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Abstract

We introduce a modification of the classic notion of intrinsic volume using persis-
tence moments of height functions. Evaluating the modified first intrinsic volume
on digital approximations of a compact body with smoothly embedded boundary
in Rn, we prove convergence to the first intrinsic volume of the body as the resolu-
tion of the approximation improves. We have weaker results for the other modified
intrinsic volumes, proving they converge to the corresponding intrinsic volumes of
the n-dimensional unit ball.
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1 Introduction

Let M be a compact body in R3 whose boundary, ∂M, is a smoothly embedded
2-manifold, and let t be a possibly small but positive real parameter. Letting #(M∩
tZ3) be the number of points of the dilated integer grid in M, it is well known
that t3#(M ∩ tZ3) converges to Vol(M) as t goes to zero. The central question of
the classic lattice point theory, as founded by E. Landau and others in the first
decades of the 20th century, is to estimate the lattice discrepancy, which is defined
as t3#(M ∩ tZ3) − Vol(M); see the recent survey [18] for more details. Since the
lattice discrepancy vanishes as t goes to zero, we may approximateM with #(M ∩
tZ3) cubes of edge length t whose centers are in M ∩ tZ3, such that the volume is
preserved asymptotically, as t goes to zero. It would be nice to also preserve the
other intrinsic volumes of M, namely the surface area, the total mean curvature,
and the total Gaussian curvature, by means of the above approximation with cubes.
However, a straightforward construction only yields the right volume and Gaussian
curvature, while the surface area and the mean curvature of the approximation can
significantly differ from the values ofM as the following example shows.

Motivating example. Let M = B3 be the unit ball in R3. The resolution t dig-
ital approximation of B3, denoted as B3

t , is the union of axes-aligned cubes of
edge length t whose centers are of the form (tx, ty, tz), with (x, y, z) ∈ Z3 and
t
√

x2 + y2 + z2 ≤ 1. There are #(B3 ∩ tZ3) = Vol(B3)/t3 + o(1/t3) such cubes,
each with volume t3. Hence,

lim
t→0

Vol(B3
t ) = lim

t→0
t3#(B3 ∩ tZ3) = Vol(B3). (1)

As for the surface area, we note that if we look from either end of each of the three
coordinate axes, we see every square face in the boundary of B3

t exactly once.
From each of the six directions, we see #(B2∩ tZ2) faces, each of area t2. As t goes
to zero, the total area of these faces converges to the area of the unit disk, which
implies

lim
t→0

Area(B3
t ) = 6 lim

t→0
t2#(B2 ∩ tZ2) = 6Area(B2), (2)

which is 6π. In contrast, the surface area of the boundary of the unit ball is 4π.
Moving on to the total mean curvature, we use a discrete formulation according to
which the contribution of a convex edge is π/4 times its length, and that of a reflex
edge is −π/4 times its length. Again looking at B3

t from either end of the three
coordinate axes, we record the contributions of all convex and reflex edges in the
boundary of visible square faces. These edges are organized in curves delimiting
steps, and we can pair up the reflex with the convex edges, effectively cancelling
their contributions to the total mean curvature. This leaves the convex edges of the
last step (the silhouette) unpaired. The total length of these edges is 4t#(B1 ∩ tZ),
which converges to four times the length of B1. We get the total mean curvature by
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multiplying with 6 for the number of directions, with 1
2 because each convex and

reflex edge is accounted for twice, and π
4 for half the dihedral angle at the convex

edges. Hence,

lim
t→0

Mean(B3
t ) = 6π

8 lim
t→0

4t#(B1 ∩ tZ) = 3πLength(B1), (3)

which is 6π. In contrast, the total mean curvature of the boundary of the unit ball
is 4π. Finally, we compute the total Gaussian curvature of B3

t as the sum of angle
defects over all boundary vertices. This sum depends on the topological type of
∂B3

t but not on its shape. The type is that of the sphere, for which the sum of angle
defects is 4π. In other words, Gauss(B3

t ) = 4π = Gauss(B3) independent of t.

Results and prior work. The first main result of this paper modifies the notion
of intrinsic volume to overcome the lack of convergence demonstrated in our moti-
vating example. We use special cases of the Crofton and the Blaschke-Petkantschin
Formulas to write the (n−k)-th intrinsic volume as an integral over k-planes, which
we rewrite in terms of level sets of height functions. Using methods from com-
putational topology, we summarize the contributions of a height function by the
moment of its persistence diagram, but one that ignores small persistence contri-
butions. Quantifying small as anything with persistence at most t

√
n, we prove

that

lim
t→0

Vn−k(Bn
t , t
√

n) = Vn−k(Bn), (4)

for all 0 ≤ k < n, in which Vn−k(Bn) is the (n − k)-th intrinsic volume of the n-
dimensional unit ball, and Vn−k(Bn

t , t
√

n) is the modified (n−k)-th intrinsic volume
of the resolution t digitization of Bn. See the Convergence Theorem for Balls for
a more detailed statement of this result. For values of n − k for which Vn−k(Bn

t )
does not converge to Vn−k(Bn), this implies that the difference is primarily due to
features of Bn

t that have small persistence under height functions.
Beyond providing structural insights, the convergence results imply multigrid

convergent digital algorithms. In contrast to our approach, a local digital algo-
rithm counts local configurations in a small observation window that moves over
the digital image. Studying this special class of algorithms, Svane [22] proves that
multigrid convergence cannot be achieved for the intrinsic volumes of convex bod-
ies other than for Vn, which is the n-dimensional volume. The local algorithms are
simple and thus often preferred over the most common type of non-local digital
algorithms, which construct polytopes to approximate geometric sets and estimate
their intrinsic volumes; see [15] and the references therein. As an example, we
mention the probabilistic algorithm that estimates the intrinsic volumes of a convex
body from the convex hull of randomly chosen points inside the body. For convex
bodies whose boundaries have positive reach, it can be shown that the expected
value of the (n − k)-th intrinsic volume of the convex hull converges to that of the
convex body, for 0 ≤ k ≤ n, as the number of points goes to infinity; see [4, 13].
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The technical smoothness condition is not needed if n − k = 1. For non-convex
bodies, the problem is more difficult. We mention a preprint of Meschenmoser,
Spodarev [16] proposing a multigrid convergent algorithm to estimate all intrin-
sic volumes of a finite union of compact sets with positive reach. However, due
to difficulties in constructing the required polytopes, the algorithm has not been
implemented beyond the 2-dimensional case.

Our second result implies a multigrid convergent digital algorithm for com-
puting the first intrinsic volume of not necessarily convex sets. This includes the
length of boundary curves in R2 and the total mean curvature of boundary surfaces
in R3. Specifically, we prove that

lim
t→0

V1(Mt, t
√

n) = V1(M), (5)

in whichM is a compact set in Rn whose boundary is a smoothly embedded (n−1)-
manifold. See the Convergence Theorem for Solid Bodies for a more detailed
statement of this result. An important ingredient in the proof of (5) is the explicit
construction of a fibration of the symmetric difference ofM andMt. Among other
things, it implies that for sufficiently small t, M and Mt have the same homotopy
type, which is new. A version of the modified intrinsic volume in (5) was used in
[9] to estimate the length of tube-like shapes in R3. Without proving convergence,
this paper implemented the digital algorithm thus illustrating the practical potential
of our result. Indeed the implied digital algorithm is readily implemented as it
reduces to the computation of persistence diagrams of height functions – a task
that has fast software due to the focused attention it received within computational
topology; see [8].

Outline. Section 2 presents the background on digital algorithms, intrinsic vol-
ume, and persistent homology. Section 3 introduces the modification of the intrin-
sic volume. Section 4 proves convergence for the n-dimensional unit ball. Section
5 introduces the new concept of the distorted normal bundle of the sphere, which
is then extended to more general solid bodies in Section 6. Section 7 proves con-
vergence of the modified first intrinsic volume for compact bodies with smoothly
embedded boundaries in Rn. Section 8 comments on the algorithms implied by our
results and states open questions.

2 Background

Beyond the material presented in this section, we refer to Bonnesen, Fenchel [3]
and Schneider [20] for further background on intrinsic volumes, to Morvan [17]
for various generalizations of the convex theory, and to Schneider, Weil [21] for
a thorough introduction to integral geometry. We refer to Edelsbrunner, Harer [8]
for further background on persistent homology.
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Digital algorithms. Throughout this paper, Zn denotes the integer lattice in Rn.
For t > 0, we call tZn the scaled integer lattice, and t its resolution. Given a set
M ⊆ Rn, the binary or hit-or-miss digitization at resolution t isM ∩ tZn, the set of
scaled integer points contained in the set; see [19]. We write Mt for the union of
the axes-aligned n-cubes with edge length t centered at the points inM∩ tZn. Let S
be a class of subsets of Rn, and let µ : S → R be some function. We are interested
in estimating this function using digitizations of the subsets. Following [15], we
define a digital algorithm of µ as a 1-parameter family of real-valued functions on
the power sets of the scaled integer lattices:

µt : 2tZn
→ R, (6)

for every t > 0. Call µt(Mt) the resolution t digital estimator for µ(M). The ques-
tion arises how the digital algorithm should relate to the function. Obviously, many
different sets may have the same digitization, so µt(Mt) will usually not give the
correct value. Is it possible to obtain a geometric functional from the digitization,
at least asymptotically, as t tends to 0? The answer depends on the class of sets we
consider. To make the question more precise, we call a digital algorithm multigrid
convergent for µ : S → R if limt→0 µt(Mt) = µ(M), for every M ∈ S. As exam-
ple we mention the volume functional in Rn, Voln : Kn → R, defined by mapping
a convex set to its n-dimensional volume. The digital algorithm that maps every
finite subset of tZn to tn times its cardinality is multigrid convergent for Voln.

