
DynamicRoots: a Software Platform for
the Reconstruction and Analysis of Growing Plant Roots

Olga Symonova1, Christopher N. Topp2, Herbert Edelsbrunner1,

1 IST Austria, Klosterneuburg, Austria
2 Donald Danforth Plant Science Center, St. Louis, Missouri, USA

Abstract

We present a software platform for reconstructing and analyzing the growth of a plant
root system from a time-series of 3D voxelized shapes. It aligns the shapes with each
other, constructs a geometric graph representation together with the function that
records the time of growth, and organizes the branches into a hierarchy that reflects the
order of creation. The software includes the automatic computation of structural and
dynamic traits for each root in the system enabling the quantification of growth on
fine-scale. These are important advances in plant phenotyping with applications to the
study of genetic and environmental influences on growth.

Introduction 1

Root system architecture plays a key role in plant fitness and crop productivity. 2

Climate change, a growing global population, and unsustainable use of fertilizers are 3

responsible for the pressing need to understand how root systems grow and interact 4

with their environment, with the goal to develop robust and efficient crops [1–3]. 5

Studying plant roots systems has been hindered by their complex three-dimensional 6

branching topology, environmental growth plasticity, as well as the opacity of the soil. 7

In recent years, however, various imaging technologies have been applied to monitor the 8

formation and development of roots non-disruptively and throughout a time period: 9

X-ray [4–8], MRI [9], PET-MRI [10], laser [11], and optical imaging [12,13]. These 10

technologies reconstruct the 3D shape of a root system and enable the assessment of 11

traits that were impossible to quantify by hand measurements before [5, 12–15]. Most of 12

the existing tools compute traits for static shapes, and if more than one shape 13

representing the same root system is available, the global traits are computed without 14

separating the contributions of individual branches [16]. Software that analyzes a 15

time-series of 2D root images but requires significant user input to track growth has 16

been introduced in [17,18]. Several high-throughput platforms were developed for the 17

analysis of video clips of growing dicot roots [19–21]. Advances in the fields of computer 18

graphics and computer vision make it possible to quickly align large shapes that are at 19

least partially similar [22,23]. These methods can be used to improve the analysis of 20

time-series but have not yet been exploited for plant phenotyping. 21

In this paper, we present the DynamicRoots software designed to automatically 22

process a time-series of 3D reconstructions of a growing root system. It registers the 3D 23

shapes in a common coordinate system and creates a data structure that records the 24
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growth. Using this data structure, we estimate dynamic traits of individual branches, 25

which we aggregate to global traits. Our contributions to the state-of-the-art are: 26

� a geometric graph representation of a root system that reflects its hierarchical 27

structure; 28

� an algorithm that guarantees temporal coherence of the hierarchical 29

decomposition and computes the time function recording the growth process; 30

� a suite of structural and dynamic root traits including elongation rates and 31

branching frequency. 32

The computed traits facilitate the analysis of root systems in unprecedented resolution 33

of time and space. We illustrate the software by analyzing several time-series of 34

reconstructed rice and maize roots. 35

Outline. The Methods section gives a detailed description of the algorithm that 36

constructs the growth record for a time-series of 3D root shapes, and lists the structural 37

and dynamic traits computed from this record. The Results section explains how we 38

validate the software and presents experimental results for rice and maize root systems. 39

We conclude the paper with a discussion of current limitations and future research 40

directions. 41

Methods 42

The goal of this work is to acquire the shape of a growing root system, to compactly 43

represent it in a unified data structure, and to compute traits that reflect the structural 44

and dynamic properties of the root system. We divide the process into five steps: 45

1. Take 2D images of root systems and construct a time-series of 3D shapes. 46

2. Align the shapes to define depth as the geodesic distance from consistently 47

detected seed areas. 48

3. Use the depth function to decompose each shape into a hierarchy of branches. 49

4. Construct the time function and reorganize the hierarchy by repairing 50

inconsistencies between depth and time of growth. 51

5. Use the time function on the branch hierarchy to compute structural and dynamic 52

traits of the root system. 53

Correspondingly, we have five subsections explaining the steps in appropriate detail. 54

