the condition ‖Y0 − xi‖≺‖A − xi‖, which is violated 
for pixels in that column.

Case 2. A is the north-west neighbor of Y0. Without loss of generality assume that xi lies in the lower quadrant of Y0; 
see Fig. 4 on the right. Recall that A is the only neighbor of Y0 colored i. The neighbor U to the south of A must 
therefore have been colored before A, with a color k different from i, else it would have violated the claimed 
inequality before Y0 did. Using the inductive assumption, we therefore get ‖U − xk‖≺‖A − xi‖≺‖A − xk‖. There 
are only two possible predecessors of A.

Case 2.1. The south-west neighbor V of A is a predecessor of A. We consider two subcases:

Case 2.1.1. ‖U − xi‖≺‖V − xi‖. Here U must have been colored before V , else it would have violated 
the claimed inequality before Y0 did. We therefore get ‖U − xk‖≺‖V − xi‖≺‖V − xk‖. Since 
xi lies in the lower right quadrant of A, we can now apply the analysis of Case 1, substituting 
V , U , A here for B, U , A there. Indeed, all steps of the analysis in Case 1 are valid for xi in that 
quadrant, except for ‖Y0 − xi‖≺‖A − xi‖, which now holds because Y0 is the south-east rather 
than the east neighbor of A, as it was in the original description of Case 1.

Case 2.1.2. ‖V − xi‖≺‖U − xi‖. Here xi lies in the lower left quadrant of A. Notice that ‖A − xi‖
≺‖Y0 − xk‖, else Y0 would have been colored before A. Together with ‖Y0 − xi‖≺‖A − xi‖
and ‖A − xi‖≺‖A − xk‖, we have



512 T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519
‖Y0 − xi‖ ≤ ‖Y0 − xk‖,
‖A − xi‖ ≤ ‖A − xk‖.

Since U lies inside the triangle xi AY0 but not on the edge AY0, the two inequalities im-
ply ‖U − xi‖≺‖U − xk‖. Hence, U must have been colored before V , else color i would 
have taken precedence over color k. But this implies ‖U − xk‖≺‖V − xi‖ and therefore 
‖U − xi‖≺‖V − xi‖, a contradiction to the assumption.

Case 2.2. The west neighbor B of A is a predecessor of A, and V is not. This constrains xi to lie within the same 
45◦ wedge considered in Case 2.1.2; see Fig. 4 on the right. Here, U must have been colored before B , 
else it would have violated the claimed inequality before Y0 did. We can now repeat the analysis of 
Case 2, substituting B, V for A, U .

An amendment to Case 2.1 is in order. The reason is that we may encounter Case 2.2 first, one or more times, and 
then reach Case 2.1. If we do, Y0 is no longer neighbor of the new A, which is equal to the original B or one of 
its predecessors. The analysis in Case 2.1.1 is unaffected by this difference, regardless of the actual position of Y0, 
as Case 2.1.1 can reduce to Case 1 as long as xi lies in the lower right quadrant of A. However, in Case 2.1.2, we 
need to find a new argument for ‖U − xi‖≺‖U − xk‖. To this end, let T be the neighbor to the east of the new A. 
Noting that T lies on a path of predecessors from the original pixel A back to xi , we get ‖T − xi‖≺‖T − xk‖, else 
color k would have taken precedence over color i. Together with ‖A − xi‖≺‖A − xk‖, this gives

‖T − xi‖ ≤ ‖T − xk‖,
‖A − xi‖ ≤ ‖A − xk‖.

Since U lies in the triangle xi AT but not on AT , the above two inequalities imply ‖U − xi‖≺‖U − xk‖, as desired.