Intrinsic volumes. Let K be a convex body in Rn, and write Kr = K + rBn for
the parallel body with offset r ≥ 0. The Steiner polynomial of K gives the volume
of Kr as a function of r. It is a degree-n polynomial whose coefficients are given in
two common notations:

Voln(Kr) =

n∑
k=0

(
n
k

)
Wk(K) rk =

n∑
k=0

bkVn−k(K) rk. (7)

In the classical literature, the Wk are called the quermassintegrals, and the Vk,
which came into use later, are referred to as the intrinsic volumes of K. The vol-
ume, Vn, the surface area, 2Vn−1, and the Euler characteristic, V0 = χ, are often
of special interest. For further details and a proof of the Steiner formula, we refer
to [20, Chapter 4]. The intrinsic volumes can be characterized by their properties,
namely that they are additive, motion invariant, and continuous. Their importance
is underlined by Hadwiger’s Characterization Theorem, which states that any ad-
ditive, motion invariant, and continuous function on Kn is a linear combination of
the intrinsic volumes. A proof of the Characterization Theorem in three dimensions
was given in [11], and in arbitrary dimensions in [12]; see also [20].

The Crofton Formula provides integral representations for the coefficients in
the Steiner polynomial and sheds light on the old German name of quermassinte-
grals. We use a special case to connect the theories of intrinsic volumes and per-
sistent homology. Writing λn for the Lebesgue measure on Rn, we let bn = λn(Bn)

5



be the n-dimensional volume of the unit ball, and writing σn−1 for the spheri-
cal Lebesgue measure on Sn−1, we get sn = σn−1(Sn−1) = nbn for the (n − 1)-
dimensional area of the unit sphere. When we integrate with respect to a Lebesgue
measure, we simplify notation by writing dy for λn(dy). Moreover, we write Ln

k ⊆

En
k for the sets of k-dimensional linear and affine subspaces of Rn. These sets are

also known as the Grassmannian and affine Grassmannian. The latter consists of
all k-planes in Rn, while the former contains only those that pass through the origin.
Assuming j ≤ k, we write LE

j ⊆ E
E
j for the sets of linear and affine j-planes con-

tained in E ∈ En
k . There exists a unique rotation invariant Haar measure, νk, on Ln

k ,
normalized by νk(Ln

k) = 1, and a unique motion invariant Haar measure, µk on En
k ,

normalized so that µk({E ∈ En
k | E ∩B

n , ∅}) = bn−k. When we integrate, we write
dL and dE instead of νk(dL) and µk(dE). See [21, Chapter 13] for further details
on the construction of the Haar measures. The classical Crofton Formula relates
the intrinsic volumes of the k-dimensional sections to the intrinsic volume of the
original set; see [14, Theorem 2.4]. Throughout this paper, we use the special case

Vn−k(K) = ck,n ·

∫
E∈En

k

χ(K ∩ E) dE (8)

= ck,n ·

∫
L∈Ln

k

∫
y∈L⊥

χ (K ∩ (L + y)) dy dL (9)

for 0 ≤ k ≤ n, where K ∈ Kn is a convex body in Rn, χ(K ∩ E) is the Euler
characteristic of the intersection, and ck,n =

(
n
k

)
bn

bkbn−k
. A proof of the second line can

be found in [21, Theorem 13.2.12]. Intuitively, it follows from the fact that every
E ∈ En

k has a unique parallel L ∈ Ln
k , and L has a unique orthogonal complement

defined as the (n − k)-plane L⊥ ∈ Ln
n−k that forms a right angle with L. Writing

E = L + y with y ∈ L⊥, we get the expression of the intrinsic volume as the double
integral stated in (9).

The theory of convex bodies has important generalizations to more general
classes of sets. Especially (7), (8), (9) have been extended to the class of polyconvex
sets [20], and to the class of tubes, yielding the famous Tube Formula of Weyl [23].
Furthermore, Federer [10] developed an extensive theory of curvature measures for
sets of positive reach and proved the Crofton Formula for this class of sets; see [10]
and [20, Notes for Section 4.4].

Persistent homology. We begin by introducing persistent homology for height
functions, generalizing to the more abstract setting of towers of vector spaces later.
Given a direction u ∈ Sn−1, the height function onM ⊆ Rn in direction u is defined
by mapping x to f (x) = 〈x, u〉. The level set of f at r ∈ R, defined as f −1(r), is
the intersection of M with the (n − 1)-plane of points 〈x, u〉 = r. Our interest in
persistent homology is motivated by the structural insight it offers into the family
of level sets. It is constructed using sublevel sets,Mr = f −1(−∞, r], and superlevel
sets, Mr = f −1[r,∞). Assume finitely many homological critical values, v1 to
vm, defined such that for any two values r and r′ contained in one of the m + 1
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open intervals, the homology groups of Mr and Mr′ are isomorphic and so are the
relative homology groups of the pairs (M,Mr) and (M,Mr′). Choose interleaving
homological regular values such that r0 < v1 < r1 < . . . < vm < rm, and write
Hi = H(Mri) and H2m−i = H(M,Mri) for the corresponding homology groups.
Here, H is the homology functor that maps a space or a pair of spaces to the direct
sum of the homology groups in all dimensions. Assuming field coefficients in
the construction of homology, the Hi are vector spaces connected by linear maps
induced by inclusions. Further assuming thatM is compact, we haveMr0 = ∅ and
Mr0 = M, which implies H0 = H2m = 0. The sequence of vector spaces is thus

0 = H0 → . . .→ Hi−1 → Hi → . . .→ H j−1 → H j → . . .→ H2m = 0, (10)

where 0 < i < j ≤ 2m. Calling this sequence a tower, it is indecomposable if
all vector spaces are trivial except for an interval of 1-dimensional vector spaces,
1 → . . . → 1, that are connected by isomorphisms. Every tower has a unique
decomposition into such intervals. The interpretation is as follows. Assuming the
interval starts at position i and ends at position j − 1, there is a homology class
γ born at Hi and dying entering H j. We represent this interval by the birth-death
pair of homological critical values, A = (αb, αd), where αb = vi or v2m−i+1 and
αd = v j or v2m− j+1, depending on whether i, j ≤ m or m < i, j. The dimension
of the birth-death pair is the dimension of the homology group that contains γ,
and its persistence is pers(A) = |αd − αb|. By construction, the rank of Hi is the
number of indecomposable towers whose intervals cover position i. The rank of Hi

is therefore readily computed from the multiset of birth-death pairs, which we call
the persistence diagram of f , denoted as Dgm( f ). The number of birth-death pairs
with positive persistence is denoted as #Dgm( f ). It is sometimes useful to take the
dimension of the pairs into account. A case in point is a level set of f . To express
the ranks of its homology groups in terms of birth-death pairs, we write Upk( f , ri)
for the multiset of k-dimensional birth-death pairs with αb < ri < αd, and Dnk( f , ri)
for the multiset of k-dimensional birth-death pairs with αd < ri < αb. With this
notation, it can be shown that the rank of the k-th homology group of f −1(ri) is
#Upk( f , ri) + #Dnk+1( f , ri); see [2]. Since the Euler characteristic is the alternating
sum of these ranks, this implies

χ( f −1(ri)) =

n∑
k=0

(−1)k (
#Upk( f , ri) − #Dnk( f , ri)

)
. (11)

The notions of birth, death, and persistence can also be defined for a tower of vec-
tor spaces that may not correspond to a real-valued function on a topological space.
This approach is taken in recent papers generalizing the Stability Theorem of per-
sistent homology from functions to towers; see [1, 5]. We assume a 1-parameter
family of vector spaces, F , that starts and ends with the trivial vector space, and
linear maps from left to right between any two. We call this a q-tame tower if
all maps have finite rank. Such a tower can be written as the direct sum of inde-
composable towers, each characterized by the real values of its birth and its death.
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Similar to the notation for functions, we write Dgm(F ) for the persistence diagram
of the tower. It is convenient to add infinitely many copies of all trivial birth-death
pairs, (α, α) with α ∈ R, as this simplifies the statement of stability, which we
explain next. Let F and G be two q-tame towers, writing Ft and Gt for their vec-
tor spaces, t ∈ R. For ε > 0, the two towers are ε-interleaved if there are maps
Ft → Gt+ε and Gt → Ft+ε, for all t ∈ R, that commute with the maps within the
towers. For example, if F and G are derived from functions f , g : M → R, then F
and G are ε-interleaved for ε = supx∈M | f (x) − g(x)|. We will make essential use
of the following assertion of stability. It measures the distance between two birth-
death pairs A = (αb, αd) and A′ = (α′b, α

′
d) as ‖A − A′‖∞ = max{|αb−α

′
b|, |αd−α

′
d |}.