Step 1 relies on prior work presented elsewhere, while the other four steps are novel 55

contributions reported for the first time in this paper. Steps 2 to 4 construct the growth 56

record, and Step 5 makes use of this unifying data structure. 57

Background and Assumptions 58

We review the prior work to the extent necessary to provide the context for our work. 59

To overcome the obstacle of opaque soil, we grow rice and maize plants in gel with 60

nutrients inside transparent cylindrical containers [13], monitoring the development of 61

the root system for several weeks. To construct the 3D shape of a root system, we place 62

the container on a rotating table connected to a camera and a computer, and we take 40 63

images at 9◦ increments. Currently, 20 of these images are used to reconstruct the 64

shape of the root system represented as a collection of voxels in 3D space [24]. Letting t 65

be the time of the acquisition, we write Vt for the reconstructed shape. Depending on 66

the purpose, we will think of Vt as a subset of R3, a collection of voxels, or a graph 67
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whose nodes are the voxels and whose arcs connect neighboring voxels. Drawn as 68

straight line segments ending at voxel centers, the arcs have length 1,
√
2, or

√
3 times 69

the length of a voxel edge. 70

In order to analyze the growth of a root system, the same plant is reconstructed at 71

different moments in time. We thus get a time-series of shapes Vt, for t = 0, 1, . . . , T , 72

which provides a much richer source of information about the root system than a single 73

such shape. However, harvesting this information is more difficult since we need to 74

compare, quantify similarities and differences, and resolve occasional contradictions. To 75

do this automatically within our software platform, we make use of the following three 76

assumptions: 77

A1: A root system grows in only two ways: by generating a new branch at a fork, and 78

by elongating an existing branch at the tip. 79

A2: A root system is connected and contractible. In other words, the branches do not 80

form loops, and they do not surround voids in space. 81

A3: The time-series is dense enough to observe the correct root hierarchy: when a side 82

branch first appears at a fork, it is shorter than the parent branch. 83

While we have biological reasons to believe that A1 and A2 are true, both assumptions 84

are sometimes violated by the reconstructed shapes. Our software can tolerate mild 85

violations of all of the three assumptions but will fail when the reconstructed shapes 86

contain gross contradictions to our expectations. 87

Depth, Seed, and Alignment 88

In this and the next two subsections, we explain how to construct the growth record of a 89

root system, which provides a decomposition into a hierarchy of branches together with 90

the time of growth. As a first step, we equip each reconstructed shape with a function 91

ϕt : Vt → R that maps each voxel to its geodesic distance from a seed area, a concept we 92

will explain shortly. We call this distance the depth of the voxel, and we call ϕt the 93

depth function of Vt. After fixing a set of voxels St ⊆ Vt as the seed area, we compute 94

ϕt using Dijkstra’s shortest path algorithm [25]. Running this algorithm on the graph of 95

voxels is straightforward, but the result crucially depends on the choice of St, which is 96

inspired by the biological idea that the root grows from a particular first location. It 97

will be more important that the location of this area is consistent among all shapes in 98

the time-series than to correctly identify the biological beginnings of the root system. 99

We therefore compute ST , and propagate its location to the other shapes after 100

computing an initial alignment of all shapes in the time-series. We will explain the 101

alignment first and return to computing the seed area thereafter. 102

Note that Assumption A1 implies Vs ⊆ Vt for all 0 ≤ s ≤ t ≤ T . To align the two 103

shapes, we can therefore use an algorithm that requires that the first shape be 104

contained in the second. Our algorithm of choice is the 4-point congruent sets (4PCS) 105

algorithm described in [22]. To apply it, we think of Vs as a collection of points in R3, 106

namely the centers of its voxels. The algorithm selects four approximately coplanar 107

points from Vs and searches for a congruent configuration of four points in Vt. Let M 108

be the matrix of the rigid motion that moves the 4-point configuration in Vt to that in 109