Let us reflect on the recursive structure of the inductive argument. Cases 1.2 and 1.3 reduce to Case 1, but one pixel closer 
to the end along the path back to xi . Similarly, Case 2.2 reduces to Case 2, also one pixel closer to xi . In contrast, Case 2.1 
either leads to a contradiction or reduces to Case 1 without getting closer to xi . But this reduction can happen only once 
throughout the recursive argument. We thus see that there is no cycle and each sequence of recursive arguments must end 
with a contradiction. This completes the case analysis and shows that the uncolored pixels have lower priority than the 
colored pixels throughout the algorithm. The claim follows. �

Recall the weak version of the claim, namely that flooding colors the pixels in a region Fi in the order of their distance 
from xi . This implies that we can find a monotonic path from xi to each pixel in Fi . All pixels on the path have color i, and 
the distance to xi does not decrease along the path. We get such a path to A by tracing backward, from A to a predecessor 
to a predecessor of the predecessor and so on. We summarize:

Monotonic Path Lemma For each A ∈ Fi , there is a monotonic path from xi to A within the region Fi .

Necks A neck is a pair of diagonally adjacent pixels of the same color whose two common neighbors both have colors that 
are different from that of the pair. We claim that the colors of the two common neighbors are also different from each 
other. In other words, a square of four pixels cannot have two necks. This property is useful because it implies that curves 
drawn within different color regions do not cross. Contradicting two necks is easy for Euclidean coloring since the bisector 
of the two seed points cannot separate the four pixel centers according to their color. For flooding, we need a proof, which 
we now present.

One Neck Lemma Flooding produces a coloring in which every square of four pixels has at most one neck.

Proof. Label the four pixels A, B , U , and V . Assuming two necks, we have that the algorithm colors the diagonally adjacent 
pixels A and B with i and the other two diagonally adjacent pixels U and V with j �= i; see the fourth type in Fig. 2. 
Consider the following two right-angled wedges,

W A = {x ∈R
2 | ‖A − x‖ ≤ min{‖U − x‖,‖V − x‖}},

W B = {x ∈R
2 | ‖B − x‖ ≤ min{‖U − x‖,‖V − x‖}}.

Without loss of generality, we may assume that A gets colored first. Using the Ordered Coloring Lemma, we have 
‖A − xi‖≺‖U − x j‖≺‖U − xi‖, else U would be colored i. Similarly, ‖A − xi‖≺‖V − x j‖≺‖V − xi‖, which implies xi ∈ W A . 
If B gets colored second, before U and V , then we also have xi ∈ W B . But W B intersects W A in a single point, namely the 
corner shared by the four pixels, thus we get a contradiction because this point does not have integer coordinates. So we 
may assume that U gets colored before B and before V . Therefore, ‖B − xi‖≺‖B − x j‖, else B would be colored j. Together 



T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519 513
Fig. 5. The bulk of Ei after coloring the first s pixels by flooding.

with ‖U − x j‖≺‖U − xi‖ and ‖V − x j‖≺‖V − xi‖, this implies that the perpendicular bisector of xi and x j separates B
from U and V . Because the bisector is constrained to pass between B on one side and U , V on the other, the half-plane 
that contains xi and B intersects W A in at most one point, namely the shared corner of the four pixels, which is again a 
contradiction. �
Bulk When we remove a point from S , the Euclidean Voronoi region of a remaining point either stays the same or it grows. 
The same is true for the regions Ei obtained by Euclidean coloring. Similarly, it is true for the bulk of Ei . However, it is 
not necessarily true for the regions obtained by flooding. For example, because of two sites x j and xk , the region Ei of xi
contains a debris, which during flooding is colored by j. After the removal of xk , the debris becomes connected with the 
bulk of Ei and thus can be colored i. As a result, the region of color j obtained by flooding shrinks at a pixel. We prove a 
weaker statement, namely that the regions obtained by flooding contain the bulks of Euclidean coloring. It follows that the 
deletion of a seed point can shrink a region only by debris pixels, of which there are generally few.

Bulk Lemma Each region Fi constructed by flooding contains the bulk of Ei .

Proof. We prove that the prefixes of the bulk of Ei obtained by adding the pixels in order from xi are connected. It follows 
that the pixels of the bulk are colored in this same order and with the same color. Let Bi,s contain the s pixels of the bulk 
of Ei closest to the seed point. Thus

{xi} = Bi,1 ⊆ Bi,2 ⊆ . . . ⊆ Bi,m = Bi .