Note that |pers(A) − pers(A′)| ≤ 2‖A − A′‖∞.

Theorem 1 (Stability Theorem [1, 5, 7]) Let F and G be q-tame towers, and ε >
0 such that F and G are ε-interleaved. There there is a bijection β : Dgm(F ) →
Dgm(G) such that ‖A − β(A)‖∞ ≤ ε for all A ∈ Dgm(F ).

3 Modified Intrinsic Volume

In this section, we introduce new digital algorithms for the intrinsic volume, de-
fined using Crofton’s formula (8). Beginning with the first intrinsic volume, we
consider two generalizations, one invariant under rigid motions and the other un-
der rotations about the origin.

Moments. For a height function, f : M→ R, we get a tower of homology groups
as explained above. Denoting this tower as H , we get a persistence diagram,
Dgm(H). Restricting our attention to the k-dimensional groups, we get a per-
sistence diagram, Dgmk(H), for each dimension k. Motivated by (11), we use the
diagrams to introduce an alternating sum of moments. Specifically, the χ-moment
of order j ofH is

X j(H) =

n∑
k=0

(−1)k
∑

A

∫ αd

r=αb

|r| j−1 dr, (12)

where in the second sum, A = (αb, αd) varies over all points in Dgmk(H). For
j = 1, the integral in (12) evaluates to αd −αb, which for αb < αd is the persistence
and for αd < αb the negative persistence of A. Writing X(H) = X1(H), we thus
get X(H) =

∫ ∞
r=−∞

χ( f −1(r)) dr; compare (12) with (11). For general order j ≥ 1,
we have X j(H) =

∫ ∞
r=−∞

χ( f −1(r))|r| j−1 dr. The contribution of A to this integral
multiplied with j is

j ·
∫ αd

r=αb

|r| j−1 dr =


|α

j
d | − |α

j
b| if 0 ≤ αb and 0 ≤ αd,

|α
j
b| − |α

j
d | if αb ≤ 0 and αd ≤ 0,

|α
j
d | + |α

j
b| if αb ≤ 0 ≤ αd,

−|α
j
d | − |α

j
b| if αd ≤ 0 ≤ αb.

(13)
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In addition to these moments, we consider the modified χ-moment of order j and
ε > 0, denoted as X j(H , ε), which is defined as the unmodified χ-moment in (12)
except that contributions of birth-death pairs with persistence less than or equal to
ε are dropped.

Motion invariant construction. Recall that (9) writes the (n − k)-th intrinsic
volume as a double integral over all linear k-planes, L, and all k-planes parallel to L.
Setting k = n−1, the inner integral is over a 1-parameter family of hyperplanes. We
introduce the height function fL : M → R defined by mapping x to fL(x) = 〈x, u〉,
in which u denotes the unit normal vector of L. Extending [6], we can therefore
rewrite (9) in terms of preimages and χ-moments:

V1(M) = cn−1,n ·

∫
L∈Ln

n−1

∫ ∞

y=−∞

χ
(

f −1
L (y)

)
dy dL (14)

= cn−1,n ·

∫
L∈Ln

n−1

X(FL) dL, (15)

where FL is the tower defined by fL. Finally, we substitute the modified for the
unmodified moment to get a modified notion of the first intrinsic volume.

Definition 1 The modified first intrinsic volume ofM ⊆ Rn and ε > 0 is

V1(M, ε) = cn−1,n ·

∫
L∈Ln

n−1

X(FL, ε) dL. (16)

The definition of modified first intrinsic volume is invariant under rigid motions.
To generalize this definition to other intrinsic volumes, we note that the integral
of χ(M ∩ E) over all E ∈ En

k is the same as over all P ∈ En
k+1 and then over all

E ∈ EP
k . Indeed, the measure of (k + 1)-planes P that contain a given k-plane is

νk(Ln−k
1 ) = 1. For each (k + 1)-plane, P, we fix an origin, consider a k-plane L in

P that passes through this origin, let fL : M ∩ P → R be the height function in the
direction normal to L, and write FL for the corresponding tower.

Definition 2 For 0 ≤ k ≤ n, the motion invariant modification of the (n − k)-th
intrinsic volume of a setM ⊆ Rn and ε > 0 is

Vmot
n−k (M, ε) = ck,n ·

∫
P∈En

k+1

∫
L∈LP

k

X(FL, ε) dL dP. (17)

Note that Vmot
1 (M, ε) = V1(M, ε) implying that the motion invariant modification is

indeed a generalization of the modification of the first intrinsic volume. We have
not been able to prove the convergence of Vmot

n−k (M, ε) for n− k > 1, not even for the
unit ball, which motivates us to give a different, rotation invariant generalization of
(16).
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Rotation invariant construction. Let ϕ : En
k → [0,∞) be a measurable function

and 1 ≤ k < ` ≤ n. Writing ‖E‖ for the distance between the origin and its
closest point on E, we find the following special case of the Blaschke-Petkantschin
Formula in [14, Theorem 2.7]:∫

E∈En
k

ϕ(E) dE =
sn−k

s`−k
·

∫
L∈Ln

`

∫
E∈EL

k

ϕ(E) ‖E‖n−` dE dL, (18)

where we recall that sk is the measure of the (k − 1)-dimensional sphere. Grouping
the k-planes in 1-parameter families, we are interested in the case ` = k + 1, for
which we get s`−k = s1 = 2 in the denominator. Setting ϕ(E) = χ(M ∩ E), we first
use (18) and then (9) to rewrite (8) as

Vn−k(M) = 1
2 ck,nsn−k ·

∫
L∈Ln

k+1

∫
E∈EL

k

χ(M ∩ E) ‖E‖n−k−1 dE dL (19)

= 1
2 ck,nsn−k ·

∫
L∈Ln

k+1

∫
K∈LL

k

∫
y∈K⊥

χ (M ∩ (K + y)) |y|n−k−1 dy dK dL

(20)

= 1
2 ck,nsn−k ·

∫
L∈Ln

k+1

∫
K∈LL

k

∫ ∞

y=−∞

χ
(

f −1
K (y)

)
|y|n−k−1 dy dK dL (21)

= 1
2 ck,nsn−k ·

∫
L∈Ln

k+1

∫
K∈LL

k

Xn−k(FK) dK dL. (22)

We get (21) by introducing the function fK : M ∩ L → R that maps x to the height
fK(x) in the normal direction u of K inside L. Observe that f −1

K (y) is the intersection
ofM with the k-plane K + y parallel to K. Finally, we get (22) using the χ-moment
of order n − k of fK . We modify the intrinsic volume by substituting the modified
for the unmodified χ-moment.

Definition 3 For 0 ≤ k ≤ n−1, the rotation invariant modification of the (n− k)-th
intrinsic volume ofM ⊆ Rn and ε > 0 is

V rot
n−k(M, ε) = 1

2 ck,nsn−k ·

∫
L∈Ln

k+1

∫
K∈LL

k

Xn−k(FK , ε) dK dL. (23)

Equation (23) accumulates information by probing M with all (k + 1)-planes that
pass through the origin, which implies that the construction is invariant under ro-
tations about the origin. Note that V rot

1 (M, ε) = V1(M, ε) implying that the rotation
invariant modification is indeed a generalization of the modified first intrinsic vol-
ume.

4 Convergence for Balls

In this section, we show that the rotation invariant modification of the intrinsic
volumes implies multigrid convergent digital algorithms for the n-dimensional ball,
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thus correcting the non-convergence we observed in our motivating example. The
proof of convergence first constructs a map from Bn to Bn

t , and second bounds
the difference between the modified and unmodified intrinsic volumes using the
Stability Theorem of persistent homology.

Low-distortion mapping. Recall that Bn ∩ tZn is the resolution t digitization of
the unit ball, and Bn

t is the union of axes-aligned n-cubes with edge length t and
centers in Bn ∩ tZn. The intersection of this union of cubes with a line may have
more than one component, but this cannot be the case if the line passes through the
origin. We use this fact to construct a low-distortion homeomorphism between Bn

and Bn
t . Denoting the homeomorphism by ht : Bn → Bn

t , we define its distortion as
supx∈Bn ‖x − ht(x)‖.

Lemma 1 (Mapping Lemma) For every positive real t, there is a homeomor-
phism ht : Bn → Bn

t with distortion at most 1
2 t
√

n such that for every linear sub-
space L of Rn, the restriction of ht to Bn ∩ L→ Bn

t ∩ L is again a homeomorphism.

