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Abstract

Aiming at the automatic diagnosis of tumors using narrow
band imaging (NBI) magnifying endoscopy (ME) images of
the stomach, we combine methods from image processing,
topology, geometry, and machine learning to classify pat-
terns into three classes: oval, tubular and irregular. Training
the algorithm on a small number of images of each type, we
achieve a high rate of correct classifications. The analysis
of the learning algorithm reveals that a handful of geometric
and topological features are responsible for the overwhelm-
ing majority of decisions.
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1 Introduction

We study magnifying endoscopy (ME) images applied to the
diagnosis of diseases in the gastrointestinal tract. The ME
technology permits the detailed visualization of the mucosal
micro-surface pattern and the vascular architecture to be ob-
tained. For enhanced contrast between vessels and back-
ground mucosal surface, we use the narrow band imaging
(NBI) system that became available during the last ten years.
In combination, ME and NBI make it possible to find and to
differentiate suspicious cancerous lesions in the stomach at
an early stage during the procedure.

From patterns to diagnoses. For the diagnosis of tumors
with NBI-ME, the VS-classification of K. Yao et al. is widely
accepted. It is based on the observed microvascular archi-
tecture (‘V’ for vascular) and microsurface structure (‘S’ for
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surface). Both patterns are evaluated independently. Accord-
ing to this classification, there are two types of microvascular
patterns:

e regular, with clearly defined and uniform geometric
shape and position of the vessels;

e irregular, with non-uniform geometric shape and posi-
tion of vessels.

The first type is typical for the non-neoplastic surface struc-
ture of the stomach without malignant changes. For the early
stomach cancer, T. Nakayoshi et al. define two basic types of
irregular microvascular pattern:

e fine network pattern, with a large number of microves-
sels connected in the form of a fine network;

o corkscrew pattern, with vessels of twisted shape that do
not join to form a network.

As shown in Table 1, we refine the classification of reg-
ular and irregular microvascular patterns by distinguishing
between open and closed loops. In the irregular case, the
open loops are characteristic of corkscrew patterns, while the
closed loops correspond to fine network patterns.

Vessels
Regular Trregular
Surface Closed Open Closed Open
LGD - 0%
Oval HGD - 0%
AC- 0%
LGD - 8.9%
Regular Tubular HGD - 9.8%
AC- 0%
LGD - 0%
Villous HGD - 0%
AC-0%
LGD - 30% LGD - 28.8% LGD - 0%
Irregular HGD - 0% HGD - 42.9% HGD - 57.2%
AC - 30% AC - 28.8% AC - 42.9%
LGD - 0% LGD - 0%
Absent HGD - 10.3% HGD - 8.3%
AC-89.7% AC-91.7%

Table 1: Classification of the medical cases, each represented by a
small set of endoscopy images. We write LGD for low-grade dys-
plasia, HGD for high-grade dysplasia, and AC for adenocarcinoma,
with associated probabilities estimated from a small sample of pa-
tients at the Yaroslavl Region Cancer Hospital.

The microstructure of the stomach surface consists of gas-
tic pits and sulci. There are several key components in



the microanatomy of the epithelial surface: crypt opening,
marginal epithelium, intravenous part. The surface structure
of the normal stomach mucosa consists of rounded and oval
pits, which histologically correspond to gastric glands. In the
NBI vessels become dark. As a result, we can see the specific
pattern of the gastric mucosa as bright areas surrounded by a
dark rims; see Figure 1. The types of microsurface structure
we observe are:

o regular, with marginal epithelium that has uniform ge-
ometric shape and size;

o irregular, with marginal epithelium that has non-
uniform geometric shape and size,

but it is also possible that the microsurface pattern is absent.
The combination of microsurface and microvascular patterns
defines the probability of one of three types of cancer risk:
low-grade dysplasia, high-grade dysplasia, and adenocar-
cinoma. In our work, we focus on three combinations of
patterns:

ovaL: oval surface structure combined with regular closed
microvessels;

TUBULAR: tube-like surface structure combined with regular
open microvessels;

IRREGULAR: without any microsurface structure combined
with irregular microvessels.

The first type is indicative of a no risk, second type of a low
risk and the third of a high risk for cancer. While the three
categories cover only four of the shaded fields in Table 1, this
limitation is forced on us by a shortage of image data. With
time the database will grow to cover the remaining fields.
The methods given in this paper can then be used to solve
the correspondingly larger classification problem.

Prior work and results. The medical aspects of our work
are discussed in [15], where the structure of images from
different parts of the stomach obtained by the NBI tech-
nique and relevant types of tumors are described, and in [13],
where the irregular pattern of colon mucosa for various can-
cer stages are explained.

On the computational side, the use of image processing
and machine learning techniques to analyze images is wide-
spread, but the use of computational topology methods in
the analysis is novel. The use of Bayes’ Rule to predict the
histological structure of mucosa based on endoscopic image
analysis predates our paper; see [10]. Even the use of geo-
metric properties, such as the area and perimeter of vessels
to diagnose colorectal oncological tumors predates our work;
see [18]. Closest to our work is that of Hifner’s group in
Austria; see [5, 6, 10, 11] and additional publications explor-
ing variations of the same theme. The main differences to
our work are (1) that they look at endoscopy images of the
colon, which in medical practice are easier to classify than

images of the stomach, (2) that they distinguish between two
to five classes — compared to three classes in this paper — but
in contrast to our data, each of their images represents one
uniformly classified surface piece, and (3) that they do not
use topological features, with are essential to the success of
our classification efforts.