Suppose not all of the prefixes are connected and let Bi,s = Bi,s−1 ∪ {A} be the first that is not connected. Draw the line 
that passes through A and xi , as in Fig. 5. There are neighbors of A on both sides of the line whose distance from xi is less 
than ‖A − xi‖. On the other hand, A belongs to the bulk of Ei , which is connected, so we can find a path within the bulk 
that connects A with xi . Drawing it from pixel center to pixel center with straight edges in between, the path belongs to 
the Euclidean Voronoi region, V i , by convexity. Hence, the region bordered by the path and the straight segment from A
to xi also belongs to V i by convexity, and thus all pixel centers enclosed in this region belong to Ei . The region contains 
the pixel center of at least one neighbor B of A with ‖B − xi‖≺‖A − xi‖. This neighbor precedes A in the ordering of the 
pixels in the bulk of Ei and thus belongs to Bi,s−1, a contradiction to A being separated from Bi,s−1. �
3.2. Lassos go empty

In this subsection, we prove two technical results about monotonic paths which are instrumental in proving the lemmas 
needed for the validity of the digital Delaunay triangulation.

Lassos Given a seed point xi and a pixel A colored i, a lasso consists of a monotonic path from xi to A and the line segment 
from A back to xi . We call xi and A the base points and the line oriented from A to xi the base line of the lasso. The size
of the lasso is the distance between the two base points. When we compare the sizes of two lassos, we use the same 
tie-breaking mechanism as for the pairs of pixels. The lasso decomposes the plane into two components, an inside and an 
outside. The inside includes all pixels of the lasso.

Lasso Lemma There is no seed point inside a lasso.

Proof. To get a contradiction, assume the opposite. Let Li be the smallest lasso that encloses one or more seed points, and 
let xi and A be its base points. Let x j be the enclosed seed point that is furthest from the base line; see Fig. 6. Given an 



514 T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519
Fig. 6. The first lasso consists of a monotonic path from xi to A and the line segment from A back to xi . Inside the first lasso, we see another seed point, 
x j . The second lasso defined by xk and B encloses A. The third lasso defined by x� and U also encloses A.

oriented line, a pixel belongs to the corresponding staircase if its interior intersects the line or its boundary intersects the 
line and its center lies to the right of the line. The orientation of the line induces an ordering of the pixels along the line. 
Consider the staircase defined by the line that passes through x j and is orthogonal to the base line of Li . Traversing it from 
x j and moving away from the base line, we let B be the first pixel not colored j. Because of the choice of B on the staircase 
orthogonal to the base line of Li , we have ‖B − x j‖≺‖B − xi‖. It follows that B does not have color i either. Let k /∈ {i, j}
be the color of B . By the Monotonic Path Lemma, there is a monotonic path from xk to B . We do a case analysis in which 
every possibility leads to a contradiction. It will follow that x j cannot exist.

Case 1. xk and B lie on opposite sides of the line parallel to the base line of Li and passes through x j . Then we get 
‖B − x j‖≺‖B − xk‖. On the other hand, by the choice of B , it has a neighbor with color j and with smaller 
distance from x j , thus B would have been colored j instead of k, a contradiction.

Case 2. xk and B lie on the same side of that line, as in Fig. 6. By the extremality of the choice of x j , the seed point xk
cannot lie inside the lasso Li . Let Lk be the lasso consisting of a monotonic path from xk to B and the line segment 
from B back to xk . By the One Neck Lemma, the monotonic path cannot cross the path from xi to A and therefore 
must cross the base line of Li . Hence Lk encloses either xi or A. For the former, we have