Vs. While the 4PCS algorithm is fast, the alignment it produces can often be improved, 110

and we use the iterative closest point (ICP) algorithm originally described in [26] for 111

this purpose. It computes a second matrix M ′, and we set Mst =M ′ ·M so that 112

Mst(Vt) is aligned with Vs. To align all T + 1 shapes in the time-series, it suffices to 113

compute T rigid motions, and we choose to compute M0t for t = 1, 2, . . . , T . To align Vt 114

with Vs, we then use Mst =M−10s ·M0t. Suppose now that we have computed the seed 115
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area in the last shape, ST ⊆ VT . Using the rigid motions, we get St ⊆ Vt as the set of 116

voxels closest to MtT (ST ), for 0 ≤ t ≤ T . 117

To detect the seed area in VT , we perform principal component analysis (PCA) on a 118

small neighborhood of a radius R around every voxel. Covariance matrices with three 119

similar eigenvalues indicate a similar spread of points along the principal axes, which in 120

3D space corresponds to a spherical neighborhood. We find the biggest connected 121

component of voxels with roughly spherical neighborhoods and form the seed area by 122

adding voxels with offset at most R from this component. For the results reported in 123

this paper, we used R = 3 and we suggest that this parameter is set to a value from the 124

interval [r, 2r], in which r is the average radius of the branches. If the seed was not 125

detected – for example when the set of voxels with roughly spherical neighborhoods is 126

empty or larger than an allowed fraction of the total volume – we choose a voxel in the 127

center of the topmost horizontal slice of the root system as the seed area. 128

Branch Hierarchy 129

As a second step in the construction of the growth record, we decompose each shape in 130

the time-series into branches, which we organize hierarchically. This decomposition is 131

inspired by the path decompositions of trees used in the design of efficient data 132

structures; see e.g. [27, Chapter 5]. Each branch starts at its tip at the bottom and 133

extends upward, ending right before its fork, which lies somewhere between the two 134

ends of the parent branch; we therefore represent each branch by the triplet of these 135

entities: Bi = (Tipi, Forki, Parenti). An exception is the topmost branch, which does 136

not have a parent. Among all possible branch decompositions, we are interested in the 137

one defined by the depth function. 138

To construct the decomposition, we traverse the voxels in the order of decreasing 139

depth, adding an arc right after its second endpoint. With each visited voxel, we create 140

a new component, and with each visited arc, we either form an additional connection 141

within the component, or we merge two components into one. After visiting all voxels 142

and arcs, they are part of a single component representing the entire root system, and 143

we recover the branches and the relations between them by analyzing the history of 144

events. To make this concrete, we equip each voxel, v, with a pointer to another voxel, 145

ρ(v). In the beginning, each voxel points to itself. After completion of the algorithm, 146

each voxel points to the tip of its branch, except for the tip itself, which points to the 147

tip of the parent branch. A tip is therefore identified by having other voxels point to it, 148

a branch is represented by its tip and consists in addition of all voxels pointing to this 149

tip, and the parent branch is given by the pointer stored at the tip. 150

The only interesting event during the course of the algorithm is when it encounters 151

an arc that connects two components. Let its endpoints be the voxels u and v, and 152

write p = ρ(u) and q = ρ(v) for the corresponding tips, noting that p 6= q by assumption. 153

Assume without loss of generality that q is deeper than p: ϕ(p) < ϕ(q). If the difference 154

in depth between u and p is smaller than some fixed threshold, then we declare the 155

entire branch to be a part of the branch of q by updating the pointer: ρ(p) = q. 156

Otherwise, we consolidate the branch of p by declaring v as its fork and the branch of q 157

as its parent. 158

As mentioned earlier, each branch is represented by its tip, p, and consists of all 159

voxels u with ρ(u) = p, together with p. To avoid possible confusions arising from the 160

two different uses of the ρ-pointer, we save the pointer to the parent branch by setting 161

