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We introduce the Voronoi functional of a triangulation of a finite set of points in the Eu-
clidean plane and prove that among all geometric triangulations of the point set, the De-
launay triangulation maximizes the functional. This result neither extends to topological
triangulations in the plane nor to geometric triangulations in three and higher dimensions.

1. Introduction

The Voronoi diagram of points x1,x2, . . . ,xm in n-dimensional Euclidean
space decomposes Rn into m convex polyhedra, called Voronoi domains.
The domain of xi is the set of points x ∈ Rn for which xi minimizes the
Euclidean distance:

Vi = {x ∈ Rn | ‖x− xi‖ ≤ ‖x− xj‖, 1 ≤ j ≤ m}.(1)

For points in general position, the geometrically realized nerve (the straight-
line dual in R2) decomposes the convex hull of the points into simplices,
called the Delaunay triangulation. It is a particular geometric triangula-
tion of the points, namely a simplicial complex whose vertices are the given
points and whose underlying space is convex. Delaunay triangulations are
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used in numerous applications and often preferred over other geometric tri-
angulations. The question arises why the Delaunay triangulation is better
than others. In the plane, the advantage of the Delaunay triangulation is
sometimes rationalized by the max-min angle criterion [12]; it requires that
the diagonal of every convex quadrangle be chosen to maximize the mini-
mum of the six angles in the two triangles making up the quadrangle [6].
It follows that the Delaunay triangulation lexicographically maximizes the
non-decreasing sequence of angles.

Triangulations of the same finite collection of points in n≥3 dimensions
can have different length sequences of angles. Instead of comparing them
directly, we may consider a functional, which assigns a real number to ev-
ery triangulation. In this paper, we consider functionals that are defined for
n-simplices and we assign the sum of the values over all n-simplices to the
triangulation. Functionals that attain their extrema for the Delaunay tri-
angulation in the plane have been studied in [2,5,7,8,10,11] and generalized
from finite collections to (infinite) Delone sets in [3]. For example, the Ra-
jan functional is defined by mapping a triangle ∆ with edges of length a,b,c
to a2 + b2 + c2 times one twelfth the area of ∆. There is an intuitive geo-
metric interpretation obtained by lifting a point with coordinates ξ and η to
(ξ,η,ξ2+η2), which is a point on the standard paraboloid in R3. Similarly, we
lift ∆ to a triangle in space, namely the one spanned by the three lifted ver-
tices. The Rajan functional maps ∆ to the volume between the paraboloid
and the lifted triangle, of course restricted to the vertical prism over ∆.
The Rajan functional of a geometric triangulation is therefore the volume
between the paraboloid and the lifted triangulation. Since the Delaunay tri-
angulation corresponds to taking the convex hull of the lifted points [4], it
is easy to see that the Delaunay triangulation minimizes this functional.

The focus in this paper is a related concept, which we refer to as the
Voronoi functional ; see also [1]. For a triangle ∆ with acute angles, it is
the volume below the standard paraboloid and above the tangent planes
that touch the paraboloid in the lifted vertices of ∆, again restricted to the
vertical prism above ∆. The definition can be extended to triangles with
non-acute angles and to n-simplices, as we will explain in the body of this
paper. Our main results are a characterization of the Voronoi functional for
triangulations in R2 in terms of squared Euclidean distances to the given
points, and a proof that the Voronoi functional attains its maximum for
the Delaunay triangulation; see the Voronoi Decomposition and the Voronoi
Optimality Theorems in Section 3. While the Voronoi functional is defined
for topological triangulations of the given points, which allow for folding
along edges, the optimality of the Delaunay triangulation holds only within
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the smaller class of geometric triangulations. Similarly, we have a counterex-
ample to the optimality of the Delaunay triangulation among the geometric
triangulations of points in three and higher dimensions.

Outline. Section 2 defines the Voronoi functional for geometric and topo-
logical triangulations of points in R2. Section 3 introduces the circumcenter
map, which is instrumental for the interpretation of the Voronoi functional
as a volume in R3, and it proves our two main results. Section 4 gives
counterexamples to extending the optimality result. Section 5 concludes the
paper.