Proof. We begin by showing that every line K ∈ Ln
1 intersects Bn

t in a single com-
ponent. Indeed, if this were not the case, then we could find two neighboring n-
cubes, U and U′ with centers u and u′, such that U * Bn

t , U′ ⊆ Bn
t , and ‖u‖ < ‖u′‖.

This contradicts the definition of hit-or-miss digitization and implies that Bn
t is star-

convex with the origin in the kernel. We exploit this property in the construction
of the homeomorphism ht : Bn → Bn

t . Using the coordinate system along K, we
write the intersections with the two bodies as intervals: K ∩ Bn = [−1, 1] and
K ∩ Bn

t = [−a, a]. To map the former interval to the latter, we set ht(y) = ay for
every y ∈ [−1, 1]. Doing this for all lines passing through the origin defines the
homeomorphism. To quantify its distortion, we note that the distance between a
and 1 is at most half the length of a cube diagonal, which implies that the distortion
of ht is at most 1

2 t
√

n. The star-convexity of the digital approximation implies that
Bn

t ∩ L is a topological ball of dimension k for every L ∈ Ln
k . By construction of

the homeomorphism, the corresponding restriction of ht is a homeomorphism, as
required.

Integration. Fixing a direction, we let f : Bn → R be the height function on the
unit ball, and we let g : Bn → R be defined by mapping x ∈ Bn to the height of
ht(x) ∈ Bn

t in the same direction. We write F and G for the corresponding towers
of homology groups, and Dgm(F ) and Dgm(G) for their persistence diagrams.
Setting c = 1

2 t
√

n, we have supx∈Bn | f (x) − g(x)| ≤ c by the Mapping Lemma. It
follows that there is a bijection between the two multisets of birth-death pairs with
distance at most c between corresponding pairs. Note that Dgm(F ) has only one
non-trivial pair, namely A = (−1, 1). By the Stability Theorem, A corresponds
to a pair A′ = (−a, a) with 1 − c ≤ a ≤ 1 + c in Dgm(G). All other pairs in
Dgm(G) correspond to trivial pairs in Dgm(F ). Except for A′, all pairs in Dgm(G)
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have persistence 2c or less. Setting ε = 2c, there is only one contribution to the
modified χ-moment, Xn−k(G, ε), namely that of A′, which is∫ a

r=−a
|r|n−k−1 dr =

2an−k

n − k
<

2ec(n−k)

n − k
. (24)

Comparing this to the unmodified χ-moment of F , which is Xn−k(F ) = 2
n−k , we

see that the difference is less than (2ec(n−k) − 2)/(n − k). To compute the difference
between the intrinsic volumes, we still need to integrate over all L ∈ Ln

k+1 and
K ∈ LL

k and multiply with 1
2 ck,nsn−k; see (23).

Theorem 2 (Convergence Theorem for Balls) The absolute difference between
the (n − k)-th intrinsic volume of Bn and the rotation invariant modification of
the (n − k)-th intrinsic volume of its resolution t digital approximation is

|Vn−k(Bn) − V rot
n−k(Bn

t , t
√

n)| ≤ 1
n−k ck,nsn−k ·

(
e

t
√

n(n−k)
2 − 1

)
(25)

for 0 ≤ k < n. The difference vanishes as t goes to 0, hence limt→0 V rot
n−k(Bn

t , t
√

n) =

Vn−k(Bn).

This theorem implies a digital algorithm that is multigrid convergent for S = {Bn}.
It is easy to extend the proof to show that the same algorithm is multigrid conver-
gent for all ellipsoids centered at the origin. It may even be multigrid convergent
for all convex sets that contain the origin in their interiors, but we do not have a
proof.

5 Distorted Normals of the Sphere

In this section, we introduce the main technical tool used to prove our second
convergence result in Section 7. The distorted normal bundle of a body is a mod-
ification of the usual normal bundle and is of independent interest. We begin by
introducing the notion for the special case of a sphere.

Distorted normal map. To explain the construction, we recall that the outward
normal of a point u ∈ Sn−1 may be written as N(u) = u−0, in which 0 is the center of
the sphere. We distort by substituting the n-dimensional cube �n = [−1, 1]n/

√
4n

for 0. The edges of �n have length 1/
√

n, and its corners are at distance 1
2 from

0 and from Sn−1. For each point u ∈ Sn−1, let u� ∈ �
n be the closest point in

the n-cube. Writing ui for the i-th Cartesian coordinate of u, we call it small if
|ui| ≤ 1/

√
4n and large if |ui| > 1/

√
4n. The i-th coordinate of u� is given by

u�i =

{
ui if ui is small,

±1/
√

4n if ui is large.
(26)

We observe that u−u� is an outward normal of ∂�n, meaning the orthogonal (n−1)-
plane that passes through u� separates the n-cube from the difference vector.
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Definition 4 The distorted normal map, Dn : Sn−1 → Sn−1, is defined by mapping
every point u ∈ Sn−1 to Dn(u) = (u − u�)/‖u − u�‖.

To visualize Dn, we first consider the minimum distance function, dn : Sn−1 → R,
defined by mapping u ∈ Sn−1 to dn(u) = ‖u − u�‖. It decomposes the sphere into
regions of points whose closest points belong to the same face of the n-cube. As
illustrated in Figure 1, we have 3n−1 regions, one for each proper face of �n. These

Figure 1: Left: the decomposition of S2 into regions. Right: the decomposition of S1

together with the annulus, which is the union of the distorted normal segments. The center
of each region is a critical point of the minimum distance function and a fixed point of the
distorted normal map.

regions arise by intersecting Sn−1 with the 2n (n−1)-planes that contain the (n−1)-
faces of �n. Within each region, the distance function has a simple form, with a
critical point at its center. For an (n − 1)-face, this critical point is a maximum, for
a vertex it is a minimum, and for every other proper face it is a saddle point whose
index depends on the dimension of the face. Each critical point of dn is a fixed
point of Dn, and these are the only fixed points.

The angles cannot be large. The following two angles are useful in the analysis
of of the distorted normal map: ϕn = arcsin

√
1/(4n) and ψn = arccos

√
(3n + 1)/(4n).

The first angle gives the maximum deviation from orthogonality below which the
distortion enforces precise orthogonality to a coordinate direction; it decreases with
increasing n and vanishes in the limit. The second angle gives the maximum distor-
tion; it increases with increasing n and goes to 30◦ in the limit. We formally state
and prove both properties together with a bound on the angle between distorted
normals. Write e1 to en for the unit coordinate vectors in Rn.

Lemma 2 Let Dn : Sn−1 → Sn−1 be the distorted normal map. Then

(i) arcsin |〈u, ei〉| ≤ ϕn iff 〈Dn(u), ei〉 = 0, for every u ∈ Sn−1 and every 1 ≤ i ≤ n,

(ii) arccos 〈u,Dn(u)〉 ≤ ψn, for every u ∈ Sn−1, and this bound is tight,
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(iii) arccos 〈Dn(u),Dn(v)〉 ≤ 2 arccos 〈u, v〉, for all u, v ∈ Sn−1.

Proof. (i) says that almost right angles with coordinate directions become right
angles. To see this, note that |〈u, ei〉| ≤ sinϕn iff u� belongs to a face parallel to ei.
These faces are characterized by having outward normals orthogonal to ei.

(ii) implies that the distortion of the normal direction is never more than 30◦.
To prove the inequality, we consider a region in the decomposition of Sn−1, noting
that the distortion increases monotonically along great-circle arcs emanating from
the fixed point. It follows that the maximum is attained at the corners of the regions,
which are the points v = (v1, v2, . . . , vn) ∈ Sn−1 with v j = ± cosψn, for one index
j, and vi = ± sinϕn, for all indices i , j. Correspondingly, the j-th coordinate of
Dn(v) is ±1, with the same sign as v j, and the other coordinates are 0. It follows
that 〈v,Dn(v)〉 = cosψn at the n2n corners, and 〈u,Dn(u)〉 ≤ cosψn at all u ∈ Sn−1.

(iii) says that the angle between two distorted normals is at most twice the an-
gle between the corresponding undistorted normals. To prove this, we consider the
derivative of Dn, at every point and every tangent direction at that point. It is max-
imized at the diagonal point, u0 = (

√
1/n,

√
1/n, . . . ,

√
1/n), whose closest point

on the n-cube is 1
2 u0. To see this, we note that u0 minimizes the minimum distance

function, and the closest point on �n is constant within a small neighborhood of
u0. Independent of the tangent direction, the derivative at u0 is 2, which is a global
maximum. To show that the claimed inequality follows, we note that arccos 〈u, v〉
is the length of the shortest great-circle arc connecting the two points on Sn−1. We
map this arc to a curve connecting Dn(u) to Dn(v), observing that its length is at
least arccos 〈Dn(u),Dn(v)〉. Since the derivative is bounded from above by 2, the
length of this curve is at most twice the length of the great-circle arc.