In summary, the main innovative aspect of our work is the
use of topological features derived from the persistent ho-
mology of the images. These are essential to achieve our best
result of about 89% correct classification, which is obtained
using a selection of three geometric and two topological fea-
tures.

Outline. Section 2 explains the methods used in our ap-
proach, discussing the necessary background from image
processing in Section 2.1, from computational topology in
Section 2.2, from geometry in Section 2.3, and from ma-
chine learning in Section 2.4. Section 3 presents the results
obtained with our approach, discussing the data and test set-
ting in Section 3.1, the selection of features in Section 3.2,
and the success rate of our classification algorithm in Section
3.3. Section 4 concludes this paper.

2 Methods

The input data consists of images represented in one of sev-
eral well known raster formats, including BMP, Jpeg, and
PNG. Each image is a 2-dimensional array of pixels. Ev-
ery pixel holds the quantified value of color in RGB color
space, i.e. a vector of three components [R, G, B] correspond-
ing to the red, green, and blue colors respectively. Each
component is an integer in the interval [0,255]. Except for
specular reflection recognition, we use gray values of pix-
els calculated from RGB color using the well known for-
mula [16] and scaled to [0, 1] in all image processing proce-
dures. Assuming that the input image is w pixels wide and
h pixels high, we consider the grayscale image as the func-
tion b: M — [0, 1], where M is the rectangle covered by
the pixels, and b maps the pixel with center (x,y) in M to
the grayscale value b(x,y). Bright areas receive large val-
ues (close to 1), while dark areas correspond to small values
(close to 0).

2.1 Image Processing

We use image processing methods to prepare the image for
later analysis. Because of the condition under which en-
doscopy images are taken, such preparations are indispens-
able. They include the exclusion of areas with specular re-
flections, and the equalization of image brightness.

Specular reflection. This phenomenon is caused by lo-
cal over-exposure to light, which leads to white areas with
blurred boundaries. Within these areas, it is not possible to



recognize any pattern information. This is the reason we se-
lect areas with specular reflections and remove them from
the downstream analysis.

To do so, we convert each source image from RGB to the
HSB color model, where the three letters stand for hue, sat-
uration, and brightness. Write (x, y) for a point of the image
and (h, s, b) for the triplet of hue, saturation, and brightness
values at the point. We can recognize specular reflections by
checking whether s < sy and b > by, for suitable constants
so and by; see [17]. We use 5o = 0.2 and by = 0.9 in this pa-
per. We assume that all three components of the HSB color
representation are scaled to the interval [0, 1].

Brightness equalization. Sometimes this operation is re-
ferred to as background modeling. Its goal is to locally mod-
ify the image to achieve a uniform brightness level over the
entire area, while maintaining the local patterns in the image.
We illustrate the effect of the operation in Figure 1.

To achieve the desired equalization, we apply a median
filter within a window around each point several times. Let
W.(x,y) be the square window of (2r + 1)2 pixels centered at
(x,y). The result of the median filter applied to the image,
b: M — [0, 1], is another image, M,.b: M — [0, 1] defined
by mapping (x,y) to the median of the values of f at the
points inside W,(x,y). Similarly, we introduce the iterated
median filter, M¥, obtained by k times iterating M,. To get
the final result, we replace the original image by

f=b-Mb+(Mb), (1)

where r and k are the parameters of the equalization, and
<M’;b> is the average brightness of the image M*b. We use
r = 8 and k = 5 in this paper.

Localization. A single image may show different patterns
at different places. It is therefore necessary to apply the anal-
ysis locally. We achieve this by covering the image with
square windows of radius r, noting that the value of r here is
significant larger than used to equalize brightness. Specifi-
cally, we use r = 70 throughout this paper for windows. We
choose the centers of the windows randomly, subsampling a
random set of points to avoid tight clusters which would lead
to redundant windows. To explain the subsampling proce-
dure, let M be a set of points (pixels) chosen uniformly at
random from M. We compute a subset N C M as follows:

1. Pick a random point py from M, set M = M \ {po},
N ={po},andi=1.

2. Repeat the following step until the desired number of
windows is reached: let p; be a point in M that maxi-
mizes the distance to the nearest point in N, set M =
M\{p}, N=NU{p;},andi=i+1.

This heuristic is sometimes referred to as the greedy algo-
rithm for the k-center clustering problem [7, Section 4.2]. It
is frequently used in subsampling large datasets.

2.2 Topological Analysis

The core of the analysis is based on geometric and topolog-
ical concepts. We discuss the topological approach using
homology and persistent homology in this subsection. We
refer to [12] for general background in algebraic topology
including homology, and to [1] for general background in
computational topology including persistent homology.

Global binarization. We recall that f: M — [0, 1] is our
image, which is decomposed into small picture elements,
called pixels, arranged in a square grid. Given a thresh-
old s € [0, 1], the sublevel set consists of all pixels with
flx,y) < 5. We write My = f‘l[O, s] for this set. Equiva-
lently, we may think of this operation as a global binariza-
tion of the image:

_J 0 if fx,y) < s,
fs(x’Y) - { 1 lff(x,y) > s, (2)

with My = £71(0). We call M the background and its com-
plement, M — My, the foreground of the binarized image. The
general philosophy of persistent homology is to study the en-
tire family of globally binarized images as a single object. In
particular, we analyze how the connectivity evolves as we
gradually increase the threshold s. We measure connectivity
by counting the components with Sy = By(M;), called the
0-th Betti number, and counting the holes with 8, = 5; (M),
called the 1-st Betti number of the sublevel set. Formally,
these numbers are the ranks of the O-th and 1-st homology
groups.