2. The Voronoi Functional

We introduce the Voronoi functional in three steps, beginning with the rel-
atively easy case of an acute triangle.

Acute case. Let A,B,C be the vertices of an acute triangle, ∆, in R2. For
a point x, we write N∆(x) for the vertex among the three that is nearest to
x, and we define

Vf(∆) =

∫
x∈∆
‖x−N∆(x)‖2 dx.(2)

To interpret Vf(∆) geometrically, we introduce the unit paraboloid as the
graph of $ : R2→R defined by $(x)=‖x‖2. For every point P ∈R2, we set
fP (x)=2〈x,P 〉−‖P‖2 and note that the graph of fP : R2→R is the tangent
plane that touches the paraboloid in the point P ′= (P,‖P‖2). The vertical
distance between the paraboloid and the plane above a point x∈R2 is

$(x)− fP (x) = ‖x‖2 − 2〈x, P 〉+ ‖P‖2 = ‖x− P‖2.(3)

Subdividing ∆ into regions of constant nearest vertex, we get three quad-
rangles. Integrating the squared distance to the vertex over each quadrangle,
and adding the results, we get Vf(∆) as the volume between the paraboloid
and the upper envelope of the three tangent planes; see Figure 1.

Before extending Vf(∆) to obtuse triangles, we develop an algebraic for-
mula in the acute case. We use the notation of Figure 1, assuming R2 is
spanned by the first two coordinate axes of R3, and 0=(0,0,0) is the com-
mon origin of R2 and R3. Without loss of generality, we may assume that
0 is the circumcenter of ∆. Let area(∆) be the area of the triangle, and
vol(∆) the volume of the triangular prism bounded from below by ∆ and
from above by the triangle whose vertices are A′,B′,C ′, liftings of A,B,C
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Figure 1. Lifting the vertices of an acute triangle, we are interested in the volume below
the paraboloid and above the three planes. To improve visibility, we draw 0′ above 0,

which is not technically correct.

to the paraboloid. Planes tangent to the paraboloid at A′ and B′ inter-
sect by a line equidistant from A and B. By C ′1 we denote the lifting of
C1, the midpoint of AB, to this line. Similarly we define A′1 and B′1. By 0′

we denote the common point of three tangent planes at A′,B′,C ′. Letting
R be the radius of the circumcircle, we have ‖A‖2 = ‖B‖2 = ‖C‖2 = R2,
and therefore vol(∆) =R2 area(∆). Writing QA =AC10B1, QB =BA10C1,
and QC =CB10A1 for the quadrangles subdividing the acute triangle, we let
vol(QA) be the volume of the quadrangular prism betweenQA and A′C ′10

′B′1,
and similar for QB and QC . Unlike suggested by Figure 1, the point 0′ is be-
low 0, so that a portion of each quadrangular prism is below the horizontal
coordinate plane. The notion of volume we use for the quadrangular prisms
is signed, which means that vol(QA) is the (unsigned) volume of the portion
above R2 minus the (unsigned) volume of the portion below R2. Writing
a=‖B−C‖, b=‖C−A‖, and c=‖A−B‖ for the lengths of the three edges,
we set

Rf(∆) = area(∆)
12 · (a2 + b2 + c2).(4)

This is known as the Rajan functional, which is the volume between the
paraboloid and the triangle A′B′C ′. It is now easy to express the Voronoi
functional by subtracting the Rajan functional and volumes of the three
quadrangular prisms from the volume of the triangular prism: Vf(∆) =
vol(∆)−Rf(∆)−vol(QA)−vol(QB)−vol(QC). After half a page of trigono-
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metric calculations, we get

Vf(∆) = area(∆)
12 (a2 + b2 + c2 − 4R2),(5)

which we note is equal to Rf(∆) minus one third of R2 area(∆); see Ap-
pendix B.

Obtuse case. To extend (5) to the case of an obtuse triangle, it is convenient
to further subdivide each quadrangle into two triangles by drawing the edges
connecting 0 to the three vertices. Recalling that B1 is the midpoint of the
edge from A to C, we set

µ(A0B1) =

∫
x∈A0B1

‖x−A‖2 dx,(6)

and similarly for the other five triangles in the subdivision. In the acute
case, we can rewrite (2) to get

(7)
Vf(∆) = µ(A0B1) + µ(AC10) + µ(B0C1)

+ µ(BA10) + µ(C0A1) + µ(CB10).