The segments cannot be long. Two line segments that intersect Sn−1 orthogo-
nally at different points can only intersect at the origin and are disjoint otherwise.
If we draw the line segments in distorted normal direction, then they are disjoint
unless they intersect inside �n. We therefore defineA(Sn−1) = Sn−1 + 1

4B
n and draw

the line segments in distorted normal direction within this annulus; see Figure 1.
More formally, we write Lu(λ) = u + λDn(u) and we define the distorted normal
segment of u ∈ Sn−1 as

Lu = A(Sn−1) ∩
{
Lu(λ) | −1

2 < λ <
1
2

}
. (27)

We prove shortly that each Lu is a connected line segment whose endpoints lie on
the boundary of the annulus.

Lemma 3 A(Sn−1) is a disjoint union of distorted normal segments.

Proof. By construction, A(Sn−1) and �n are disjoint, which implies that the dis-
torted normal segments are pairwise disjoint. It remains to prove that the distorted
normals cover the annulus. This requires two things: the distorted normals should
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be dense enough to cover the interior of the annulus, and they should be long
enough to reach the boundary. The first property holds because the midpoints of
the distorted normals cover Sn−1. In the remainder of the proof we establish the
second property.

To prove that Lu is connected and its endpoints lie on the boundary of the
annulus, we compute the distance of Lu(λ) from Sn−1, which depends on λ and
the angle α = arccos 〈N(u),Dn(u)〉 between the normal and the distorted normal.
It is convenient to measure the distance with a sign, which is negative inside and
positive outside Sn−1. Writing du : R → R for the signed distance function along
the distorted normal segment of u, we see from the right-angled triangle in Figure

λ cosα

λ
sin

α

λ

y
w

N(u)

Dn(u)

0

u α

Figure 2: Illustration of the proof of Lemma 3. Point y is at a positive distance λ from u
in the distorted normal direction. Noting that du(λ) = ‖w − y‖, the distance to the sphere is
computed from the right-angled triangle with shown edge lengths. Similar computations
apply for negative values of λ.

2 that du(λ) =
√

1 + 2λ cosα + λ2 − 1. It attains its minimum at λ = − cosα, has
a root at λ = 0, and increases monotonically for λ ≥ − cosα. Varying α, we note
that we get smaller absolute distances for larger angles. Since α ≤ π

6 , this implies

|du(λ)| ≥
√

1 +
√

3λ + λ2 − 1. (28)

For λ = ±0.5, we get du(−0.5) ≤ −0.380 . . . and du(0.5) ≥ 0.454 . . .. Both have
absolute value larger than 0.25, which implies that the points Lu(λ) on the boundary
of A(Sn−1) satisfy − 1

2 < λ < 1
2 , and the distorted normal segment Lu, as defined in

(27), crosses the annulus from one boundary sphere to the other, as required.

The vectors cannot disagree. By construction, the endpoints of the distorted
normal segments lie on two spheres centered at the origin, and by Lemma 3, these
segments establish homeomorphic maps between Sn−1 and the two spheres. We are
interested in the differential properties of these maps. To study them, we consider
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a smooth curve of directions, υ : R → Sn−1, set u = υ(0), and write ~u = υ̇(0) for
the velocity vector at u. As a first step toward understanding the curves traced out
by the endpoints of the distorted normal segments, we consider S = 3

4S
n−1, and let

φ : R → S be the curve defined by mapping t to φ(t) = (1 − λ(t))υ(t) + λ(t)u�, in
which 0 ≤ λ(t) ≤ 1 is chosen so that the point lies on S . Assuming differentiability
at 0, we write ~p = φ̇(0) for the velocity vector at p = φ(0). To simplify the
statement of the claim, we set η1 = arccos 1

2 − arccos 2
3 = 11.810 . . .◦.

Lemma 4 Let υ : R → Sn−1, φ : R → S be the curves introduced above, set
u = υ(0), p = φ(0), and let ~u = υ̇(0), ~p = φ̇(0) be the velocity vectors. Then
arccos 〈~u/‖~u‖, ~p/‖~p‖〉 ≤ η1.

Proof. We prove the inequality by relating the angle between the velocity vectors
to the angle between the normals of the (n − 1)-planes, H,G, that touch Sn−1 in u
and S in p. Consider the triangle with vertices p, 0, u and write α = ∠p0u for the
angle at the origin. By construction, ‖0 − u‖ = 1 and ‖0 − p‖ = 3

4 , and by Lemma
2 (ii), the angle at u satisfies ∠pu0 ≤ π

6 . To prove an upper bound on α, we may
assume ∠pu0 = π

6 , which specifies the triangle up to congruence. It is now easy to
check that in this extreme configuration the angle at 0 is η1 = arccos 1

2 − arccos 2
3 .

z ∈ H ∩G

~u
u

p
~p

u�

`

0
G

H
G′′

Figure 3: Illustration of the proof of Lemma 4. The points u, p and the velocity vectors ~u, ~p
are related to each other by parallel projection from H to G′′ followed by central projection
from G′′ to G. The vectors u, p are normal to H,G.

Having established an upper bound on the angle between the normals of H
and G, we return to the velocity vectors at u and p. To get p + ~p from u + ~u, we
define G′′ = G + (u − p), we project u + ~u parallel to p − u from H to G′′, and we
finally project the point in G′′ in the direction toward u� onto G; see Figure 3. To
analyze the situation, let ` be the line that passes through u, p, and we remember
that H,G touch two concentric spheres. It follows that the 2-plane passing through
u, p, 0 intersects the (n − 2)-plane H ∩ G orthogonally at a point z. Any other 2-
plane containing u, p intersects H ∩G at a point z′ whose distance from ` is larger
than the distance of z from `. Assuming u, u + ~u and p, p + ~p lie in the 2-plane
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defined by z′, the angle between ~u, ~p is the same as the angle between u − z′ and
p − z′. This angle is maximized when the distance to the line is minimized, which
happens when z′ = z. To see this, we consider the circle that passes through u, p, z.
Moving z on its arc bounded by u and p, or moving it with the circle as it pivots
about the line ` does not change the angle. (This is known as the Inscribed Angle
Theorem.) Drawing all circles of the same size that pass through u, p, we get a self-
intersecting torus that passes through z. A portion of the torus lies on the boundary
of its convex hull. We get this portion by cutting each circle with the line parallel to
` that passes through its center, removing the half that contains u and p, and taking
the union of the remaining half-circles. Importantly, z belongs to this portion of
the torus because the angles at u and p within the triangle spanned by u, p, z are
both at least π

3 − η1, which is larger than 45◦. The (n− 2)-plane H ∩G touches this
portion of the torus in a single point, which is z. Outside the torus, the angles are
smaller, which implies that the angle is indeed maximized at z, where it is equal to
the angle between the normals of the two (n − 1)-planes, which is at most η1, as
claimed.

The vectors cannot swing. As a second step toward understanding the curves
traced out by the endpoints of the distorted normal segments, we let ψ : R → S be
defined by ψ(t) = υ(t) + µ(t)Dn(υ(t)), in which −1 ≤ µ(t) ≤ 0 is chosen so that the
point lies on S . We have differentiability at 0 if u lies in the interior of a region
on Sn−1 that projects to a face of �n; see Figure 1. Assuming differentiability, we
let ~q = ψ̇(0) be the velocity vector at q = ψ(0). If all coordinates of u are large,
then ψ(t) = φ(t) in a neighborhood of 0, and therefore ~p = ~q. Otherwise, the
two velocity vectors are different. To simplify the statement of the claim, we set
η2 = arccos(2

√
2)/3 = 19.471 . . .◦.

Lemma 5 Let φ : R → S , ψ : R → S be the curves obtained from υ : R → Sn−1

as described above, set p = φ(0), q = ψ(0), assume differentiability at 0, and let
~p = φ̇(0), ~q = ψ̇(0) be the velocity vectors. Then arccos 〈~p/‖~p‖, ~q/‖~q‖〉 ≤ η2.

Proof. Assume without loss of generality that the first k coordinates of u are small,
and the last n − k are large. Writing ui, pi, qi for the i-th coordinates of ~u, ~p, ~q, we
therefore have

qi =

{
ui if 1 ≤ i ≤ k,
pi if k < i ≤ n.

(29)

Consider the former case and note that the first k coordinates of the vector u − u�
are zero. It follows that pi = ui/E, with E = ‖u − u�‖/‖p − u�‖, for 1 ≤ i ≤ k.
Equivalently, qi = Epi for 1 ≤ i ≤ k. The ratio of distances is largest when u lies
on the diagonal, in which case ‖u − u�‖ = 2‖p − u�‖. Hence, E ≤ 2 in general. To
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compute the angle between ~p and ~q, we assume ‖~p‖ = 1 and get

arccos 〈~p,
~q
‖~q‖
〉 = arccos

E
∑k

i=1 p2
i +

∑n
i=k+1 p2

i√
E2 ∑k

i=1 p2
i +

∑n
i=k+1 p2

i

(30)

= arccos
1 + (E − 1)

∑k
i=1 p2

i√
1 + (E2 − 1)

∑k
i=1 p2

i

(31)

≤ arccos
1 + (E − 1)/(E + 1)√
1 + (E2 − 1)/(E + 1)

, (32)

in which get the last line by observing that for fixed E the angle attains its maximum
when

∑k
i=1 p2

i = 1
E+1 . The expression simplifies to arccos(2

√
E)/(E + 1), which

increases with increasing E. Recall that E ≤ 2, which implies that the angle is
bounded from above by arccos(2

√
2)/3 = η2, as claimed.