A subtle but important aspect in counting components
and holes is the notion of local neighborhood. We follow
the convention that the background be topologically closed
and the foreground be topologically open. The choice of
neighborhood is important because four pixels can meet non-
generically at a shared corner. If two diagonally opposite
pixels belong to the background and the other two belong to
the foreground, then this convention implies a locally con-
nected background and a locally disconnected foreground.
To implement this convention, we form a 2-dimensional sim-
plicial complex in which the pixels are the vertices. Each
(interior) pixel is connected to a number of neighbors that is
between 4 and 8. In particular, we draw exactly one of the
two possible diagonal edges, namely the one that does not
touch the pixel with largest function value among the four.
After drawing the edges, we fill in the triangles to complete
the simplicial complex, which we refer to as the adaptive
triangulation of the image. The detailed analysis and topo-
logical justification of this construction in two and higher
dimensions can be found in [2].

Persistent homology. By increasing the threshold, we
generate a time-series of globally binarized images. In this
series, we see background components appear, grow, and
merge, and we see holes in the background pinch off, shrink,



Figure 1: The microsurface pattern is regular and oval, the microvascular pattern is regular with closed loops. The grayscale image before
brightness equalization on the left and after the brightness equalization on the right.

and disappear. Persistent homology quantifies these occur-
rences by considering the sequence of growing sublevel sets,
which we call a filtration. Using the algebraic concept of ho-
mology, we map each sublevel set to two vector spaces. The
first is the 0-th homology group, denoted as Hy(Mj), which
is generated by the components, and the second is the 1-st
homology group, denoted as H; (M), which is generated by
the loops of the sublevel set. Both groups are vector spaces
because we compute homology with field coefficients. In ad-
dition, we get linear maps between the vector spaces that are
induced by the inclusions between the sublevel sets. Sim-
plifying notation by writing H,,; = H,(My,), we get two se-
quences of vector spaces connected by linear maps:

..oH,; 1 >H,;>...>H,; 1 >H,; > ...,

for p = 0,1, where s;_; < s; < sj-; < s; are thresholds
with different sublevel sets, and s;_, s; as well as s;_, 5; are
contiguous thresholds. Now suppose that ¢ is a component
or loop in M, that does not already exist in M, ,. Formally,
@ € Hp; but ¢ is not in the image of the linear map from
H, ;1 to H,;. We say that such a ¢ is born at s;. After being
born, it lives as long as it does not belong to the image of
the linear map from H),;_; to the current homology group.
Finally, there is an index j such that ¢ mapped to H,, ;_; does
not belong to the image of H,;_; in H, ;_;, but ¢ mapped to
H, ; belongs to the image of H,;_; in H, ;. In this case, we
say that ¢ dies entering s;. Furthermore, we call s; — s; the
persistence of ¢.

It may be helpful to rephrase these definitions in more
elementary terms separately for components and for holes.
For p = 0, the homology groups track components. Let-
ting ¢ € Hp; be a components of the background at s;, it is
born at s; if all its pixels belong to the foreground at s;_;.
It dies entering s; if this is the first time when ¢ merges
with a component that was born before ¢. For p = 1, the
homology groups track loops or, equivalently, holes in the

background. A loop is born when it first closes around a
hole, and it dies when this hole fills up. Here is an ambi-
guity in the language because we do not specify on which
side of the loop the hole is located. It is sometimes helpful
to consider what this means for the sequence of foregrounds,
which forms a filtration running time backward. A hole in
the background is a component in the foreground. The hole
is born when the component dies and the hole dies when the
component is born. This dual view will be useful shortly be-
cause it allows us to compute the persistence of components
and of holes with the same algorithm applied twice.

Persistence diagrams and moments. The result of the
persistence analysis is a collection of birth-death pairs,
namely one pair for each component and one pair for each
hole. It is common to visualize this information as a set of
intervals, the so-called barcode of f, or as a set of points in
the plane, the persistence diagram of f. We prefer the latter,
drawing persistence = death - birth vertically, and death +
birth horizontally; see Figure 2. We write Dgm,,(f) for the
p-th persistence diagram, which contains all points marking
the births and deaths of components, if p = 0, and of holes,
if p = 1. More useful than the individual points or the di-
agrams are summaries of the information. Writing pers(A)
for the persistence of the component or hole represented by
a point A, the g-th norm of the p-th diagram is

1

q
N, = Z pers(A)?| . 3)
AeDgm,(f)

For example, No(Dgm,,(f)) counts the points in the p-th dia-
gram. If we restrict the count to the points whose persistence
intervals cover a value, s, then we get the p-th Betti number
of M. While the zeroth norm is sensitive to small fluctua-
tions, higher order norms are less sensitive and stability can
be proved for some class of functions [1, Chapter VIII].



Death - Birth

Death + Birth

Figure 2: The superposition of two persistence diagrams, one for
the components, and the other for the holes.