‖B − xk‖ ≺ ‖B − x j‖ ≺ ‖B − xi‖,
and by drawing a line from xi through B , we get a pixel on the path from xi to A that is even further from xi than 
B . It follows that ‖B − xi‖≺‖A − xi‖, thus ‖B − xk‖≺‖A − xi‖. Hence, the size of Lk is less than the size of Li , 
and by the extremality of the choice of Li , Lk cannot enclose xi . The only remaining possibility is that Lk encloses 
A, as in Fig. 6. The final contradiction will rest on the properties of two particular pixels which we now describe. 
Traverse the staircase from A to xi and let U be the first pixel whose color is not i. Let V be the predecessor 
of U in the staircase. Such pixels U and V exist because the staircase crosses the monotonic path from xk to B , 
where pixels have color k �= i. However, we may reach U before crossing the path. Let � �= i be the color of U . We 
have U colored before V ; otherwise, the coloring of V would result in putting (U , i) into the priority queue, a 
contradiction to the Ordered Coloring Lemma. So we have ‖U − x�‖≺‖V − xi‖. This implies ‖U − x�‖≺‖A − xi‖. 
Let L� be a lasso with base points x� and U . Because of the extremal choice of the first lasso, L� cannot enclose 
any seed points. There are three cases to consider.

Case 2.1. � = k. We have ‖U − xk‖≺‖V − xk‖, else V would have been colored k. But this also implies that xk and 
U lies on the same side of the perpendicular bisector of U and V , thus L� encloses V . Draw a half-line 
from xk through V , we get a pixel on the monotonic path from xk to U whose distance from xk exceeds 
‖U − xk‖. This contradicts the monotonicity of the path.

Case 2.2. � �= k and x� and B are on opposite sides of the line parallel to the base line of Li and passes through 
x j . The lasso L� thus either encloses xk or B , since x� must lie outside Lk . If it encloses B , it also encloses 
x j because the two pixels are connected by a piece of a staircase of color j �= �. As mentioned earlier, L�

cannot enclose a seed point so we have a contradiction in either case.
Case 2.3. � �= k and x� and B are on the same side of the line passing through x j . Avoiding to enclose 

xi , the only possibility for the monotonic path from x� to U is as shown in Fig. 6. Here we use 
‖U − x�‖≺‖V − xi‖≺‖V − x�‖. But V is enclosed by L� , so we can draw a directed line from x� through 
V , as in Case 2.1. This gives a pixel on the path from x� to U whose distance from x� exceeds ‖U − x�‖, 
again a contradiction.

This implies that x j does not exist, which proves the claim. �
Spliced lassos We extend the lasso to a slightly more elaborate construction. Let xi and x� be two different seed points and 
A ∈ Fi , D ∈ F� two pixels. For the construction, we require that A and D are neighbors sharing a common side or at least a 
common corner, but in the latter case the remaining two pixels sharing the same corner must have colors that are different 



T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519 515
Fig. 7. The two edges cross and so do the two spliced paths.

from each other. Drawing a monotonic path of color i from xi to A, another monotonic path of color � from x� to D , and 
the line segment between xi and x� , we get what we call a spliced lasso. We refer to xi and x� as its base points and the 
connecting line as its base line. Similar to the lasso, a spliced lasso decomposes the plane into an inside and an outside. 
Another monotonic path cannot cross the spliced paths. Indeed, the only weak point is the corner at which the two paths 
are spliced, but we cannot cross there either if that corner is a digital Voronoi vertex. The only possibility to go from outside 
to inside the spliced lasso is therefore to cross the base line.

Spliced Lasso Lemma There is no seed point inside a spliced lasso.

Proof. Assume to the contrary that we have a spliced lasso with base points xi and x� that encloses other seed points. 
Let x j be the seed point that maximizes the distance from the base line. Starting at x j , construct a piece of a staircase 
orthogonal to and moving away from the base line. Let B be the first pixel not colored j. As before, we argue that the 
color of B is k /∈ {i, j, �} and we construct a lasso Lk connecting xk to B and back. If xk and B lie on opposite sides of the 
line passing through x j and parallel to the base line of the spliced lasso, then we get ‖B − x j‖≺‖B − xk‖, contradicting the 
Ordered Coloring Lemma. On the other hand, if xk and B lie on the same side of the line then the extremal choice of x j
prohibits that xk be inside the spliced lasso. Hence Lk encloses either xi or x� , contradicting the Lasso Lemma. �
3.3. The triangulation is valid

In this subsection, we use the two lasso lemmas to show that the digital Delaunay triangulation is a valid solution to 
our triangulation problem.