Let now ∆ be obtuse and use (5) to define the Voronoi functional of ∆.
Assuming the angle at C exceeds 90◦, we get

(8)
Vf(∆) = + µ(A0B1)− µ(AC10)− µ(B0C1)

+ µ(BA10) + µ(C0A1) + µ(CB10);

see Appendix B. This has a geometric interpretation, which we illustrate in
Figure 2. In particular, two of the six triangles subdividing ∆ have negative
orientation, namely AC10 and B0C1, and we record the volume of the cor-
responding triangular prisms with a minus sign. The reason for the negative
orientation is that 0 lies outside the triangle and, in the illustrated case, on
the opposite side of the edge from A to B.

Besides the fold-over interpretation of Vf(∆), we will use the interpre-
tation as the integral over a difference between two squared distances. Call
a vertex visible from x if the line segment connecting x to the vertex does
not intersect ∆ other than in this vertex. Writing NV∆(x) for the nearest
vertex of ∆ that is visible from x, we have

Vf(∆) =

∫
x∈R2

(
‖x−N∆(x)‖2 − ‖x−NV∆(x)‖2

)
dx.(9)

For points x inside ∆, NV∆(x) is not defined and we set ‖x−NV∆(x)‖2=0.
This way we get a formula that is correct both for acute and for obtuse
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Figure 2. Two of the six triangles in the subdivision of the triangle spanned by A,B,C
have negative orientation. In the blue shaded region, points contribute two terms to the

Voronoi functional, and in the dark blue region, these two terms do not cancel.

triangles. Indeed, in the acute case, we have N∆(x)=NV∆(x) for all points
x outside ∆, which implies that (9) agrees with (2). In the obtuse case, we
have N∆(x) 6= NV∆(x) for all points x in the dark shaded region shown
in Figure 2. In this case, Vf(∆) is not the volume between the paraboloid
and the three tangent planes restricted to the triangular prism, but rather
something smaller than this volume.

In the large. We extend the Voronoi functional by taking the sum over
all triangles of a triangulation. Specifically, letting K be a triangulation of
S⊆R2, we set

Vf(K) =
∑
∆∈K

Vf(∆).(10)

What do we mean by a triangulation of S? Most important is the Delaunay
triangulation, which consists of all triangles spanned by three points of S
such that no point of S is enclosed by the circumcircle of the triangle. As-
suming the points are in general position – by which we mean that no four
points lie on a common circle – the Delaunay triangulation is well defined
and unique.

A more general notion is a geometric triangulation, which is a simplicial
complex in R2 whose vertex set is S and whose underlying space is convS.
Clearly, the Delaunay triangulation is a geometric triangulation of S, and
in many ways, it is the most natural and most interesting geometric trian-
gulation of the point set.

More general yet is a topological triangulation, which is a simplicial com-
plex homeomorphic to a disk whose vertex set is S. In contrast to a geomet-
ric triangulation, the triangles of a topological triangulation may intersect
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as we think of them abstractly, worrying primarily about how they are con-
nected along shared edges and vertices. Every geometric triangulation is also
a topological triangulation but not the other way round. If no three points
of S are collinear, then every triangle of a topological triangulation maps
to a geometric triangle, whose orientation may be positive or negative. We
interpret (10) accordingly, namely that the sign of Vf(∆) is the same as that
of the orientation of the triangle.

3. Optimality

We give a complete description of the Voronoi functional for Delaunay trian-
gulations, and we prove that among the geometric triangulations of a finite
set in R2, the Delaunay triangulation maximizes the Voronoi functional.

The circumcenter map. Let K be a geometric triangulation of S⊆R2. The
barycenter of a simplex κ ∈ K is the point b(κ) ∈ R2 that is the average
of the vertices of κ. A flag is a sequence of simplices in K such that each
simplex is a proper face of its successor. The barycentric subdivision of K
is the simplicial complex, SdK, whose vertices are the barycenters of the
simplices in K and whose simplices correspond to flags in K; see Figure 3.
Every κ ∈ K has a unique smallest circle that passes through its vertices.