Parent(p) = ρ(p), and thereafter set ρ(p) = p to indicate that it belongs to the branch it 162

represents. In addition, we store a pointer Fork(p) to the fork in the parent branch. 163

The thus linked branches form what we call a branch hierarchy. At this moment, the 164

hierarchy is determined by depth: a branch has a tip that is necessarily less deep than 165

the tip of the parent branch. Ultimately, we would like the hierarchy be determined by 166
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age. In the next section, we will explain how the hierarchy can be modified to achieve 167

this goal. 168

Time Function 169

We are now ready to compute the time function of the last shape in the time-series, 170

τ : V→ R with V = VT . Compressing the information of the time-series into a single 171

shape, it maps every voxel of V to the moment in time the voxel was created. The time 172

function is piecewise constant, with possibly large steps in particular but not exclusively 173

at forks. We note that the time function is the central piece of the growth record that 174

enables the dynamic analysis of the root system. 175

To prepare the computation, we initialize the time function to τ(v) = T for every 176

voxel v ∈ V. Traversing the other shapes in the time-series from back to front, we use 177

the Euclidean distance between voxels to match the branches of Vt with those of V. It 178

is therefore important that the shapes in the time-series are aligned and registered into 179

a common coordinate system, which we henceforth assume. Specifically, for each tip in 180

Vt, we find the closest voxel v ∈ V, and we match the branch of the tip with the branch 181

J in V that contains v. Finally, we set τ(u) = t for all voxels u of J whose depth 182

satisfies ϕT (u) ≤ ϕT (v). 183

Figure 1. A switch at the fork v.

After running the algorithm, the set of voxels u ∈ V with τ(u) ≤ t would ideally be
the set of voxels in Vt, for every 0 ≤ t ≤ T . Of course, this will never be the case in
practice, but there is a reason other than the inevitable noise in the system that may
lead to discrepancies between the computed and the ideal time function, namely
possible inconsistencies between the decompositions into branches between Vt and V.
Instead of detecting inconsistencies between the branch decompositions, we repair the
time function. Suppose v ∈ V is a fork at which the classification into main branch and
side branch is incorrect. By Assumption A3, we get a conflict between the depth and
the time. Specifically, we observe neighbors u of v for which

ϕ(u) < ϕ(v) and τ(u) > τ(v). (1)

If we detect such a fork, we repair the inconsistency by an operation we call a switch. 184

Letting p and q be the tips of the two branches at v, with v = Fork(p) but 185

v 6= w = Fork(q), we note that q = Parent(p). To perform the switch, we reassign the 186

part of the branch of q between v and w to the branch of p; see Fig. 1. In addition, the 187

time at any voxel u within this part is set to the minimum of the current value and the 188

value at v. 189

Root Traits 190

Using the growth record explained above, we compute a suite of traits that describe a 191

root system captured in a time-series. Denoting the growth record by V = VT , we make 192

essential use of the decomposition into branches, which we denote as Bi. Recall that 193

Bi
t ⊆ Bi is the sublevel set of the time function on the branch. We call the voxel u ∈ Bi

t 194

with maximum depth the tip of the branch at time t. We compute the following traits 195

for every branch Bi and at every moment of time 0 ≤ t ≤ T : 196

volume: the number of voxels in Bi
t; 197

depth of tip: the geodesic depth of the tip of Bi
t; 198

location of tip: the three Cartesian coordinates of the tip; 199
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length: the difference between the geodesic depth values of the tip and the fork; 200

switch event: a logical variable that indicates whether or not Bi
t is longer than its 201

parent branch; 202

tortuosity: the ratio between the length of a branch and the Euclidean distance 203

between tip and fork; 204

average radius: the square root of the volume divided by π times the length; 205

angle to gravity: the angle between the major PCA axis of Bi
t and the vertical 206

direction; 207

angle to parent branch: the angle between the major PCA axes of Bi
t and of its 208