No crossing edges Recall that E is the multiset of edges identified when we dualize the digital Voronoi diagram obtained by 
flooding. We say two edges cross each other if the endpoints of each lie on opposite sides of the line spanned by the other. 
Here we require implicitly that no three of the four endpoints lie on a common line. In particular, two copies of the same 
edge are not considered to cross each other.

No Crossing Lemma No two edges in E cross each other.

Proof. Assume the opposite and let xi x j and xp xq be two edges that cross. The four seed points thus form a convex 
quadrilateral whose diagonals are the two edges; see Fig. 7 on the left. Let A, B and C, D be the corresponding pixels in the 
two digital Voronoi vertices identifying the two edges. Connecting xi to A and x j to B by monotonic paths, we get a first 
spliced lasso, which we denote as Li j . Similarly, we construct a second spliced lasso, Lpq . By the Spliced Lasso Lemma, the 
two cannot enclose any seed points. This implies that the spliced paths of Li j cross the edge xp xq an odd number of times, 
and the spliced paths of Lpq cross xi x j an odd number of times. But then the two paths must cross, which is prohibited by 
the One Neck Lemma. �

Consistent orientation Recall that T is the multiset of triangles in the digital Delaunay triangulation. As we will see shortly, 
T is in fact a set. The sequence of the three vertices of a triangle implies an orientation, which is either clockwise or 
counterclockwise. Assuming xi x j xk is in T , it has a dual digital Voronoi vertex that contains three pixels colored i, j, and k. 
By definition of digital Voronoi vertex, the color of the fourth pixel is different from the color of the diagonally opposite 
pixel in the 2-by-2 array; see Fig. 2. We say the orientation of xi x j xk is consistent with the three corresponding pixels if 
both are clockwise or both are counterclockwise.

Consistent Orientation Lemma The orientation of each triangle in T is consistent with the orientation of the correspond-
ing pixels in the dual digital Voronoi vertex.

Proof. Let xi x j xk be a triangle in T with corresponding pixels A, B, C in the dual digital vertex. Note that in a digital 
Voronoi vertex, two diagonal pixels cannot have the same color. Without loss of generality, we assume that horizontally xk
is between xi and x j , and the triangle has clockwise orientation. That is, xk lies between the two vertical lines through xi



516 T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519
Fig. 8. If the orientation of xi x j xk is not consistent with ABC , either a lasso (left) or a spliced lasso (right) encloses a seed point.

Fig. 9. Left: the insides of the three spliced lassos cover the triangle. Right: Planar drawing of a complete bipartite graph.

and x j respectively, and is below the line through xi and x j . To get a contradiction, we suppose the orientation of ABC is 
counterclockwise. We analyze two possible cases of the position of C .

Case 1. C is below the line through xi and x j ; see Fig. 8 on the left. The spliced lasso from xi to x j encloses C , else either 
the lasso from xi to A encloses x j or the lasso from x j to B encloses xi , contradicting the Lasso Lemma. On the 
other hand, xk is outside this spliced lasso. As such, for the monotonic path from xk to reach C , it has to enclose 
either xi or x j , contradicting the Lasso Lemma.

Case 2. C is above the line through xi and x j ; see Fig. 8 on the right. Also, the lasso from xi to A cannot enclose x j , and 
that from x j to B cannot enclose xi . As such, C always lies outside the spliced lasso between xi and x j . Since xk is 
below the line through xi and x j while C is above this line, either the spliced lasso from xk to xi encloses x j , or 
the spliced lasso from xk to x j encloses xi , contradicting the Spliced Lasso Lemma. �

No nesting triangles Using the consistent orientation between the triangles and the pixels in the dual digital Voronoi ver-
tices, we now show that no two triangles in T are nested. This includes the case in which the two triangles are the same.

No Nesting Lemma No two triangles in T are nested or the same.