Putting the inequalities of Lemmas 4 and 5 together, we conclude that the angle
between ~u and ~q is bounded from above by η1 + η2 = 31.281 . . .◦.

6 Distorted Normals of a Solid Body

In this section, we extend distorted normals from the sphere to more general sets.
We introduce the notion of a solid body and study how it relates to its digital ap-
proximations.

Solid bodies. We call a compact setM ⊆ Rn an n-dimensional solid body if

I. its boundary is a smoothly embedded (n − 1)-dimensional manifold in Rn,
and

II. every height function onM has a finite size persistence diagram.

We use quantified versions of Properties I and II to constrain the sets we work
with. To explain this, let fu : M→ R be the height function onM ⊆ Rn in direction
u, and recall that #Dgm( fu) denotes the number of birth-death pairs with positive
persistence. We require that there exists a constant C such that #Dgm( fu) ≤ C for
every direction u ∈ Sn−1. Since ∂M is a smoothly embedded manifold, sectional
curvatures are defined, and we write curv(∂M) for the maximum sectional curva-
ture, over all points x ∈ ∂M and all tangent directions of ∂M at x. This notion of
curvature is related to the reach of ∂M, which is the supremum over all r such that
every point at distance at most r has a unique closest point on ∂M. Specifically, we
have reach(∂M) ≤ 1/curv(∂M). We do not necessarily have equality because the
reach may be determined by a global feature of the embedding in which two points
that are far apart in ∂M are close in Rn. If ∂M is compact and smoothly embedded,
then curv(∂M) and reach(∂M) are both positive. We require that 1/curv(∂M) ≥ 4tn
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and reach(∂M) ≥ 2t
√

n, in which t is the resolution of the digital approximation.
In other words, we make statements only about approximations for which the res-
olution is small enough to satisfy these requirements. As a short-cut we sometimes
write % for reach(∂M).

A crucial concept in the proof of convergence will be the annulus obtained by
thickening the boundary of M: Aθ(∂M) = ∂M + θBn. For θ < reach(∂M), we can
construct the annulus as the disjoint union of normal segments of the form x+λN(x)
for −θ ≤ λ ≤ θ. The segments establish a bijection between the inner and outer
boundaries of the annulus, which we denote as ∂iAθ and ∂oAθ. Furthermore, the
segments form bijections between ∂M and the two boundaries, and because ∂M is
smoothly embedded so are ∂iAθ and ∂oAθ. For sufficiently small θ, we will give a
third construction of the annulus as a disjoint union of distorted normal segments.
The main purpose of this section is the study of this construction for the special
case in which θ = 1

4 reach(∂M).

Symmetric difference. The main difficulty in proving convergence of the mod-
ified first intrinsic volume is the establishment of a low-distortion correspondence
between M and Mt. To construct it, we focus on the space near the boundaries.
Specifically, we consider the symmetric difference, (M \ Mt) ∪ (Mt \ M), which
is partially open and partially closed; see Figure 4. Importantly, the distance of

Figure 4: The shaded symmetric difference between M and Mt, which is contained in the
corridor of the cubes that intersect ∂M.

a point of the symmetric difference from ∂M is at most half the length of a cube
diagonal, which is 1

2 t
√

n. To form the correspondence, we partition the symmetric
difference into half-open line segments that have one endpoint on ∂M and the other
endpoint on ∂Mt. However, it is in general not possible to choose the line segments
such that they imply a homeomorphism between ∂M and ∂Mt. To see this, consider
a surface ∂M in R3 that is locally close to a plane of integer points. More precisely,
all but two integer points of this plane lie above ∂M, and the two exceptional points
have coordinates (i, j, k) and (i + 1, j + 1, k). The cubes centered at these two points
share a single edge. This edge and the four incident squares belong to ∂Mt, which
is therefore not a 2-manifold. Since ∂M is a 2-manifold by assumption, the two
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boundaries cannot be homeomorphic. Giving up on fibrations that imply home-
omorphisms, we construct one that implies a homotopy equivalence. The usual
normal bundle will not do because there may be points x ∈ ∂M with unit outward
normal N(x) such that x + λN(x) crosses ∂Mt more than twice in close vicinity to
x. Crucially, such normal directions are necessarily almost orthogonal to at least
one coordinate direction. This insight was the motivation to construct the distorted
normal bundle introduced in the previous section. We adopt this notion for solid
bodies, proving that distorted normal segments are disjoint, and they intersect the
symmetric difference in connected pieces.

The segments cannot backtrack. To extend distorted normal segments from
Sn−1 to the boundary of a solid body, ∂M, we let Lx(λ) = x + λDn(N(x)) be a
point along the distorted normal vector anchored at x. Writing dx(λ) for the signed
distance from Lx(λ) to ∂M – as we did for the sphere – we get a function from R
to R. However, we will limit ourselves to 0 ≤ λ ≤ %

2 , and to avoid overloading the
notation, we write dx : [0, %2 ]→ R.

Lemma 6 The function dx increases monotonically, and, for all 0 ≤ λ ≤ %
2 ,

% −

√
%2 −

√
3%λ + λ2 ≤ dx(λ) ≤ λ.

Proof. We first prove the two inequalities. Fix a value of λ and write y = Lx(λ).
The point of ∂M closest to y lies on or outside the sphere with radius % centered
at z = x + %N(x). Hence, dx(λ) is bounded from below by % − ‖y − z‖ and from
above by ‖y − x‖ = λ, which gives the claimed upper bound; see Figure 5. Letting
α be the angle between N(x) and Dn(N(x)), the squared distance between y and z is
‖y − z‖2 = %2−2%λ cosα+λ2. Since α ≤ π

6 , this implies ‖y − z‖2 ≤ %2−
√

3%λ+λ2

and the claimed lower bound.
To prove monotonicity, we consider the sphere S with center y = Lx(λ) and

radius r = dx(λ). Let w ∈ S be a point that permits a sphere of radius % that passes
through x, encloses S , and touches S in w. The set of such points is the intersection
of S with an (n−1)-plane, H, orthogonal to the distorted normal vector, and we set
λ0 ∈ R such that 〈w,Dn(N(x))〉 = λ0. We claim that λ0 < λ, for all λ ≤ %

2 . To see
this, we observe that for fixed λ, λ0 is maximized if the radius r of S is as small
as possible. We can therefore restrict ourselves to the case in which S touches the
sphere centered at z. But then the point at which the two spheres meet satisfies the
requirements for w and therefore belongs to H. Letting α = ∠yxz and β = ∠xzy bet
the angles at x and z, we have λ0 < λ as long as α + β < π

2 . We have α ≤ π
6 by

Lemma 2 (ii) and β < π
3 because λ ≤ %

2 , which implies λ0 < λ as desired.
We now return to the radius of S , which is the distance between y and the

closest point, w, of ∂M. If w satisfies 〈w,Dn(N(x))〉 < 〈y,Dn(N(x))〉, then dx has
positive slope at λ. Indeed, moving y a small distance along the distorted normal
direction increases the radius. Since w must lie on the same side of H as x – for

20



H

S

z

w
x

y

λ 0

λ
Figure 5: Illustration of the proof of Lemma 6. The circle centered at the point y on the
distorted normal segment of x touches ∂M in the point w, which lies on or outside the circle
centered at the point z on the normal segment of x.

else the sphere of radius % that touches ∂M at w would enclose x – this inequality
is satisfied as long as λ0 < λ. Hence, dx increases monotonically from 0 to %

2 .

Since dx is monotonic, it has an inverse, and we can write Lx(d−1
x (θ)) for the

point at distance θ from ∂M.

The segments cannot cross. Setting λ =
%
2 , the lower bound in Lemma 6 implies

that the distance between y = Lx( %2 ) and ∂M is at least %
4 . We use this simple fact

to extend the distorted normal segments from Sn−1 to ∂M, defining

Lx = {Lx(λ) | − %2 ≤ λ ≤
%
2 and |dx(λ)| ≤ %

4 } (33)

for every x ∈ ∂M. Recall the definition of the annulus, Aθ = ∂M + θBn, set
θ =

%
4 , and write A = A%/4. Since %

4 is less than the reach, A has an inner and
an outer boundary, ∂iA and ∂oA, both diffeomorphic to ∂M. By construction, Lx

has one endpoint on the inner and the other endpoint on the outer boundary, for
each x ∈ ∂M. Since the distorted normal segments do not leave gaps, we have
A =

⋃
x∈∂M Lx. We prove that this is a partition.