parent branch; 209

number of children: the number of branches that have Bi
t as parent branch. 210

There is an ambiguity about which part of a branch should be taken into account when 211

computing the root emergence angle or direction of growth. In order to avoid this 212

uncertainty, we use the major PCA axis of the branch which shows the main direction 213

of the spread of all the voxels forming this branch. 214

Only two of the measurements relate the root system to the surrounding, namely the 215

location of the tip and the angle to gravity. Both are useful to study the reaction of the 216

root system to nutrients and other local environmental conditions. The measurements 217

we output for each branch can of course be accumulated to obtain overall traits of the 218

root system, such as the total volume, the total length, the total average radius, 219

and so on. Similarly, we can take differences to compute dynamic traits, as for example 220

the amount of growth from time t to time t+ 1. Beyond the traits listed above, we 221

compute the following characteristics of the seed area: 222

seed volume: the number of voxels in the seed area of the root system; 223

seed orientation: the angle between the major PCA axis of the seed area and the 224

vertical direction. 225

Comparing the seed volume with the total volume, we get the volume fraction of the 226

seed area. The concrete representation of the seed area is useful in turning the 227

geometric hierarchy of the branches into a biologically more meaningful one. The former 228

is defined by assigning the index 0 to the topmost branch and increasing the index by 1 229

whenever we pass from a branch to a child branch. A biologically more meaningful 230

classification is into 231

� crown roots, which emerge above the seed area; 232

� seminal roots with forks located within the seed area; 233

� the primary root corresponding to the topmost branch; 234

� lateral roots, which are the children of other branches. 235

Unfortunately, crown roots often emerge from the stem above the reconstructed space, 236

which results in disconnected branches. The reconstruction software used in this 237

study [24] enforces connectivity and tries to find the shortest path between the biggest 238

component of the root system and a disconnected branch. This shortest path does not 239

always join the branch in a biologically correct manner, making the classification into 240

biological classes more challenging. At the moment, we explore other ways to 241

differentiate between crown, seminal, and lateral roots. In particular, elongation rates 242

might provide a good clue for detecting crown roots as their initiation is developmentally 243

delayed but typically proceeds faster than of the other root types, see Fig. 2. 244
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Figure 2. Structural and dynamical analysis of a root system. Top row:
images of a maize plant imaged between the first and ninth days after planting. Bottom
row: images of a rice plant imaged between the seventh and eleventh days after planting.
Left: decomposition into a seed area and branches distinguished by color. Center: the
color-coded time function. Right: the color-coded branch hierarchy.

Results 245

Applying our methods, we obtain insights into the growth behavior of rice and maize 246

plants. We note, however, that this is primarily a Methods paper, so we have limited 247

the experiments to a few examples selected to illustrate useful features of the 248

DynamicRoots software. The source code and the pre-compiled executable file for 64-bit 249

Windows can be downloaded from http://dynamicroots.sourceforge.net/. The 250

software has a command-line interface. In addition, we provide a python script, which 251

organizes the input files and passes them as arguments to scripts that perform format 252

conversion, data alignment, and time-series processing. The DynamicRoots software was 253

developed in C++ using the Approximate Nearest Neighbor 254

(http://www.cs.umd.edu/ mount/ANN/) and ALGLIB (http://www.alglib.net/) 255

libraries. DynamicRoots is an open source software distributed under the terms of the 256

BSD license. 257

Datasets and Validation 258

We use the software to analyze four different time-series of 3D shapes, three obtained by 259

imaging growing rice and maize plants, and one artificially created to validate the 260

software. The latter consists of three models forming a caricature of a growing root 261

system; see Fig. 3. Created from a collection of discretized algebraic curves, the models

Figure 3. A series of three 3D models mimicking a growing root system
designed to facilitate the validation of our software. The branches are labeled
as in Table 1. The color-coded model at the far right illustrates the time function.