Figure 3. Left: the barycentric subdivision of a Delaunay triangulation with triangles
shaded in checkerboard style. Right: the image of the barycentric subdivision under the
circumcenter map. Four triangles flip over, and four other triangles are squeezed to line

segments.
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We call the center of this circle the circumcenter, c(κ), and its radius the
circumradius, r(κ), of the simplex. We introduce the circumcenter map and
the height map,

Γ : | SdK| → R2,(11)

H: | SdK| → R,(12)

each of which is the piecewise linear extension of a vertex map: the first such
that Γ (b(κ)) = c(κ), and the second such that H(b(κ)) = ‖c(κ)‖2− r(κ)2,
for every κ ∈ K. Here by |SdK| we mean the underlying space of SdK.
As illustrated in Figure 3, the circumcenter map distorts the barycentric
subdivision so it aligns with the Voronoi diagram, with the exception of
occasional fold-edges caused by obtuse triangles. The height map lifts the
image of the circumcenter map to R3. To see how it does it, let A ∈ S be
a vertex of K, and consider its star in SdK. A triangle, abc, in this star is
spanned by the barycenters a = b(A), b = b(AB), c = b(ABC), with AB
an edge, and ABC a triangle in K. The images under Γ are the point,
Γ (a) = a, the midpoint of the edge, Γ (b) = b, and the circumcenter of the
triangle, Γ (c) = c(ABC). The corresponding heights are H(a) = fA(Γ (a)),
H(b) = fA(Γ (b)), and H(c) = fA(Γ (c)). We see that the combined map,
(Γ,H), sends the entire star of A to the plane that is the graph of fA.
Similarly, the star of B is sent to the graph of fB, and the star of C is sent
to the graph of fC . The stars are glued along shared boundary pieces, which
must therefore lie in the common intersection of the planes. Indeed, we have
fA(Γ (b))=fB(Γ (b)) and fA(Γ (c))=fB(Γ (c))=fC(Γ (c)).

We use the two maps to recast the Voronoi functional as an integral.
Write det(δ) and det(Γ (δ)) for the signed areas of a triangle in SdK and of
its image under the circumcenter map. With this, we have

Vf(δ) =
det(Γ (δ))

det(δ)
·
∫
x∈δ

(
‖Γ (x)‖2 −H(x)

)
dx.(13)

The ratio in front of the integral captures the area distortion experienced
by δ, and it is negative iff Γ reverses the orientation of the triangle. Geo-
metrically, we interpret Vf(δ) as the signed volume between the paraboloid
and the lifted copy of Γ (δ). Finally, Vf(K) is the sum of the Vf(δ), over all
triangles δ∈SdK.

Inclusion-exclusion. In the case in which K=D is the Delaunay triangula-
tion of S⊆R2 and all angles are acute, Vf(D) has a very appealing geometric
interpretation as the volume of the body between the paraboloid and the up-
per envelope of the graphs of the fA, A∈S, restricted to within the vertical
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prism over the convex hull of S. This interpretation applies more generally,
namely, as long as the angles opposite to the convex hull edges are acute.

A
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d

A

B
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G

Figure 4. Images of two stars in the barycentric subdivision of the Delaunay
triangulation. An interior vertex on the left, and a boundary vertex with obtuse angles

opposite the incident boundary edges on the right.