The norms are sometimes called moments of the persis-
tence diagrams, but we reserve this term for the quantitative
description of distributions common in statistics. Consider
the histogram over the birth + death axis of the p-th persis-
tence diagram. Similar to a bell curve, the resulting distri-
bution tends to first increase and then decrease, with a single
hump in the middle. Letting n be the total number of points
and x; = b; + d; the horizontal coordinate of the i-th point,
these central moments are

mp; = 1 Z)Cl', (4)

YR )

my =
= ©)
my = %Z(%)Zl, @)

where we write u = m; for the mean or 1-st moment, and
0% = my for the variance or 2-nd central moment. The nor-
malized 3-rd central moment, ms, is also known as the skew-
ness, and the normalized 4-th central moment, my, is known

as the kurtosis of the distribution.

List of topological features. Through numerous exper-
imental tests, we have converged to using the following
twenty-two topological features for image classification:
maximum Betti numbers over all sublevel sets; three norms
of the 0-th and three norms of the 1-st persistence diagram of
the images; mean, variance, skewness, and kurtosis of a his-
togram of the distribution obtained from these two diagrams.
In the underlying list of topological features we write Hgm
for the histogram. We apply the persistence algorithm to the
image, but also to derived functions. Given a threshold, s, we
consider the signed distance function, d;: M — R, defined

by mapping a point of the foreground to the Euclidean dis-
tance from the background, and a point of the background to
minus the Euclidean distance from the foreground. Given a
sublevel set, the signed distance function can be computed in
time m log m using the fast distance transform algorithm[3].
In our work we use the threshold s,,,,, at which the 1-st Betti
number attains its maximum. Then we compute signed dis-
tance function for the sublevel set defined for s,,,, and obtain
three norms of the O-th and three norms of the 1-st persis-
tence diagram of this sublevel set. To simplify the notation,
we write W = W(x, y) for the square window centered at the
point (x,y) € M and f|y for the function restricted to that
window. The complete list of topological features used in
this paper is therefore:

f1(x,y) = max; Bo(M; N W); 3
K(x,y) = Ni(Dgmy(flw)); 9
13(x,y) = No(Dgmy(flw)); (10
t4(x,y) = N3(Dgmy(flw)); (11)
t5(x,y) = max; 81 (M; N W); (12)
t6(x,y) = Ni(Dgm,; (flw)); (13)
17(x,y) = Nao(Dgm, (fw)); (14)
t3(x,y) = N3(Dgm, (flw)); (15)
t9(x,y) = m;(Hgm(Dgmy(flw))); (16)
fo(x, y) = my(Hgm(Dgmy(f1w))); (17)
i1 (x, y) = my(Hgm(Dgmy(flw))); (13)
fi2(x, y) = ma(Hgm(Dgmy(flw))); (19)
hi3(x, y) = my(Hgm(Dgm, (flw))); (20)
f1a(x, y) = my(Hgm(Dgm, (fw))); (21)
fi5(x, y) = my(Hgm(Dgm, (fw))); (22)
hie(x, y) = ma(Hgm(Dgm, (flw))); (23)
t17(x,y) = N1(Dgmy(d;,,.Iw)); (24)
nis(x,y) = N2(Dgmy (s, lw)); (25)
fho(x,y) = N3(Dgmy(ds,,. lw)); (26)
ho(x,y) = Ni(Dgm, (dy,,.|w)); (27)
11(x,y) = No(Dgm, (dy,,.Iw)); (28)
12(x,y) = N3(Dgm, (s, |w))- (29)

Fast algorithm. The general approach to computing per-
sistence extends the classic matrix reduction algorithm for
computing homology; see [1] and [12]. For 2-dimensional
images, there are shortcuts we can take that improve the
worst-case running time from m? to mlog m, where m is the
number of simplices in the filtration. For a 2-dimensional
image, the number of simplices in the adaptive triangulation
is a small constant times the number of pixels in the image.
To explain how the computations are done, we assume that
ay, @y, ...,q, is the sequence of simplices sorted by maxi-
mum function value of the vertices. In other words, if i < j,
then the maximum function value of the vertices of ; is less
than or equal to the maximum function value of the vertices



of ;. In case of a tie, we list simplices with smaller dimen-
sion first. Note that this implies that K; = {@, @2, ..., a;} is
a complex, for each 1 < j < m. Indeed, if @ belongs to K,
then the faces of a are listed before o and therefore belong
to K; as well. To compute the O-th and 1-st Betti numbers
of the K, we process the list of simplices from beginning to
end:

Bo=p1=0;
for j=1tomdo
if a;is a vertex then By = Bp + 1
elseif ¢ is an edge then
if endpoints are connected then 8| = §; + 1

elsefy =06y —1
endif
elseif ¢ is a triangle then 8 = §; — 1
endif
endfor.

The values of By and B; right after the j-th iteration of the
for-loop are the Betti numbers of K;. The only non-trivial
step in the algorithm is to decide whether the endpoints of
the edge «; belong to the same component or they belong to
different components of K;_;. Maintaining a union-find data
structure for the components, this step takes only slightly
more than constant time; see e.g. [19, Chapter 2].

It is now straightforward to extend the algorithm so it
keeps track of the births and deaths of components. Re-
call that a component dies whenever it merges with another,
older component. The older component lives on. By stor-
ing the birth values at the root of the corresponding tree in
the union-find data structure, we get the persistence inter-
vals in negligible extra time. Using the same algorithm, we
get the persistence intervals for the holes by processing the
sequence of simplices backwards. Indeed, we can think of
each triangle as a dual vertex, of each edge as a dual edge,
and of each vertex as a dual triangle. Writing oz; for the
dual of a;, we get a dual filtration consisting of complexes
K = {a’fﬂ,...,a;_l,al’;}. The components of K; corre-
spond to the holes of K7, and the holes of K; correspond to
the components of K ;‘ Of course, for this to be strictly cor-
rect, we need to compactify M to a sphere, which we do by
adding a 2-dimensional cell that represents the outside.