Lemma 7 LetM be a solid body in Rn, with reach(∂M) ≥ 2t
√

n. Then Lx∩ Ly = ∅

for all x , y in ∂M.

Proof. In contrast to the parallel Lemma 3, the difficult part of this proof is to
establish that the segments are pairwise disjoint. We do this in two steps, first
considering near segments Lx, Ly defined by ‖x − y‖ < ε0, for some small but
positive constant ε0, and second considering far segments defined by ‖x − y‖ ≥
ε0. Specifically, we first prove that near segments are necessarily disjoint, and we
second show that if there are far segments that have a non-empty intersection, then
there are also near segments that have a non-empty intersection.
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For the first step, we focus on the inner boundary ofA, noting that the argument
for the outer boundary is symmetric. Taking inward directed distorted normals,
we map each point x ∈ ∂M to the point Lx(d−1

x (− %4 )) on ∂iA. Consider a locally
geodesic curve ξ : R → ∂M with x = ξ(0) and velocity vector ~x = ξ̇(0) at x.
Correspondingly, we get a curve ψ : R → ∂iA with q = ψ(0) and velocity vector
~q = ψ̇(0) at q. Let H be the (n − 1)-plane that passes through x and q such that ~x
is normal to the (n − 2)-plane in which H − x intersects the tangent space of ∂M
at x. It contains the line segment with endpoints x and q, and we call the open
half-space that contains x + ~x the positive side of H. A sufficiently small motion
along its curve moves x into the positive side of H. By Lemma 2 (ii), the angle
between ~x and H is at least 60◦, and by combining Lemmas 4 and 5, we note that
the angle between ~x and ~q is at most η1 + η2 = 31.281 . . .◦ < 60◦. This implies that
a small motion along its curve moves q into the positive side of H as well. We get
the positive constant, ε0 < reach(∂M), because ∂M is compact and its curvature is
bounded.

To prepare the second step, we let X ⊆ ∂M × ∂M be the set of pairs (x, y) such
that Lx ∩ Ly , ∅. Eventually, we will establish X = ∅, but for now we have a
more modest goal, namely to show that X is compact. It is bounded since ∂M is
bounded, so it remains to show that X is closed or, equivalently, that the limit of
every Cauchy sequence in X belongs to X as well. To derive a contradiction, let
(x1, y1), (x2, y2), . . . be a Cauchy sequence for limit (x, y), and suppose that (x, y) <
X. In other words, Lx ∩ Ly = ∅. Because the segments are bounded and closed
in Rn, there is a threshold δ > 0 such that the line segments remain disjoint even
after thickening: (Lx + δBn) ∩ (Ly + δBn) = ∅. By definition of Cauchy sequence
and because the distorted normal segments of arbitrarily close points are arbitrarily
close, there is a sufficiently large index j such that Lx j ⊆ Lx + δBn and Ly j ⊆

Ly +δBn. But then Lx j ∩Ly j = ∅ and (x j, y j) < X, which contradicts the assumption
that (x, y) < X. Hence, X is compact, as desired.

In the second step, we suppose there are points x, y in ∂M whose distorted
normal segments have a non-empty intersection. Hence ‖x − y‖ ≥ ε0, and because
each distorted normal segment forms an angle at least π

3 with ∂M, the distance of
z = Lx∩Ly from ∂M is larger than a positive constant times ε0. Using compactness
of X, the minimum distance of an intersection point between segments from ∂M

exists, and we denote it as θ0. Suppose now that the distance of z from ∂M is θ0.
Choose a positive radius r < ε0

2 and let S = Sr(x) be the set of points of ∂M at
distance r from x. Because the radius is smaller than the reach, S is a topological
(n − 2)-sphere. Importantly, it separates x inside the sphere from y outside the
sphere. Each point of S lies on a distorted normal segment, so we can transport S
by moving the points along their segments, always making sure that the distance
to ∂M is the same for all points. Since r < ε0

2 , these segments neither intersect
Lx nor each other, which implies that the (n − 2)-sphere at distance θ from ∂M

encloses Lx(d−1
x (θ)) ∈ ∂iAθ for every 0 ≤ θ ≤

%
4 . But Lx(d−1

x (θ0)) = Ly(d−1
y (θ0)),

so at least one of the segments intersects Ly. Because of the monotonicity of the
signed distance function from ∂M along Ly, the intersection happens at a distance
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less than θ0 from ∂M. But this is impossible by definition of θ0, which provides the
desired contradiction.

The fibers cannot split. We have almost all ingredients ready to conclude that
the distorted normal segments give a fibration of the symmetric difference. To
construct it, we set

Fx = Lx ∩ [(M \Mt) ∪ (Mt \M)] (34)

for each x ∈ ∂M, calling it the fiber at x. By construction, one endpoint of Fx lies
on ∂M and the other on ∂Mt. It is however possible that Fx is empty, namely iff
x ∈ ∂M ∩ ∂Mt, or that Fx meets ∂Mt in an interval rather than a point, namely
only if Lx is normal to at least one coordinate axis. We will prove shortly that this
exhausts all cases. In particular, it is not possible that Fx consists of two or more
components.

Lemma 8 Let ∂M be a smoothly embedded (n−1)-manifold inRn, with 1/curv(∂M) ≥
4tn and reach(∂M) ≥ 2t

√
n. For every point x ∈ ∂M, the fiber Fx is either empty or

connected.

Proof. To derive a contradiction, we assume that there is a point x ∈ ∂M such that
Lx crosses ∂Mt three or more times. Sorting the crossings from inside to outside,
we get x1, x2, x3, . . ., alternating between leaving and entering Mt. Suppose the
situation is as in Figure 6 in which we enter Mt at x2. Let v and w be the centers

x y

x1

x2

x3

v w

Figure 6: The distorted normal segment centered at x ∈ ∂M crosses the boundary ofMt at
three points. The curvature of ∂M is exaggerated for better visibility.

of the n-cubes that share the face that contains x2 in its interior, with v < M and
w ∈ M. By definition of digital approximation, the cube centered at v lies outside
and the cube centered at w lies inside Mt. Clearly, 〈N(x),w − v〉 > 0, but to create
this configuration, the two vectors have to be almost orthogonal. We show that
they are sufficiently close to orthogonal such that Dn(N(x)) and w− v are precisely
orthogonal. To do so, we let y be the first point on the line segment from v to
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w that belongs to ∂M, and note that 〈N(y),w − v〉 ≤ 0. The Euclidean distance
between the two points on the boundary of M is ‖x − y‖ ≤ ‖x − x2‖ + ‖x2 − y‖ ≤
1
2 t
√

n + 1
2 t
√

n. The angle between the outward normals at the two points is at most

2 arcsin
‖x − y‖/2

1/curv(∂M)
≤ 2 arcsin

1
2 t
√

n
4tn

≤ 2 arcsin 1
8
√

n
. (35)

Using arcsin x ≤ 2x, we conclude that the angle is at most 1/
√

4n. According to
Lemma 2 (i), this is the threshold below which the normal snaps to an orthogo-
nal direction. Hence, 〈Dn(N(x)),w − v〉 = 0, as desired. This contradicts that Lx

intersects the symmetric difference in more than one component.

7 Convergence for Solid Bodies

In this section, we prove that the digital algorithm implementing the modified first
intrinsic volume is multigrid convergent for solid bodies. We begin with a proof
thatM andMt have the same homotopy type.

Graded thickening. The goal is to shrink the fibers, but there is an obstacle,
which we address first: some fibers are parallel and arbitrarily close to faces ofMt

so shrinking leads to discontinuities. We therefore modifyMt without changing its
homotopy type. Since Mt is closed, it is safe to thicken by a small amount, and to
avoid faces parallel to fibers, we do this in a graded manner. Let d± : Mt → R be the
signed distance function fromM, mapping a point y to d±(y) = ±minx∈∂M ‖x − y‖,
in which the sign is positive outside and negative inside M. Writing c = 1

2 t
√

n for
the half-length of a cube diagonal, we get |d±(x)| ≤ c for all y ∈ ∂Mt. To translate
the signed distance into the grading, we choose a sufficiently small δ > 0 and define
R(r) = − δc r + 3δ, making sure that δ < c so that the slope is negative, with absolute
value smaller than 1. The function is designed so that 2δ ≤ R(d±(y)) ≤ 4δ for all
y ∈ ∂Mt, which is easy to check. To construct the graded thickening ofMt, we first
thicken by R(d±(y)) and second shrink by δ:

Mδ
t = Rn \


Rn \

⋃
x∈Mt

[x + R(d±(x)) · Bn]

 + δ · Bn

 . (36)

Because the slope of R is between −1 and 0, the thickening of interior points has
no effect. It follows thatMt is thickened by an amount between 2δ and 4δ, so that
shrinking by δ leaves a positive amount of thickening all around. After shrinking,
the surface is without corners and creases, which is useful in forming a correspon-
dence betweenMδ

t andMt. The following properties will be important.