To explain why this is so, we consider an interior vertex A; see Figure 4
on the left. Let ABC and ACD be two triangles and uv the corresponding
edge of the Voronoi polygon. Letting c be the midpoint of the shared edge,
AC, we have uc and cv as images under Γ of two edges in SdK. If the angles
at B and D inside the mentioned triangles are acute, then c lies in the
interior of the Voronoi edge, the triangles Auc and Acv both have the same
orientation as their preimages under Γ , and they decompose the triangle
Auv. To describe the other case, we consider the triangles ACD and ADE
with corresponding edge vw of the Voronoi polygon in Figure 4. If the angle
at E is obtuse, then the angle at C is necessarily acute, and the midpoint
d of AD does not lie on the Voronoi edge. Instead, d lies on the line of vw
so that Avd has the same orientation as its preimage under Γ , and Adw
has the opposite orientation. Subtracting the integral over Adw from the
integral over Avd, we get again the integral over Avw. Adding the signed
contributions of all triangles in the star, we get the integral over the Voronoi
polygon. In contrast to (13), we formulate the claim by integrating over all
points of the image of a triangle δ∈StA. We therefore replace the ratio of
the determinants by its sign:

1 (Interior Cancellation Lemma). Let A be an interior vertex in the
Delaunay triangulation of a finite set S⊆R2. Then∫

x∈VA
‖x−A‖2 dx =

∑
δ∈StA

sgn(Γ (δ))

∫
x∈Γ (δ)

‖x−A‖2 dx,
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where VA is the Voronoi polygon of A, and the sum is over all triangles δ in
the star of A inside the barycentric subdivision of the Delaunay triangula-
tion.

To generalize the lemma to boundary vertices, we may clip the neces-
sarily infinite Voronoi polygons to within the convex hull of S. With this
modification, the lemma holds provided the angles opposite to boundary
edges are acute. Indeed, the signed integrals over the triangles add up to
the integral over the cone from A to the finite edges of the Voronoi polygon
plus the finite pieces of the infinite edges that end at the midpoints of the
boundary edges GA and AB; see Figure 4 on the right. To summarize, we
let NS(x) be the point in S minimizing the distance to x, and write D for
the Delaunay triangulation of a finite set S ⊆R2. If all angles opposite to
edges of the convex hull of S are acute, then

Vf(D) =

∫
x∈convS

‖x−NS(x)‖2 dx.(14)

Difference of squared distances. To shed light on the general case, assume
that ABC is a triangle with boundary edge AB and obtuse angle at C; as
in Figures 2 and 4. The star of A inside SdD contains a linear sequence
of triangles. Removing the first triangle and the last, the signed areas add
up to the area of the cone of A over the finite edges of its Voronoi polygon.
Since the angle at C is obtuse, the cone extends outside the convex hull of S,
but that extension is covered by the negatively oriented first triangle in the
linear sequence. This triangle covers more, so we have a remaining negative
contribution, which is the integral over the region of points x outside convS
for which the nearest vertex in S is not the nearest visible vertex on the
boundary of convS; see Figure 4 on the right.

To write this more succinctly, we recall that N∆(x) and NV∆(x) denote
the nearest vertex and the nearest visible vertex of ∆ to x∈R2. Similarly,
NS(x) is the nearest point in S to x, and we write NVS(x) for the nearest
visible vertex of convS to x. For x∈ convS, NVS(x) is not defined and we
set ‖x−NVS(x)‖2=0 in this case.

2 (Voronoi Decomposition Theorem). Let D be the Delaunay trian-
gulation of a finite set S⊆R2. Then

Vf(D) =

∫
x∈R2

(
‖x−NS(x)‖2 − ‖x−NVS(x)‖2

)
dx.(15)

Proof. Write gD(x)=‖x−NS(x)‖2−‖x−NVS(x)‖2, and consider first the
case in which all angles opposite to convex hull edges are acute. By (14),
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Vf(D) is the integral, over all points of convS, of ‖x−NS(x)‖2. Since
NVS(x) of a point in the convex hull is not defined, this is the same as the
integral of gD(x), still only over the convex hull of S. For a point x 6∈convS,
we have NS(x) =NVS(x) by assumption on the angles. It follows that the
contribution to the integral outside the convex hull vanishes, which implies
the claimed equation in this special case.

To extend the equation to the general case, we note that next to each
convex hull edge but outside the convex hull, we get a region of points where
the contributions to the nearest visible vertices do not cancel; see Figure 4
on the right. Any two such regions are disjoint, and the net effect within
each region is the described difference between the squared distances to the
nearest point of S and the nearest visible vertex on the convex hull boundary.
The claimed equation follows.