Proof. Let xi x j xk and xp xqxr be two triangles with different dual digital Voronoi vertices. We first consider the case in which 
the second triangle has at least one new seed point, xr /∈ {xi, x j, xk}. To show that the triangles are not nested, it suffices to 
prove that xr does not lie inside the triangle xi x j xk . As usual, we draw the monotonic paths from the seed points to the 
dual vertex; see Fig. 9 on the left. Splicing the paths in pairs, we get three spliced lassos. To complete the proof, we think 
of the insides of the three spliced lassos as the projection of the three faces of a tetrahedron built on top of the triangle. 
Observe that the projections cover the triangle. If xr lies inside the triangle then it is enclosed by one of the spliced lassos, 
a contradiction to the Spliced Lasso Lemma.

We consider second the case in which the two triangles are the same. Connecting the seed points with the dual vertices, 
we get a complete bipartite graph with five vertices and six edges; see Fig. 9 on the right. We may assume that the drawing 
of the graph is plane, that is, the paths do not cross. Indeed, two paths can only cross if they have the same color, and in 
this case we can cut and splice the pieces to remove the crossing. Now observe how the three seed points connect to the 
two Voronoi vertices. If xi , x j , and xk connect in a clockwise order to one vertex then they connect in a counterclockwise 
order to the other vertex. It follows that one of the two triangles contradicts the Consistent Orientation Lemma. �

We have now completed the proof that the digital Delaunay triangulation satisfied Condition III. It remains to prove that 
it has the right topology, that is, it satisfies Condition II.



T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519 517
Connectivity If an edge in E belongs to three or more triangles then there are two that are nested, the same, or have 
crossing edges. This would contradict the No Crossing Lemma or the No Nesting Lemma, implying that each edge in E
belongs to either one or two triangles in T . In the latter case, the two triangles lie on opposite sides of the edge. We argue 
that each edge belongs to exactly two triangles. In other words, there are no holes in the triangulation. We begin by proving 
that each region Fi is simply connected. In the plane this is equivalent to being connected and having no holes.

Simply Connectedness Lemma All digital Voronoi regions constructed by flooding are simply connected.

Proof. Suppose there is a region Fi that is not simply connected. By construction, Fi is connected, so we can splice two 
monotonic paths to form a loop going around one of the holes. If possible, we do the splicing along a shared side of two 
pixels. If this is not possible, we splice the two paths at a shared pixel corner and recall from the One Neck Lemma that 
the other two pixels sharing that corner have colors different from each other. The two spliced paths both originate at the 
seed point, so we have a spliced lasso with the base line being a single point. Drawing the piece of a staircase emanating 
from a presumed seed point, x j , inside the lasso away from that pixel, the proof of the Spliced Lasso Lemma still applies. It 
follows that the hole contains no seed points. But then the hole must be empty, else we could construct a monotonic path 
connecting the hole to the outside. �

Write ∂ Fi for the set of sides and corners shared between pixels in Fi and pixels not in Fi . We can orient the sides so 
that Fi lies locally to the left and the resulting curve is connected and goes around the region in a counterclockwise order. 
This construction is unambiguous except in one important special case. If Fi has a neck, there is a corner shared by four 
sides. In this case, we duplicate the corner and we connect the sides in pairs so that the curve does not cross the neck. This 
gives a cyclic sequence in which each corner appears only once. Replacing every corner by the four pixels around it, we get 
a cyclic sequence of 2-by-2 arrays. Each such array contains at least one and at most three pixels from Fi . Since every side 
is either vertical or horizontal, any two contiguous arrays overlap in exactly two pixels, one colored i and the other j �= i. 
As we walk along the sequence, the color j can only change when we pass through a digital Voronoi vertex. Indeed, the 
only other array with at least three different colors is the neck, but it shares the color j with both its predecessor and its 
successor along the sequence.