Lemma 9 (Graded Thickening Lemma) Let δ > 0 be sufficiently small. Then
Mt and Mδ

t have the same homotopy type, and every distorted normal segment of
∂M intersects ∂Mδ

t in a single point.
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Proof. Note that Mt ⊆ M
δ
t . Because the normal directions at points of ∂Mδ

t are
well defined, every point z ∈ ∂Mδ

t is the closest boundary point of a unique point
y ∈ ∂Mt. It is however possible that y ∈ ∂Mt has more than one closest point on
∂Mδ

t . We call the line segment from z to y a fiber, noting that the thus constructed
fibers partition Mδ

t \ Mt. Let g : Mδ
t → Mt be defined by mapping every point

on a fiber to its endpoint on ∂Mt, and mapping every point of Mt to itself. It is
continuous and homotopic to the identity onMδ

t . This proves thatMt andMδ
t have

the same homotopy type.
To prove the second claim, we note that already for ∂Mt, the intersections with

distorted normal segments are connected, namely points and intervals. The inter-
vals arise because the distorted normal segments tend to align with the directions of
the faces of Mt. The graded thickening makes sure that such a segment intersects
∂Mδ

t in a single point, and since we can make δ > 0 arbitrarily small, we can avoid
unwanted side-effects.

The first property in the lemma certifiesMδ
t as a feasible substitute forMt. The

second property motivates us to define

Fδ
x = Lx ∩ [(M \Mδ

t ) ∪ (Mδ
t \M)] (37)

for every x ∈ ∂M. Similar to the Fx, the Fδ
x partition the symmetric difference –

this time between M and Mδ
t – and every Fδ

x is either empty or a connected line
segment. In addition, the Fδ

x define a homeomorphism between ∂M and ∂Mδ
t . This

property is new and will be instrumental in what we will do next.

Homotopy equivalence. Using the new fibers, it is easy to establish that M and
Mδ

t have the same homotopy type. To explain this, we direct each fiber from outside
to inside, and we distinguish between the fibers that partitionM \Mδ

t and the fibers
that partition Mδ

t \ M. We introduce f : M → Mδ
t by mapping every point in

M \ Mδ
t to the inner endpoint of the fiber that contains it, while mapping every

point in M ∩Mδ
t to itself. Symmetrically, we introduce h : Mδ

t → M. Both maps
are continuous, and it is not difficult to see that h ◦ f is homotopic to the identity
onM, and that f ◦ h is homotopic to the identity onMδ

t . Indeed, we can retract the
fibers in the two collections to create the two homotopies. This implies M ' Mδ

t ,
and withMδ

t ' Mt from the Graded Thickening Lemma we conclude thatM ' Mt.
While this is not the final goal of our investigations, we state it as one of our main
results.

Theorem 3 (Homotopy Equivalence Theorem) LetM be a solid body inRn, whose
boundary is a smoothly embedded (n − 1)-manifold in Rn with 1/curv(∂M) ≥ 4tn
and reach(∂M) ≥ 2t

√
n. ThenM andMt have the same homotopy type.

Interleaved filtrations. For the final step of the proof of convergence, we com-
pare filtrations of sublevel and superlevel sets of height functions on M, Mt, Mδ

t .

25



For each direction u ∈ Sn−1, we let fu : M → R, gu : Mt → R, hu : Mδ
t → R be

the height functions in this direction, and fixing u, we write Fr = H( f −1
u (−∞, r]),

Gr = H(g−1
u (−∞, r]) for the homology groups and Fr = H(M, f −1

u [r,∞)), Gr =

H(M, g−1
u [r,∞)) for the relative homology groups. We collect the vector spaces in

two towers, which we write one above the other:

F : 0 = F−∞ → . . .→ Fr → . . .→ F∞ = F∞ → . . .→ Fr → . . .→ F−∞ = 0,
(38)

G : 0 = G−∞ → . . .→ Gr → . . .→ G∞ = G∞ → . . .→ Gr → . . .→ G−∞ = 0.
(39)

To relate the towers, it would be convenient to establish inclusions between the
sub- and superlevel sets, but they do not necessarily exist. The next best thing are
continuous maps between the bodies that restrict to continuous maps between the
sublevel and superlevel sets, and we have such maps f : M → Mδ

t , g : Mδ
t → Mt,

h : Mδ
t → M as introduced above. Before we continue, we note that the three maps

move points along fibers of limited length. In particular the fibers for f , g, h have
lengths at most c, 3δ

√
n, c + δ. Setting c′ = c + 3δ

√
n and c′′ = c + δ and restricting

these functions to sublevel sets, we get

f −1
u (−∞, r]

f
→ h−1

u (−∞, r + c]
g
→ g−1

u (−∞, r + c′], (40)

g−1
u (−∞, r] ↪→ h−1

u (−∞, r]
h
→ f −1

u (−∞, r + c′′]. (41)

Noting that c′′ ≤ c′, this gives linear maps from Fr to Gr+c′ and from Gr to Fr+c′ .
Similarly we have maps from Fr to Gr+c′ and from Gr to Fr+c′ . In other words,
F and G are (r + c′)-interleaved. The Stability Theorem of persistent homology
implies the existence of a bijection β : Dgm(F )→ Dgm(G) with ‖A − β(A)‖∞ ≤ c′

for all A ∈ Dgm(F ). Each non-trivial pair in Dgm(G) corresponds to either a
trivial or a non-trivial pair in Dgm(F ). The number of pairs with persistence larger
than 2c′ in Dgm(G) is therefore bounded from above by the number of non-trivial
pairs in Dgm(F ), which is at most C. All other pairs have persistence at most
2c′. Choosing ε = 2c′, the modified χ-moment ignores their contributions, which
implies

|X(F ) − X(G, 2c′)| ≤ 2c′C. (42)

To get an upper bound on the difference between the intrinsic volumes, we still need
to integrate over all L ∈ Ln

n−1 and multiply with cn−1,n =
nbn

bn−1b1
; see (15) and (16).

To state the final result, we choose δ > 0 arbitrarily small so that c′ = c + 3δ
√

n is
arbitrarily close to 1

2 t
√

n.

Theorem 4 (Convergence Theorem for Solid Bodies) Let M be a solid body in
Rn, with 1/curv(∂M) ≥ 4tn, reach(∂M) ≥ 2t

√
n, and C an upper bound on the

number of positive persistence birth-death pairs of any height function. Then the
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absolute difference between the first intrinsic volume of M and the modified first
intrinsic volume ofMt is

|V1(M) − V1(Mt, t
√

n)| ≤ cn−1,nt
√

nC. (43)

The difference vanishes as t goes to 0, which implies limt→0 V1(Mt, t
√

n) = V1(M).

8 Discussion

We conclude our paper by explaining how the modified first intrinsic volume can
be implemented, and by collecting open questions for future research. Before that,
we put things into perspective by noting that our methods are not limited to digital
approximations, which are considered mainly for their elementary description and
relevance in applications.

Computation. As already mentioned in the introduction, it is possible to imple-
ment our algorithms. In this paragraph, we sketch the computation of the first
intrinsic volume of a solid bodyM in Rn using a quasi-Monte Carlo method. First,
we discretize the integral in (16) by sampling m uniformly distributed points on
the unit sphere, Sn−1, which we interpret as the normal directions of (n − 1)-planes
Li ∈ L

n
n−1. Second, we compute the modified χ-moments, X(Fi, t

√
n), of the height

functions of the resolution t digital approximations ofM in these directions. Third,
we approximate by averaging the m modified χ-moments. This approximation
converges to V1(Mt, t

√
n), which in turn converges to the unmodified first intrinsic

volume as we let t go to zero:

1
m

m∑
i=1

X(Fi, t
√

n)
m→∞
−→ V1(Mt, t

√
n)

t→0
−→ V1(M). (44)

In n = 3 dimensions, we can combine the Convergence Theorem for Solid Bodies
with the convergence results for sampling directions in [9] to give bounds on the
approximation error that only depend on the grid resolution, the complexity of the
body, and the number of directions.

Open questions. The results in this paper open up a connection between the
classic area of intrinsic volumes and the more recent area of persistent homology.
There is much to be explored in terms of possible cross-fertilization. We mention
two concrete questions that aim at generalizing or strengthening the results of this
paper. Let M be a solid body in Rn, εt a suitably chosen decreasing function that
vanishes in the limit, and n − k > 1.

(1) Prove or disprove the convergence of Vmot
n−k (Mt, εt) to Vn−k(M), as t goes to

zero.
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The first interesting case is the area measure for n = 3 and n − k = 2. In practical
applications, the resolution to which ideal shapes can be approximated is limited.

(2) Extend the convergence results of this paper to stability results that hold for
approximations at a fixed resolution.

To achieve stability, it will be necessary to replace the cutoff rule used in the def-
inition of modified intrinsic volume in this paper by a softer transition, such as a
standard ramp function, for example.
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