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Abstract

Voronoi diagrams and Delaunay triangulations have been extensively used to represent and
compute geometric features of point configurations. We introduce a generalization to poset
diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and
their duals as special cases. Extending a result of Aurenhammer from 1990, we show how
to construct poset diagrams as weighted Voronoi diagrams of average balls.
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1 Introduction

The work in this paper is motivated by research into the physical organization of
DNA in the Eukaryotic cell nucleus. DNA is compartmentalized into segments
of roughly the same length, each rolling up into a shape resembling a round ball
that deforms if pushed against each other[4]. Modeling the deformation of the
balls seems out of reach, which motivates us to consider arrangements of balls
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with overlap. Looking for an optimal arrangement we needed to compute volumes
covered by multiple balls, which caused us to look at order-k and degree-k Voronoi
diagrams.
Prior work and results. As documented by Aurenhammer [2], Voronoi diagrams
have found applications in diverse areas of science. This includes biology, where
they assist in the study of proteins in atomic resolution [12] as well as cell cultures
on much coarser level of organization [3]. Returning to atomic resolution, Voronoi
diagrams have been used to derive inclusion-exclusion formulas for the volume of
a union of balls; see Kratky [9] in physics and Naiman and Wynn [10] in statistics.
In a companion paper [6], we have recently extended these formulas to the space
of points covered by at least k of the balls using order-k Voronoi diagrams [13,7,8]
or, alternatively, degree-k Voronoi diagrams [5, page 207].

In this paper, we define cotransitive posets and use them to introduce a family
of Euclidean Voronoi diagrams that includes the order-k and degree-k diagrams
as special cases. A second contribution is the construction of the diagrams in this
family from weighted averages of the given points or balls. This construction is a
generalization of a result of Aurenhammer [1], who constructs an order-k Voronoi
diagram from the k-fold averages of the given points.

2 Poset Diagrams

This section introduces a common generalization of order-k and degree-k Voronoi
diagrams. We begin by recalling the definitions of these diagrams, which we give
for weighted points or balls.
Voronoi diagrams. Let B(x, r) be the closed ball with center x ∈ R

n and radius
r ≥ 0. Writing Bi = B(xi, ri), we let B = {B1, B2, . . . , Bm} be a finite set of
balls in R

n. The weighted distance from Bi is defined by the function πi : R
n → R

that maps a point x to πi(x) = ‖x− xi‖2 − r2i . For example, if ri = 0, then πi(x)
is the squared Euclidean distance from the center of Bi. Let now Q be a subset of
B. Its Voronoi domain consists of all points that satisfy πi(x) ≤ πj(x) whenever
Bi ∈ Q and Bj ∈ B \Q. For an integer 1 ≤ k ≤ m, the order-k Voronoi diagram
of B is the collection of Voronoi domains of all subsets of k balls in B [13,7,8].
Note that k = 1 gives the ordinary Voronoi diagram. We can further subdivide
the Voronoi domain of Q depending on which of its balls maximizes the weighted
distance. If we do this for all domains in the order-k diagram, we get the degree-k
Voronoi diagram studied for example in [5, Exercise 13.27]. It decomposes Rn into
regions within which the same ball realizes the k-smallest weighted distance.
Cotransitive posets. We further generalize the notion of Voronoi diagram using
posets. Let U = {u1, u2, . . . , um} be a finite set of nodes and recall that a partial
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order on U is a set of pairs P ⊆ U × U that is reflexive, antisymmetric, and
transitive. We write ui ≤ uj whenever (ui, uj) ∈ P and ui < uj if ui ≤ uj and
ui �= uj . Nodes ui and uj are comparable if ui ≤ uj or uj ≤ ui. Otherwise, they
are incomparable, which we denote as ui �∼ uj . A chain of P is a subset of U in
which any two nodes are comparable, and a cochain is a subset of U in which any
two nodes are incomparable. We say P is cotransitive if ui �∼ uj and uj �∼ uk

implies ui �∼ uk.
If two cochains in a cotransitive partial order have a non-empty intersection,

then their union is also a cochain. It follows that the maximal cochains partition U .
It is therefore possible to order the maximal cochains as