2.3 Geometric Analysis

To have a comparison, we also implement the analysis for a
set of geometric features, as we now explain. It should be
mentioned, however, that it is impossible to draw a line that
separates geometry from topology. We call the new set of
features geometric because the emphasis shifts from connec-
tivity to length and area.

Simple features. First, the image is turned into a binary
image through local comparisons. We write 8¥ for the oper-
ator that produces this binary image, where r and k have the

same meaning as in the definition of the median filter, M’; .
Applied to an image, f, it produces a binary image,

1 if fx,y) = MEf(x,y),

0 if feny) < Mifey).  C0

B];f(x,)’) = {

Since there are important dark objects (vessels) as well as
important bright objects (elements of surface patterns) in our
source images, we use the binarization operator twice, once
to the source image and another time to its inverted copy:

b = B, 31)
by = Bi(1 - f), (32)

but for different values of the parameters r and k to com-
pensate for the difference in scale of dark and bright objects.
Specifically, weuse r = 4andk = 3for fandr =4andk =5
for —f. All subsequent processing steps are applied to both
binary images independently, and all calculated features are
added to the resulting feature vector. We therefore simplify
the notation by dropping the index and write F; = bl.‘l(l) for
the foreground and B; = bi"(O) for the background of the
i-th locally binarized image, where i is either 1 or 2. Note
that F; and FF, denote surface pattern and vascular pattern
respectively. Besides the foreground and background, we
also use the boundary, OF, which consists of all pixels in the
foreground that share at least one edge with a pixel in the
background. According to this definition, the boundary has
non-zero area, but we will refer to its measure as the length.
The features are now defined locally, using translates of a
small square window, W = W,(0, 0), centered at the origin.
As always, we use r = 70 for windows in this paper. Writ-
ing W(x,y) = W + (x,y) for a translation with center (x,y),
we define the density of the foreground and of its boundary
at a point, and the average brightness of the foreground, its
boundary, and the background at a point:

g1(x,y) = area(F N W(x,y))/area(W), 33)
g2(x,y) = length(dF N W(x, y))/area(W), (34)
23(x,y) = D eaw(ry) » (35)
84(x,¥) = (bYarrw(xy) » (36)
gs(x,y) = <b>]BmW(x,y) > (37

where (b)y is the average b(x,y) over all points (x,y) € X.
We remark that we simplified the description of the above
five features by ignoring boundary effects near the sides of
the image. These are handled by clipping the window to
within the image before we compute the average.

Component features. To prepare the next set of features,
we compute the connected components of F, which we de-
note as cy, ¢p, etc. For every c;, we compute its area, the
length of its boundary, the radius (defined as the maximum
distance of a point from the center of mass), the compact-



ness, and the elongation:

Ys(ci) = area(c;), (38)
y7(ci) = length(dc;), (39)
ys(ci) = max e 1%, y) = (xi, yi)ll, (40)
yo(c;) = length(dc;)? /area(c;), (41)
yio(ci) = (A + B /(A - B'?), 42)

where (x;,y;) is the center of mass of ¢;. The last measure —
the elongation of a component — computes the aspect ratio of
the ellipse that has the same moments. In particular, we set

A=(x-x)+ (-7,
2
B = (((r=x) = (0 =3)%)) = 4(x = ) = 3))?
and compute y;o(c;) using (42); see [14, Chapter 3]. For ev-
ery measure of the components, we introduce a related fea-

ture by averaging over all components that have a non-empty
intersection with the window:

8k(x,y) = V(€ einwixy)z0 » 43)

for k = 6,7,8,9,10. In summary, we thus have twenty fea-
tures for each sampled point, namely ten each for the two
locally binarized images. All features are real numbers.

2.4 Machine Learning

The main method we use to learn is the boosting algorithm,
which constructs a strong classifier as a weighted combina-
tion of weak classifiers.

Boosting. The general problem of learning a concept con-
siders a collection of examples, z;, each labeled +1, where +1
means that z; is an example of the concept, and —1 means that
z; is not an example of the concept. We call this collection
the training set, which is used to fine-tune parameters of the
classifier to be used to predict the classification of examples
from a test set. A weak classifier is an algorithm that is only
slightly positively correlated with the correct classification,
while a strong classifier is one that is arbitrarily well cor-
related with the correct classification. The idea of boosting
goes back to a question raised by Michael Kearns, namely
whether it is possible to create a strong classifier from a set
of weak classifiers, to which Robert Schapire gave an affir-
mative answer [4].

In many applications of boosting, including the one in this
paper, we start with a collection of simple weak classifiers.
Writing n for the number of collected features, we note that
each object may be interpreted as a point in R". A stump
weak classifier discriminates along a single coordinate sim-
ply by deciding whether or not that coordinate of the object
is smaller than or larger than some threshold:

1 ifa<s,

+1 ifa, > s, (44)

o=

where q; is either +1 or —1 times the k-th coordinate of z,
and s is the threshold selected for the stump weak classifier.