Optimality of the Delaunay triangulation. We prove that the Delaunay tri-
angulation maximizes the Voronoi functional. More than that, we show that
the Delaunay triangulation maximizes the functional locally, at every point
of the plane. To explain this, define

g∆(x) = ‖x−N∆(x)‖2 − ‖x−NV∆(x)‖2,(16)

gK(x) =
∑

∆∈K
g∆(x),(17)

where the sum is over all triangles ∆ of a geometric triangulation K of S.
With this notation, we get Vf(K)=

∫
x∈R2 gK(x)dx from (9). For K=D, the

definition of gK(x) is consistent with the definition of gD(x) given earlier, as
follows from the proof of the Voronoi Decomposition Theorem.

3 (Voronoi Optimality Theorem). LetD be the Delaunay triangulation
and K a geometric triangulation of a finite set S⊆R2. Then Vf(K)≤Vf(D).

Proof. We prove optimality by showing gK(x)≤ gD(x) for all x ∈ R2. We
have gD(x) = ‖x−NS(x)‖2−‖x−NVS(x)‖2, so it suffices to show gK(x)≤
‖x−NS(x)‖2 −‖x−NVS(x)‖2. Consider first a point x ∈ convS. For the
triangle that contains x, we have g∆(x) = ‖x−N∆(x)‖2, which is positive.
For every other triangle, we have g∆(x)≤ 0. Let A0 =NS(x), and consider
the sequence of triangles ∆0,∆1, . . . ,∆k constructed as follows. If x lies inside
one of the triangles in the star of A0, then ∆0 is this triangle, and k = 0.
Otherwise, there is a triangle ∆0∈StA0 such that the line segment from A0

to x crosses one of its edges. Let A1 be the nearest visible vertex of ∆0, and
repeat the construction substituting A1 for A0 to get ∆1, and so on until
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∆k contains x or we formed a cycle. In the former case, the sum of squared
distances is

k∑
i=0

g∆i(x) ≤
k∑
i=0

‖x−Ai‖2 −
k−1∑
i=0

‖x−Ai+1‖2.(18)

The right hand side evaluates to ‖x−A0‖2=‖x−NS(x)‖2. The contribution
of the triangles not in this sequence is non-positive, which implies gK(x)≤
‖x−NS(x)‖2=gD(x). If in the latter case the cycle goes around the triangle
that contains x, then it must contain a vertex, A`, that is further from x
than the vertices of the containing triangle, and in particular further than
the closest vertex of that triangle, y. We stop the process at this vertex and
get

`−1∑
i=0

g∆i(x) ≤
`−1∑
i=0

‖x−Ai‖2 −
`−1∑
i=0

‖x−Ai+1‖2.(19)

This time, the right hand side evaluates to ‖x−A0‖2−‖x−A`‖2≤‖x−A0‖2−
‖x−y‖2. The triangle that contains x is the only one with a positive con-
tribution, which is ‖x−y‖2, so that we again get gK(x)≤‖x−NS(x)‖2, as
desired.

x

Ai 1¡

Ai Ai+1

Figure 5. Assuming a cycle that does not go around x, there is a vertex Ai such that
both neighboring vertices lie on the same side of the line passing through x and Ai.

We still need to show that if the vertices Ai form a cycle, then it goes
around the point x. To derive a contradiction, we assume the cycle does not
go around x, as in Figure 5. At each point y of the cycle, we let ϕ(y) be the
counterclockwise rotation angle between the vector y−x and the direction of
the cycle at y. For example, the angle at a point y moving from Ai−1 to Ai is
larger than π and growing as y approaches Ai. This is a multivalued function,
so we pick a branch by choosing its value at the starting point inside [0,2π)
and requiring that ϕ be continuous along any edge, with right-continuous
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jumps at the vertices. The jump is positive at a counterclockwise turn and
negative at a clockwise turn, never exceeding π in absolute value. Assuming
the cycle is oriented in a counterclockwise order, ϕ grows by 2π when we go
around once. Indeed, because x lies outside the cycle, the continuous changes
total to 0, and since the cycle is simple, the jumps total to 2π. Let Ai be
the vertex at which the jump changes ϕ from a value less than 2π to a value
at least 2π. As illustrated in Figure 5, the line passing through Ai−1 and
Ai separates x from Ai+1. But this implies that the edge connecting Ai−1
to Ai crosses the edge of the triangle ∆i opposite to Ai. This contradicts
that both edges belong to K and concludes the proof that the cycle must go
around x.