262

are obtained by sweeping balls of varying radii along the curves to get branches with 263

prescribed thickness. Observe that the time-series satisfies Assumptions A1 to A3 stated 264

in Section . After designing the models, we 3D-printed them from resin, imaged the 265

three shapes, reconstructed the 3D shapes from the 2D images, and finally processed 266

the result with our software. Table 1 compares the hand measurements of branch length, 267

depth of tip, volume, average radius, and tortuosity with the values computed by our 268

software. The agreement in branch length and depth of tip is remarkably high, with a 269

somewhat larger relative error only for very short branches. The tortuosity of a branch 270

depends on the estimation of its length and agrees fairly well with our hand 271

measurements, with only 6% average relative error. The volume and therefore the 272

average radius are slightly underestimated by the software because the reconstruction of 273

the 3D shapes tends to lose some of the thickness due to small misalignments of the 2D 274

images. Nonetheless, the total volume estimated by our software differs on average only 275

by 5.2% from the volume computed as a product of the mass of the printed model and 276

the resin density. In order to validate the values of the angle to parent branch, we 277

represent the each branch as a line segment passing through the tip and the fork and 278

compute the angle between them. We note that the software computes the angle 279

between the branches using PCA and it is impossible to measure this value by hand. 280

Nevertheless, we observe a similar behavior in the values measured by hand and 281

computed with the software: the angles decrease as branches elongate. Unfortunately, 282
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there is no a common way to measure branch angles, and DynamicRoots offers a new 283

approach to estimate this trait. 284

Table 1. Comparison of traits measured by hand and computed with
DynamicRoots. Length, vertical depth, and radius are given in millimeters (mm),
volume in cubic millimeters (mm3), angle in degrees, and tortuosity is dimensionless.
The last column gives the average error of the DynamicRoots results compared to hand
measurements.

Trait
Hand measurements DynamicRoots results

Error
t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

b
ra
n
ch

r0
Length 63.800 71.100 95.220 64.068 72.275 98.383 0.018
Depth 63.800 71.100 95.220 62.083 69.683 95.348 0.016
Volume 450.976 502.576 673.071 444.766 491.641 621.281 0.037
Radius 1.500 1.500 1.500 1.488 1.473 1.418 0.027
Tortuosity 1.000 1.000 1.000 1.030 1.040 1.030 0.033
Angle to parent 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b
ra
n
ch

r1

Length 35.770 76.110 102.680 36.198 84.020 112.870 0.072
Depth 36.860 76.620 99.610 34.443 75.388 100.940 0.032
Volume 112.375 239.107 322.579 96.219 203.297 248.516 0.174
Radius 1.000 1.000 1.000 0.920 0.878 0.838 0.122
Tortuosity 1.140 1.050 1.058 1.120 1.120 1.120 0.048
Angle to parent 41.957 27.139 25.140 27.600 20.360 18.700 0.283

b
ra
n
ch

r2

Length 42.980 66.770 99.060 46.173 72.208 98.910 0.052
Depth 36.530 55.890 78.230 32.820 53.085 74.885 0.065
Volume 135.026 209.764 311.206 131.938 187.922 229.125 0.130
Radius 1.000 1.000 1.000 0.953 0.910 0.858 0.093
Tortuosity 1.075 1.136 1.237 1.120 1.160 1.180 0.036
Angle to parent 57.645 49.580 40.981 55.200 43.570 36.840 0.088

b
ra
n
ch

r3

Length 7.000 37.550 4.335 39.833 0.221
Depth 57.960 83.350 55.803 81.983 0.027
Volume 17.224 92.395 8.516 54.703 0.457
Radius 0.885 0.885 0.790 0.660 0.181
Tortuosity 1.127 1.097 1.000 1.110 0.062
Angle to parent 90.000 40.030 45.360 15.980 0.548

b
ra
n
ch

r4

Length 9.270 7.940 0.143
Depth 66.480 65.203 0.019
Volume 13.665 6.875 0.497
Radius 0.685 0.525 0.234
Tortuosity 1.150 1.070 0.070
Angle to parent 38.432 15.49 0.597