Adaboost. Adaboost is an early, and perhaps the most im-
portant version of boosting [4]. To explain how it works, we
assume that the training set consists of m objects, each a pair
(zi,vi), with z; € R" and v; € {—1,+1}. We assign to each
object the same initial weight, w;(z;) = % forl <i<m. To
learn the training set, we fix a number of iterations, 7', and
we perform the following two steps forr = 1,2,...,T:

1. We train the weak classifier, i,: R” — {—1, +1}. More
precisely, we determine the coordinate, k, the sign +
or —1, and the threshold, s, such that the corresponding
stump weak classifier given in (44) minimizes the error,
which we define as

&=73|1- Z wi(zi) - vi - hi(2) |- (45)

i=1

Assuming the weights are non-negative and add up to
1, the error is a real number in [0, 1], namely the proba-
bility that &, gives the wrong classification.

2. Setting 6, = 2=, we compute the weight of the weak

classifier and we update the weights of the objects in the
training set:

w = %log 1, (46)
W1 (zi) = wilzp) - 5;,-4h,(z,v)/2/zt’ (47)

where Z, is chosen to normalize the weights such that
2iwe(z) = 1.

The constructed weak classifier is at least as good as its nega-
tion, which implies € € [0, %]. If ¢ = 0, then we can stop
because we have found a perfect classifier. If ¢ = %, then
we can also stop because there is no hope for improving the
result. To see this, we note that in the first step, we optimize
over both signs and all values of k and s, which implies that
all stump classifiers have a success rate of only 50%. This
can happen for very special configurations of points, such as
checker-board arrangements with alternating signs.

Since & € [0, 4], we have 6, € [0, 1]. It follows that in
each iteration, the weights of incorrectly classified objects
increase and the weights of correctly classified objects de-
crease. The change is more pronounced for small error and
negligible for error close to one half. Finally, we construct
the strong classifier as a weighted combination of the weak
classifiers:

T
H1(2) = sign (Z wzhr(z)) : (48)
=1

In practice, we construct strong classifiers also for integers
smaller than 7', and we choose a number of iterations such
that increasing this number does not lead to a significant im-
provement of the strong classifier.



Importance of features. Since we use heterogeneous ge-
ometric and topological features, it is useful to assess the
contribution of every feature to the final classification. For
the k-th feature, this is the sum, over the weak classifiers that
discriminate along the k-th coordinate, of the average differ-
ence this weak classifier makes to the updated strong clas-
sifier. Writing k, for the coordinate chosen during the #-th
iteration of the algorithm, we can formally define the impor-
tance of the k-th feature as

Imp(k) = § 3" 1= > wi@) - Hiea() - Hiz)|. (49)

m
K=k i=1
Here we assume that Hy(z;) = 0. We use the insight into the
classification offered by the importance measure to lower the
dimension. Observe that the subset of £ > 2 most important
features is not necessarily the subset of size ¢ that performs
best. Indeed, features may be redundant with overlapping
expertise.

To select the best subset of ¢ features is a hard problem,
which motivates us to use a heuristic knows as the greedy
forward selection algorithm. Starting with all our features
in the candidate set and an initially empty selected set, the
algorithm works in rounds, each time moving a feature from
the candidate to the selected set. In each round, the chosen
feature complements already selected features optimally in
the sense that it improves the classification the most. We
stop iterating when there are no features in the candidate set
that improve the classification.

Multi-class classification. We use a naive Bayesian ap-
proach to combine results of several binary Adaboost clas-
sifiers to select among a set K = {1,2...,L} of more than
two classes. Assume now that the objects in the training set
are pairs (z;, 4;), where z; € R" and u; € K. Fixing two dis-
joint but non-empty subsets P,R C K, we obtain a binary
classification problem for the pairs (z;, v;), where

V[Z{ -1 1fu,~€P, (50)

+1 ifu; €R.

Consider a suite of subset pairs (P/, R)), for j = 1,2,...,J.
The suite (P/, R’) is calculated using the following schemes:

ONE-VS-ONE!:

Vuuj € K, u; # u;: P={u;}, R ={u;}, and J = C};

ONE-VS-ALL!:

YVueK:P={u}, R=K\P, andJ = L.

We compute binary classifiers, H/, and use them to pro-
duce a multi-class classifier as follows. For an object, z;, we
use superscripts to write H(z;) = (H'(zi), H* (), ..., Hj(z,-))
for the vector of answers. The confidence that z; belongs to
class C; € K is then defined as the conditional probability

that an object with the same vector of classifications belongs
to Cy:

Conf(z;, Cy) = Problz € C, | H(z) = H(z)].  (51)

Finally, we report the class with maximum confidence as the
result of the classification. Recall the definition of condi-
tional probability: Prob[A | B] = Prob[A N B]/Prob[B], and
the related Bayes’ Rule:

Prob[A] - Prob[B | A]

Prob[A | B] = Prob[B] . (52)

Applying this to (51), we get Conf(z;, C¢) = Prob[z € C,] -
X(z:), with
Prob[H(z) = H(z) | z € C,]
X(z) =
@) Prob[H(z) = H(z)] (53)
~ li[ Prob[H/(z) = H/(z;) | z € C(]
L1 ProblHI(z) = Hi(z)]

(54)

where the second line is obtained under the assumption that
the binary classifiers are mutually independent. In this case,
the probability of agreeing vectors is the product of proba-
bilities of agreeing coordinates. All parts of this formula can
be estimated using the statistics of the training set.