U = C1 
 C2 
 . . . 
 Cs, (1)

such that P =
⋃

i<j Ci×Cj . Indeed, the existence of such a partition characterizes
cotransitive partial orders.
Domains and diagrams. Let B be a set of m balls in R

n and P ⊆ U × U a
cotransitive poset of m nodes, as before. The P -domain of a permutation γ : [m]→
[m] is the set of points x ∈ R

n such that the weighted distances of x from the balls
is consistent with the partial order:

P (γ) = {x ∈ R
n | ui ≤ uj ⇒ πγ(i)(x) ≤ πγ(j)(x)}. (2)

The poset diagram of B and P , denoted as Pos(B, P ), is the set of P -domains. This
diagram shares the fundamental properties with the Voronoi diagram of the balls.

Lemma 2.1 (Structure Lemma) Let B be a set of m balls in R
n and P a cotran-

sitive partial order on m nodes.

(i) The P -domain of a permutation γ : [m] → [m] is either empty or a closed
convex polyhedron.

(ii) The P -domains for two different permutations have pairwise disjoint interi-
ors.

(iii) Every point x ∈ R
n belongs to the P -domain of at least one permutation.

Proof. (i) is clear from the definition since every inequality of the form πγ(i)(x) ≤
πγ(j)(x) defines a closed half-space.

(ii) holds because P is transitive as well as cotransitive, which implies that
two different permutations either define the same set of inequalities, or at least one
inequality is reversed. In the latter case, the two domains lie on different sides of
the corresponding bisector.

(iii) follows from the fact that every ordering of the m balls is consistent with
the partial order for at least one permutation. �
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Examples. Fix an integer 1 ≤ k ≤ m and consider the following cotransitive
partial orders on m nodes:

PA = {ui ≤ uj | 1 ≤ i ≤ k < j ≤ m}; (3)
PB = {ui ≤ uk ≤ uj | 1 ≤ i ≤ k ≤ j ≤ m}; (4)

We note that Pos(B, PA) is the order-k Voronoi diagram, and Pos(B, PB) is the
degree-k Voronoi diagram. Referring to the decomposition into maximal cochains
in (1), we can describe the poset diagram in general as follows. Letting ki be
the cardinality of the i-th cochain, the diagram decomposes R

n into the order-k1
Voronoi domains of the m balls, it refines each domain into the order-k2 Voronoi
domains of the remaining m − k1 balls, and repeats until refining the domain into
the order-ki−1 Voronoi domains of the remaining ki−1 + ki balls.

3 Average Balls

In this section, we construct the poset diagrams by taking averages of the balls in
B. We begin with the introduction of a vector space structure of the set of all balls,
including those with negative squared radii.
Vector space of balls. We follow Pedoe [11, Chapter IV], who introduced the
vector space to study the geometry of circles in the plane or spheres in higher-
dimensions. In particular, we represent the ball B(x, r) by the point b(x, r) =
(x, ‖x‖2 − r2) in R

n+1. To have a bijection between the set of balls in R
n and

the set of points in R
n+1, we let r2 range over all real numbers or, equivalently,

we let r range over all non-negative real numbers and all positive multiples of the
imaginary unit, a set we denote as

√
R. Borrowing the vector space structure of

R
n+1, we have a vector space of balls in which addition and multiplication with

scalars make sense. More formally, if B1, B2 are two balls with corresponding
points b1, b2, and λ1, λ2 are real numbers, then B0 = λ1B1 + λ2B2 is defined such
that the corresponding point satisfies b0 = λ1b1 + λ2b2 in R

n+1. From the centers
x1, x2 and squared radii r21, r

2
2 of B1, B2, we can compute B0:

x0 = λ1x1 + λ2x2, (5)

r20 = ‖x0‖2− λ1

(‖x1‖2− r21
)− λ2

(‖x2‖2− r22
)
. (6)

Assuming λ1+λ2 = 1, we plug the expressions of the center and the squared radius
into the formula for the weighted distance of a point x ∈ R

n from B0 and get

π0(x) = λ1π1(x) + λ2π2(x). (7)
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Affine combinations. This is an interesting conclusion worth generalizing. We re-
call that a linear combination is a ball B0 =

∑k
i=1 λiBi. It is an affine combination

if
∑

i λi = 1, and it is a convex combination if, in addition, 0 ≤ λi for all i. For
affine combinations, the weighted distance satisfies a relation that generalizes (7):

Lemma 3.1 (Weighted Distance Lemma) Let B0 =
∑k

i=1 λiBi with
∑k

i=1 λi =

1. Then π0(x) =
∑k

i=1 λiπi(x), for every point x ∈ R
n.