b
ra
n
ch

r5

Length 4.300 27.830 3.538 32.415 0.171
Depth 51.190 71.190 47.538 69.125 0.050
Volume 6.339 41.025 2.484 19.609 0.565
Radius 0.685 0.685 0.473 0.440 0.334
Tortuosity 0.883 0.984 1.000 1.110 0.130
Angle to parent 62.507 60.122 24.510 8.940 0.730

b
ra
n
ch

r6

Length 27.490 35.010 53.730 25.753 36.245 56.103 0.048
Depth 30.260 36.970 54.370 24.633 33.623 50.628 0.115
Volume 86.362 109.987 168.798 76.719 103.422 155.781 0.083
Radius 1.000 1.000 1.000 0.975 0.953 0.940 0.044
Tortuosity 1.180 1.113 1.130 1.070 1.100 1.110 0.041
Angle to parent 49.957 46.420 35.918 43.190 36.200 27.890 0.193

to
ta
l Length 170.040 260.290 425.340 172.190 272.620 446.453 0.037

Volume 784.738 1084.997 1622.737 749.641 997.281 1335.891 0.101
Mass × Density 694.000 967.000 1397.00 749.641 997.281 1335.891 0.052

The first of the three natural datasets consists of 478 time-series of 3 shapes each, 285

reconstructing root systems of growing rice plants on Days 12, 14, 16 after planting. 286

Using static traits, this data has been used in [16] to study the genetic control of shape 287

and development of the root architecture. We intend to extend this study with the 288

dynamic traits and the information about the branch hierarchy available from our 289
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software. The second natural dataset consists of 4 time-series of 25 shapes each, 290

reconstructing root systems of growing rice plants imaged every two hours from 8am to 291

4pm for five days starting from Day 7 after planting. The third natural dataset consists 292

of 3 time-series of 23 shapes each, reconstructing root systems of growing maize plants 293

images from Day 1 to Day 9 after planting. 294

The relatively high temporal resolution in the last two datasets leads to detailed 295

characteristics of the root development not available in the first dataset. 296

Traits 297

The traits described in Section are output in a file for each time-series; see the 298

supplementary material, which includes the files for the maize plant shown in the top 299

row of Fig. 2. For complete disclosure, our software also outputs files containing the 300

color-coded geometry of the root system, representing the time function and the branch 301

hierarchy, among other information; see Fig. 2. 302

We use the remainder of this subsection to demonstrate how DynamicRoots can be 303

used to analyze growth dynamics. As a first example, we look at the dynamic addition 304

of volume to the shapes for the two displayed time-series. Each vertical bar in Fig. 4 305

represents the root system at a moment in time, with the colored segments representing 306

branches in the decomposition. The displayed behavior reveals a remarkable dynamics 307

in the growth process: the volume of the maize root almost doubles in the course of just 308

a few hours, with the bulk of the additional volume contributed by newly formed 309

branches (see Fig. 4 top, between 72 and 96 hours).

Figure 4. Volume dynamics of the root systems in Fig. 2; maize at the top
and rice at the bottom. The colored segments within each vertical bar show the
volume contributed by individual branches.

310

As a second example, we look at the branching dynamics, and in particular at the 311

difference between the number of branches formed during day- and night-time. Fig. 5 312

shows the number of branches as graphs over time for four rice plants. Observing the 313

root systems during five consecutive days, we note that there are more branches formed 314

during day-time than during night-time. The rice plants grew in the 12-hour cycle with 315

the temperature of 28◦C and 25◦C at day and night. In [28] the authors studied diurnal 316

elongation rates in Arabidopsis thaliana and observed higher elongation rates at night 317

time than during the day. In [29] the authors demonstrated that growth conditions have 318

a great impact on the diurnal growth patterns in sorghum and rice plants, they did not 319

find differences in day-night elongation rates when the temperature was constant. In 320

our data, we did not see differences in elongation rates at day and night time for plants 321

in Fig. 5. While more experiments are needed to understand the branching dynamics of 322

root systems, it is clear that DynamicRoots can be of valuable assistance in collecting 323

and analyzing the data.