This observation allows us to interpret the information as we read along the sequence of arrays. Specifically, the digital 
Voronoi vertices decompose the cycle into segments within which the color j �= i of the shared pixels is constant. It follows 
that two contiguous digital Voronoi vertices share one pair of colors. In other words, the segment gives rise to two triangles 
sharing a common edge. It follows that each edge in E belongs to at least two triangles in T . Because of the No Nesting 
Lemma, this number is at most two and therefore exactly two. Because the regions are simply connected, we get exactly 
one cycle of arrays for each Fi , which implies that the triangles incident to a vertex xi form a ring around the seed 
point. Hence, the triangulation has the topology of a 2-manifold. To conclude the argument, we use the Nerve Theorem 
[4, Section III.2], which applies because each region is simply connected and it intersects each other region in a point or 
a connected segment, if at all. This theorem implies that the triangulation has the same homotopy type as the union of 
regions. The outside region, F0, complements the texture to form a 2-dimensional sphere, so the only remaining possibility 
is that we have a triangulation of the 2-sphere.

This completes the proof that the digital Delaunay triangulation satisfies Condition II and is therefore a valid solution to 
our triangulation problem.

4. Discussion

The main contribution of this paper is a proof that the digital Delaunay triangulation has the geometric and topological 
properties we usually expect from a triangulation in the plane: its edges do not cross and after connecting the boundary to 
a dummy vertex at infinity, we get a triangulation of the 2-dimensional sphere. We get these properties if we dualize the 
collection of digital Voronoi regions colored by flooding. In contrast to coloring by Euclidean distance to the seed points, 
flooding forms regions that are connected. We can therefore think of flooding as a method to remove the topological noise 
caused by the digital approximation of the real plane. The most interesting next question is the extension of our correctness 
proof to 3-dimensional voxel arrays.

Acknowledgement

We would like to thank the anonymous reviewer for the valuable feedback to improve the paper. The research of the 
first and the third author is partially supported by NUS under grant R-252-000-337-112. The research of the second author 
is partially supported by NSF under grant DBI-0820624 and by DARPA under grants HR011-05-1-0057 and HR0011-09-0065.

Appendix A. Overview of proof steps

The proof consists of three major steps, each consisting of a small number of lemmas. In Fig. 10, we show the steps 
as three dashed boxes with implications in sequences; they correspond to Sections 3.1, 3.2, and 3.3. Each smaller, shaded 



518 T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519
Fig. 10. Steps in the proof and their dependencies.

box is a lemma. The most important are the Ordered Coloring Lemma, which encapsulates most of the digital geometry 
reasoning, and the Lasso Lemma, which forms the primary topological tool used to prove the rest.

Appendix B. Notation

Table 1 provides a list of notation used in this paper.

Table 1
Notation for geometric concepts, sets, functions, vectors, variables.

S = {x1, . . . , xn} data set, seed points
xi x j , xi x j xk edges, triangles
A, B, C, U , V , Y0 pixels
V i , Ei , Fi Euclidean, digital Voronoi regions
Bi bulk
Fi,s, Bi,s, Q s region, bulk, queue after s steps
Li , Li j lasso, spliced lasso
S,E,T Delaunay vertices, edges, triangles

References

[1] T.T. Cao, K. Tang, A. Mohamed, T.S. Tan, Parallel banding algorithm to compute exact distance transform with the GPU, in: I3D ’10: Proc. ACM Symp. 
Interactive 3D Graphics and Games, ACM, New York, NY, USA, 2010, pp. 83–90.

[2] O. Cuisenaire, Distance transformations: fast algorithms and applications to medical image processing, Ph.D. thesis, Universite Catholique de Louvain 
(UCL), Louvain-la-Neuve, Belgium, 1999.