Proof. For k = 2, the claimed relation is the same as (7). For k > 2, we decompose
the affine combination into two affine combinations of fewer than k balls each:

B′0 =
1

λ2+...+λk
(λ2B2 + . . .+ λkBk) , (8)

B0 = λ1B1 + (λ2 + . . .+ λk)B
′
0. (9)

Inductively, we get the claimed relation for the distance from B′0, and combining it
with (7), we get the claimed relation for the weighted distance from B0. �

Weighted averages. As proved in [1], the order-k Voronoi diagram of a finite set
of points is the ordinary Voronoi diagram of the k-fold averages. We generalize this
result, showing that every poset diagram is an ordinary Voronoi diagram, of course
of a different set of balls. To construct this set, we say a function λ : [m] → R

is anti-parallel to a cotransitive partial order if
∑

λ(i) = 1 and λ(i) > λ(j) iff
ui < uj . Hence, λ is constant on the nodes in a cochain, and using the ordered
partition into maximal cochains (1), there are values λ1 > λ2 > . . . > λs, such that
λ(i) = λp iff ui ∈ Cp. Given B and P , the weighted average ball of a permutation
γ : [m]→ [m] is

Aγ =
m∑

i=1

λ(i)Bγ(i), (10)

and we write A = A(B, P ) for the set of all such weighted averages.
Main result. Importantly, the poset diagram of B and P is equal to the ordinary

Voronoi diagram of A.

Theorem 3.2 (Poset Diagram Theorem) Let B be a finite set of balls in R
n, let P

be a cotransitive partial order on the same number of nodes, and setA = A(B, P ).
Then Pos(B, P ) = Vor(A).
Proof. Fixing a permutation γ, we prove that a point x belongs to the P -domain
of γ iff x belongs to the Voronoi domain of Aγ . To see P (γ) ⊆ V (Aγ), we recall
that the weighted distance of x from B0 = Aγ satisfies π0(x) =

∑m
i=1 λ(i)πγ(i)(x)

by Lemma 3.1. Assuming x ∈ P (γ), we have πγ(i)(x) ≤ πγ(j)(x) as well as
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λ(i) > λ(j) whenever ui < uj . It follows that the weighted distance to any other
weighted average ball is larger. Indeed, this other weighted distance is obtained by
switching some of the λ(i). We thus go away from the global minimum, which we
get by sorting the πγ(i)(x) and the λ(i) in anti-parallel fashion.

Since both the P -domains and the Voronoi domains are interior-disjoint closed
convex polyhedra that cover Rn, we have P (γ) = V (Aγ) for every γ. Indeed, if
P (γ) were a strict subset of V (Aγ), then there would be points in the interior of the
Voronoi domain that are not covered by any P -domain. �

References

[1] F. Aurenhammer. A new duality result concerning Voronoi diagrams. Discrete Comput. Geom.
5 (1990), 243–254.

[2] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure. ACM
Comput. Surveys 23 (1991), 345–405.

[3] M. Bock, A.K. Tyagi, J.U. Kreft, and W. Alt. Generalized Voronoi tessellation as a model of
two-dimensional cell tissue dynamics. Bull. Math. Biol 72 (2010), 1696–1731.

[4] J.R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J.S. Liu and B. Ren. Topological
domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485

(2012), 376–380.

[5] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg,
Germany, 1987.

[6] H. Edelsbrunner and M. Iglesias-Ham. Multiple covers with balls I: inclusion-exclusion.
CGTA, to appear in special issue in memory of Ferran Hurtado.
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