2.5 Segmentation

Several types of tissue may be present in one endoscopic
image and it is necessary to select and classify all such ar-
eas into classes defined by specialists. There are many ap-
proaches widely used to solve segmentation problem. In this
work segmentation based on classification results is used,
when every pixel in the image is classified into one of the
classes. In order to speed up computations only specifically
selected points (keypoints) are classified, since considering
all points in the image is unpractical and would lead to time-
consuming computations.

To classify a keypoint we compute features in square win-
dow centered at this point. As a result, each keypoint is given
a class label. Thus the problem of segmentation consists in
expansion of classification results onto all pixels in the im-
age. This step is realized with the use of Voronoi diagram
built on top of the used collection of keypoints: all points
inside each Voronoi cell are given the class label which was
given to the keypoint that generated this cell.

To summarize, we consider the following steps of solving
the problem:

1. Selection of points (see Localization paragraph in sec-
tion 2.1);

2. Computation of features (section 2.2 and section 2.3);
3. Multi-class classification (section 2.4);

4. Segmentation.



3 Results

After introducing our data and the protocol for processing,
we discuss the selection of a small subset of most important
features, and we present the results obtained by running our
algorithm with this subset of selected features.

3.1 Data and Test Setting

Our database contains 90 endoscopy images divided into 25
images with round pits (oval mucosa), 31 images with oval
surface pattern and vessels inside pits (fubular surface pat-
terns), and 34 images without visible surface pattern (irregu-
lar patterns). As learning algorithms go, this is a very small
collection, and we have to make decisions accordingly.

Test protocol. To process the images, we first split im-
ages of each class into two: training and test images. In
situations in which the data set is small, it is undesirable
to separate training data from test data. In such cases, we
evaluate the training quality using cross-validation, which is
one of several available approaches to estimate how well the
model built on training data performs on unseen data. The
leave-one-out cross-validation (LOO-CV) method considers
all partitions of our 90 images into a training set of size 89
and a test set of size 1. There are 90 such partitions, and we
repeat the computations for each. The percentage of correct
classifications is of course the ratio of correct over the total
number of classifications. We also follow a second, boot-
strap test protocol. Here, we split the 90 images ten times
into a training set of 75 images and a test set of 15 images.
Each of these partitions is chosen to reflect a subjectively de-
fined similarity between the two sets, or the opposite namely
not to reflect that same similarity. The results give us in-
formation on performance differences with and without this
similarity. As before, we report the ratio of correct classifi-
cations over the total number of classifications.

Over-fitting. A common danger in construction of classi-
fiers is the over-fitting to the available training data. To avoid
it, we split windows in images of a training set into 90% of
training windows and 10% of control windows. All windows
within images of the test set are fest windows. The classifier
is constructed using the training windows, the construction is
monitored using the control windows, and the final classifier
is evaluated with the test windows.

To monitor the construction, we keep evaluating the evolv-
ing classifier on the control windows, while the test windows
have no part in the training. Specifically, we calculate two
types of errors of the classifier after each iteration: the per-
centage of misclassified training windows, and the percent-
age of misclassified control windows. Figure 3 shows the
typical case in which the error for the training windows goes
to zero, while the error on the control windows flattens out at
a positive value. It is quite possible that the second error not
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Figure 3: Graphs of the error for the training set and the control set.

only does not go to zero but even increases after some num-
ber of iterations — a sign of over-fitting. In any case, we stop
the iteration when this error flattens out or starts to increase.

3.2 Feature Selection

We have a rather small database but many features, each con-
tributing a coordinate to the high-dimensional vector of fea-
tures. We therefore aim at reducing the dimension of these
vectors, which means we look for the features that contribute
significantly to the classification and focus only on those.

Importance. Recall the definition of the importance of a
feature given in Section 2.4. For multi-class classification,
we use the adaboost algorithm three times: to separate oval
from tubular patterns, oval from irregular patterns, and tubu-
lar from irregular patterns. We therefore measure the impor-
tance three times, displaying the results in the first three his-
tograms of Figures 5 and 4, with the feature-wise maximum
displayed in the respective fourth histograms.

Importance
Import

Importance

Feature index Feature index

Figure 4: The importance of the geometric features in distinguish-
ing classes. From left to right and top to bottom: oval versus tubular,
oval versus irregular, tubular versus irregular, the maximum of the
three.



On the endoscopy image, bright areas correspond to the
elements of the surface pattern and dark areas correspond to
the microvascular pattern. The vector of geometric features
consists of ten features of the surface pattern structure (cal-
culated using image b;) and ten features of vascular pattern
(calculated using negative image b,). Note, that the elon-
gation (42) of surface pattern components is the most useful
feature when we separate oval and tubular classes or oval and
irregular classes. But when we separate tubular and irregular
classes, the area (38) of surface pattern components is used
in half of the cases.

1 1

0.75

: L
0.25
. o

ndex

Import

5 11 1
Feature ir

Feature index

Figure 5: The importance of the topological features in distinguish-
ing classes. From left to right and fop to bottom: oval versus tubular,
oval versus irregular, tubular versus irregular, the maximum of the
three.