[3] P.E. Danielsson, Euclidean distance mapping, Comput. Graph. Image Process. 14 (1980) 227–248, http://dx.doi.org/10.1016/0146-664X(80)90054-4.
[4] H. Edelsbrunner, J. Harer, Computational Topology: An Introduction, American Mathematical Soc., 2009.
[5] S. Fortune, Voronoi diagrams and Delaunay triangulations, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, 

CRC Press, Inc., Boca Raton, FL, USA, 1997, pp. 377–388.
[6] K.E. Hoff III, J. Keyser, M. Lin, D. Manocha, T. Culver, Fast computation of generalized Voronoi diagrams using graphics hardware, in: Proc. ACM 

SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999, pp. 277–286.
[7] J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T.T. Dao, Y. Cho, S.J. Seo, S.H. Lee, S.M. Cho, H.J. Song, S.B. Suh, J.D. Choi, An OpenCL framework for 

heterogeneous multicores with local memory, in: PACT ’10: Proc. Intern. Conf. Parallel Architectures and Compilation Techniques, ACM, New York, NY, 
USA, 2010, pp. 193–204.

[8] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA, Queue 6 (2) (2008) 40–538, http://dx.doi.org/10.1145/
1365490.1365500.

[9] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, T.J. Purcell, A survey of general-purpose computation on graphics hardware, in: 
Eurographics 2005, in: State of the Art Reports, 2005, pp. 21–51.

[10] M. Qi, T.T. Cao, T.S. Tan, Computing 2D constrained Delaunay triangulation using the GPU, in: I3D ’12: Proc. Symp. Interactive 3D Graphics and Games, 
ACM, New York, NY, USA, 2012, pp. 39–46.

http://refhub.elsevier.com/S0925-7721(15)00027-9/bib43544D543130s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib43544D543130s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4375693939s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4375693939s1
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib456448613039s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib466F723932s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib466F723932s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib486F66663939s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib486F66663939s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4C6565323031306F70656E434Cs1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4C6565323031306F70656E434Cs1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4C6565323031306F70656E434Cs1
http://dx.doi.org/10.1145/1365490.1365500
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4F4C474E3035s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib4F4C474E3035s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib5143543132s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib5143543132s1
http://dx.doi.org/10.1145/1365490.1365500


T.-T. Cao et al. / Computational Geometry 48 (2015) 507–519 519
[11] G. Rong, T.S. Tan, Jump flooding in GPU with applications to Voronoi diagram and distance transform, in: I3D ’06: Proc. Symp. Interactive 3D Graphics 
and Games, ACM, New York, NY, USA, 2006, pp. 109–116.

[12] G. Rong, T.S. Tan, T.T. Cao, Stephanus, Computing two-dimensional Delaunay triangulation using graphics hardware, in: I3D ’08: Proc. Symp. Interactive 
3D Graphics and Games, ACM, New York, NY, USA, 2008, pp. 89–97.

[13] J. Schneider, M. Kraus, R. Westermann, GPU-based real-time discrete Euclidean distance transforms with precise error bounds, in: Intern. Conf. Com-
puter Vision Theory and Applications (VISAPP), Springer, Berlin/Heidelberg, 2009, pp. 435–442.

[14] J. Shewchuk, Triangle: engineering a 2D quality mesh generator and Delaunay triangulator, in: M. Lin, D. Manocha (Eds.), Applied Computational 
Geometry Towards Geometric Engineering, in: Lecture Notes in Computer Science, vol. 1148, Springer, Berlin/Heidelberg, 1996, pp. 203–222.

[15] A. Sud, N. Govindaraju, R. Gayle, D. Manocha, Interactive 3D distance field computation using linear factorization, in: I3D ’06: Proc. Symp. Interactive 
3D Graphics and Games, ACM, New York, NY, USA, 2006, pp. 117–124.

http://refhub.elsevier.com/S0925-7721(15)00027-9/bib526F54613036s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib526F54613036s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib525443533038s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib525443533038s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib534B573039s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib534B573039s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib5368653936s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib5368653936s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib5375643036s1
http://refhub.elsevier.com/S0925-7721(15)00027-9/bib5375643036s1

	Triangulations from topologically correct digital Voronoi diagrams
	1 Introduction
	2 The algorithm
	3 The proof
	3.1 Flooding sorts
	3.2 Lassos go empty
	3.3 The triangulation is valid

	4 Discussion
	Acknowledgement
	Appendix A Overview of proof steps
	Appendix B Notation
	References