To extend the argument to points x outside the convex hull of S, we note
that gK(x) and gD(x) are both non-positive. Let R be the region of points
with gD(x)< 0 and note that it is bounded. We can therefore add vertices
and triangles on the outside, maintaining that we still have a Delaunay
triangulation, such that R is completely covered by the added triangles.
Adding the same triangles to K, we get two new triangulations, D′ and K′,
and we have gK′(x) ≤ gD′(x) for every x ∈ R using the above argument.
Since we add the same triangles to D and to K, we have gK′(x)− gK(x) =
gD′(x)− gD(x), which implies gK(x)≤ gD(x) also for the points x ∈R. For
the remaining points, x∈R2 \convS \R, we have gD(x)=0 by definition of
R, and gK(x)≤0 because x lies outside the underlying space of K. We thus
get gK(x)≤gD(x) for all points x∈R2, as claimed.

4. Non-optimality

In this section, we show that the optimality of the Delaunay triangulation
among all geometric triangulation of a finite point set in R2 does not gener-
alize if we extend the family to all topological triangulations. Furthermore,
we show that even without this extension, the optimality of the Delaunay
triangulation does not extend to three dimensions.

4.1. Topological Triangulations

Consider the triangulation in Figure 6 on the left. All triangles are acute,
which implies that this is the Delaunay triangulation, D, of the eight points.
We obtain a topological triangulation, K, of the same eight points by ex-
changing the positions of points B0 and C0, moving the edges and trian-
gles along to preserve all incidences; see Figure 6 on the right. The pen-
tagons ACDFE and ABDHG are covered only once by K, while ABDC
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is covered three times. We prove Vf(K) > Vf(D) by computing gK(x) =

A

B0

C0

D

E F

G H

A

B

C

D

E F

G H

Figure 6. Left : the Delaunay triangulation of the eight points. Right : a topological
triangulation of the same eight points obtained by exchanging the positions of points B0

and C0.

∑
∆∈K sgn(∆)g∆(x) for every point x ∈ R2. All triangles in K are acute,

which implies that the only non-zero terms come from triangles that con-
tain x. First consider x inside ACB, and note that the case x inside DBC is
symmetric. Here x is covered by ACB, which has negative orientation, and
by two triangles with positive orientation, namely one of ABE and BFE
and one of AGC and GHC. In every case, gK(x) is the sum of the squared
distances to the nearest vertices of these triangles: gK(x)=α(x)+β(x)−γ(x),
in which

α(x) ≥ min
{
‖x−NABE(x)‖2, ‖x−NBFE(x)‖2

}
,(20)

β(x) ≥ min
{
‖x−NAGC(x)‖2, ‖x−NGHC(x)‖2

}
,(21)

γ(x) = ‖x−NACB(x)‖2.(22)

We have α(x)≥‖x−NACB(x)‖2 because x is closer to C than to E and F .
Similarly, β(x)≥‖x−NACB(x)‖2. This implies

gK(x) ≥ ‖x−NACB(x)‖2 = gD(x),(23)

with strict inequality on a set of positive measure. Next consider x inside the
region ACDFE, and note that the case of x inside ABDHG is symmetric.
The region is covered only once, by triangles ABE, EBF , FBD, all of which
have positive orientation. Since all three triangles are acute, gK(x) is the
squared distance to the closest vertex of the pentagon ABDFE, while gD(x)
is the squared distance to the closest vertex of ACDFE. Point B is further
from all points within the pentagon than C, which again implies gK(x) ≥
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gD(x). All triangles are acute, so gK(x) = gD(x) = 0 outside AEFDHG. In
summary, gK(x)≥gD(x) for all points x∈R2, and the inequality is strict on
a set of positive measure. Hence,

Vf(K) =

∫
R2

gK(x) dx >

∫
R2

gD(x) dx = Vf(D),(24)

as claimed.