Winning features. Using the greedy forward selection al-
gorithm explained in Section 2.4, we obtain a select set of
five most significant features: two topological and three geo-
metric. To explain the topological features, we mention that
we take two types of persistence diagrams: of the image as
a map from the pixel array to the range of gray values, and
of the signed distance function of the binary image obtained
by thresholding the image. The third feature in our selec-
tion uses the distribution obtained by integrating the persis-
tence diagram of the image along the persistence axis, while
the fifth feature uses the 0-dimensional persistence diagram
of the signed distance function obtained for the threshold at
which the 1-st Betti number of the binary image is a maxi-
mum. The five selected features are:

1. the compactness of the surface pattern, go; see (38) and
(43) applied to Fy,

2. the perimeter of the surface pattern, g,; see (34) and
(43) applied to Fy,

3. the kurtosis of the histogram of the O-th persistence di-
agram of the image, t,5; see (19),

4. the average of area of the components of the vascular
pattern, ge; see (38) and (43) but applied to F,,

5. the first norm of the O-th persistence diagram of the
signed distance function, #;7; see (24).
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In short, g9, g7,112, 816,17 have been selected in this se-
quence. By comparison, the five most important features are
g9, 12,117, 81, &7; see Figures 4 and 5. The two lists share only
three features, including the most important, which is se-
lected in the first round. The two least important selected fea-
tures, 1, and g6, have surprising low measure, which sug-
gests that they can distinguish some rare but difficult cases.
Note also that the most important topological feature, t,, has
not been selected. Its importance is based on distinguish-
ing oval from irregular patterns, where it is dominated by go.
This confirms that geometric and topological features differ
in emphasis while they retain similarities.

3.3 Final Classification

In Figure 6, we show two examples of images and the results
of our classification algorithm. The result are obtained using
the five selected features as explained above. The first image
has two different types of surface patterns, while the second
image has a oval pattern with physiological artefacts around.
These artefacts are the cause of the partial misclassification
we see in this example.

We present the percentages of correct classifications in
two histograms, the left one in Figure 7 for the LOO-CV pro-
tocol and right one for the bootstrap protocol. Each vertical
bar in the histograms represents an interval of percentages
(marked on the horizontal axis) and shows the fraction of
images with this percentage of correctly recognized neigh-
borhoods. As we can see, most images have between 90 and

100 100

9% of images
% of images

Figure 7: From left to right: the histograms of correctly classified
neighborhoods for the LOO-CV and the bootstrap protocols.

100 percent correctly recognized neighborhoods. The av-
erage of correctly recognized neighborhoods is 89 percent,
with a variance of 4.4 percent. The results obtained with the
bootstrap method are very similar; see the right histogram in
Figure 7. Moreover, the results with and without similarity
between the training and test sets are almost the same, and
we show the average rates from all tests. This implies that
our features give stable results on unseen data.

4 Discussion

In this paper, we present our classification results of NBI-
ME images of the stomach. Apart from using novel topolog-
ical features derived from the persistence diagrams of the im-
ages, we take a conventional approach using image process-



Figure 6: The colors blue, brown, green corresponds to the tubular pattern, irregular pattern, oval pattern, in this sequence. Top-right: the
correctly colored tubular and irregular patterns on the image to its left. Bottom-right: the correctly colored oval pattern and incorrectly colored

irregular pattern on the image to its left.

ing techniques to extract features and learning algorithms to
distill this information to an automatic classification. With
only a small database of images available, our algorithm is
able to make local classifications of imaged tissue with a
high success rate near 90%. To the best of our knowledge,
there are no similar results available elsewhere.

There are many directions for further research. On the
processing front, it is interesting to compare the effectivity of
our geometric-topological features with others, for example
the local binary patterns as used in [6]. On the technology
front, it is useful to study the applicability of our approach to
other input modalities, for example low-magnification video.
Finally, it is important to extend our results to other organs
of medical interest, such as the colon or the esophagus.
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A Notation

b, f: M - [0,1]
W, (x,y)

Mb: M — [0, 1]
Bf: M — [0,1]
by = B, f

by =B,(1- )
peENCM

M, = £7'[0, 5]
Bp(M)

¥

Hp,i = Hp(Ms;)
Dgm,,(f)

Nq
my,my, ms, myq
u= m1;0'2 =mp
Kj = {Cl’],...
Ki=1{a,,....
dg: M- R

Wi(x,y)
F,B

Ci

(X, y)
gk(x,y)
ve(F;)

(i, vi)s (zi> i)
stumpy, hy; Hr

€

wg; wi(z)
CreK;,PRCK
Imp(k)

Conf(z;, C¢)

IA AN
<= 3

—

—_ = e
ININ IN DN DA
IA
\]I/\

~

ey L

original; brightness equalized image
square window with radius r
median filter operator

local binarization operator

binary image for light features
binary image for dark features
points selected from M

sublevel set

p-th Betti number

homology class (component or hole)
p-th homology group of sublevel set
p-th persistence diagram

g-th norm of persistence diagram
moments of distribution

mean; variance

J-th complex in filtration

J-th dual complex in filtration
signed distance function

square window with center (x, y)
foreground, background
connected components

k-th topological feature

k-th geometric feature

k-th measure of j-th component

object/example in training set

stump weak classifier; strong classifier
error

weight of weak classifier; of object
family of classes, disjoint subsets
importance of k-th feature

confidence that z; is in Cy

index over objects

index over features/dimensions
index over partitions of K
index over classes in K

steps in adaboost

Table 2: Notation used in this paper.
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B To do or think about

e To make the two histograms in Figure 7 easier to com-
pare, it would be good to change the vertical scale to
percentage.

e The behavior of the greedy algorithm is interesting. We
may try variants (such as taking the maximum instead
of the average of the importance of a feature during dif-
ferent runs) to see whether some such variants give bet-
ter overall performance.