Figure 5. The branching dynamics of rice plants during five consecutive
days. The shading distinguishes day- from night-time, highlighting that more branches
are formed during day-time.

324

Performance 325

We distinguish between performance characteristics that pertain to the speed and the 326

correctness of the software. In addition to the traits discussed above, the software 327

outputs performance statistics, including the running time, the average distance 328
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between aligned 3D shapes, and the number of switch events. For example, the 329

average running time for one time-series from our first dataset, including file format 330

conversion, graphical file output, shape alignment and processing, is 51 seconds on an 331

Intel Core 3.4GHz desktop computer. 332

We use the remainder of this subsection to illustrate how we make use of the 333

performance measurements. A delicate step in our algorithm is the alignment of the 3D 334

shapes in a time-series. We underline the fact that the alignment performs quite 335

accurately due to the property of the 4PCS algorithm which can robustly align shapes 336

even with small overlap, noise, and outliers [22]. To shed light on the quality of the 337

alignment, we compute the average distance between the aligned shapes and provide the 338

result as an indicator of the quality of the achieved alignment. More precisely, we 339

sample 10% of the voxels in the first shape, V0, and we compute the Euclidean distance 340

to the closest voxels in V1 to VT . For a high quality alignment, the average distance 341

will be small, namely less than the edge length of a voxel. In the first dataset, there are 342

several time-series for which the accuracy is compromised by technical difficulties with 343

the imaging platform. For these series, the average distance we observe is significantly 344

larger than for series that do not suffer from these imaging artefacts: e.g. 5.03 versus 345

0.84 times the length of an edge. In our analysis of the first dataset, we have used a 346

threshold of 10.00 edge lengths for the average distance of the alignment beyond which 347

a shape was excluded from the computations. 348

Another measurement that varies significantly with the quality of the alignment is 349

the number of switch events. On average, we observe 9.04 switches between shapes in 350

the first dataset. However, in the time-series affected by the mentioned image artefacts, 351

this number increases to 58.96. The number of switches by itself can be an interesting 352

biological trait as it measures how often a branch out-grows its parent branch. However, 353

if the number is significantly higher than the average, then this may be reason for 354

concern since it might be caused by technical difficulties in the acquisition pipeline 355

rather than biological reality. 356

Discussion 357

The DynamicRoots software provides novel capabilities for the analysis of growing root 358

systems of plants. The analyzed shapes come from plants grown in a gel substrate, but 359

can be derived from any growth and imaging system. A logical next step is the 360

genome-wide analysis of dynamic traits for root systems of agricultural plants. Given 361

the availability of the decomposition into branches and the detailed per-branch 362

information, it is time to study the local and global response of plants to localized 363

nutrients in the environment. 364

While we hope that our software finds many users and contributes to our 365

understanding of root systems, it is important to point out that there are pitfalls in 366

using it. Most root systems we considered have 3D reconstructions with touching 367

branches that lead to violations of our Assumption A2. As a consequence, there are 368

loops in the reconstructed shape which leads to faulty decompositions into branches. 369

Fortunately, such mistakes are local and do not affect branches away from the loops. 370

Ideally, the software would have the built-in capability to remove loops by separating 371

touching branches, but this is a challenging problem that awaits a satisfactory solution. 372

Nonetheless, the framework described here represents a major advance in root 373

phenotyping methodology. For the first time, the growth dynamics of each branch in a 374

complex three-dimensional root system can be automatically tracked and quantified 375

over time. Thus, DynamicRoots will enable high-throughput analysis of local growth 376

response to a wide-range of biotic and abiotic plant-environment interactions, as well as 377

provide a powerful tool to answer fundamental questions such as: ”How is root growth 378
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regulated over the circadian clock?”, and ”How do local growth decisions of each root 379

tip contribute to global root architecture?”. 380
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