4.2. Beyond Two Dimensions

We may generalize the Voronoi functional to three and higher dimensions,
defining it as the sum, over all simplices in the barycentric subdivision, of
the integral of the signed squared distance:

Vf(K) =
∑

δ∈SdK
sgn(Γ (δ))

∫
x∈Γ (δ)

‖x−A‖2 dx,(25)

where A is the unique vertex of δ that is also a vertex of K. In 3 dimensions,
the circumcenter map moves two vertices of a tetrahedron in the barycentric
subdivision, possibly inverting a tetrahedron twice and thus returning it to
positive orientation. This explains why there may be triangulations for which
the Voronoi functional exceeds that of the Delaunay triangulation.

Double fold-over. We exhibit a tetrahedron for which there are points not
contained in the tetrahedron that have a positive contribution to the inte-
gral of the squared distance to the nearest vertex. In R2, a triangle with this
property does not exist. Figure 7 shows the tetrahedron, ABCD, together
with the center of the circumsphere, 0=c(ABCD). The faces ABD, CBD
are isosceles triangles with three acute angles each. In contrast, BAC, DAC
are isosceles triangles with obtuse angles at B and at D, and we show the
centers of their circumcircles: E = c(BAC) and F = c(DAC). The circum-
center map leaves the four vertices and the midpoints of the edges fixed, and
it moves the barycenters of the four triangles and of the tetrahedron to new
locations. As a consequence, some of the images of the 24 triangles in the
barycentric subdivision of the boundary of ABCD change their orientation
within their respective planes. Because of the obtuse angles at B and at D,
there are four inverted triangles, namely the ones that share the midpoint
of AC. The other 20 triangles preserve their orientation. The image of the
barycenter of the tetrahedron is 0, the planes of BAC and DAC separate
b(ABCD) from 0, while the planes of ABD and CBD do not separate the
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two points. Moving b(ABCD) to c(ABCD) thus preserves the orientation of
12 tetrahedra, namely those with triangles in ABD and CBD, and it inverts
the other 12 tetrahedra. Since 4 of the latter tetrahedra get inverted twice,
we have a total of 16 tetrahedra in the barycentric subdivision that pre-
serve their orientation, while 8 tetrahedra reverse their orientation. Just like
in R2, where we have regions outside an obtuse triangle whose points con-
tribute negatively to the Voronoi functional (see Figure 2), we have regions
outside ABCD whose points contribute positively to the Voronoi functional.
Specifically, there is such a point x near E inside the cone of 0 over the blue
triangle incident to E in Figure 7. We can choose this point x such that
‖x−B‖< ‖x−C‖< ‖x−A‖ and its contribution to the Voronoi functional
is ‖x−C‖2−‖x−B‖2, which is positive. The argument used to prove the
optimality of the Delaunay triangulation in R2 does therefore not apply.

Counterexample. Inspired by the construction in Figure 7, we use a numer-
ical method for estimating the Voronoi functional to find points in R3 for
which the Delaunay triangulation does not maximize the functional. Fig-

A

B

C

D

E

F0

Figure 7. A tetrahedron with partial barycentric subdivision and partial image under
the circumcenter map. Two of the triangles have obtuse face angles, which we highlight

by showing the containing planes and the centers of the circumcircles.
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ure 8 illustrates one such example. There are six points with coordinates

A= ( 7.99, 5.80, 1.65),
B = ( 9.86, 0.00, 1.65),
C = ( 7.80,−5.80, 1.65),
D= ( 7.89, 0.00, 6.14),
E = (−2.00,−0.01, 4.02),
X = ( 6.89, 0.00,−4.14),

whose convex hull is an octahedron. The Delaunay triangulation decomposes

A

BC

D

E

X

0

Figure 8. The six points are the vertices of a non-regular octahedron, which we
decompose into four tetrahedra in two ways.

the octahedron into the four tetrahedra sharing the edge BE. We compare
it with the triangulation K whose four tetrahedra share the edge AC. The
values of the Voronoi functional are

Vf(K) = 3432.96± 0.01,(26)

Vf(D) = 3413.75± 0.01,(27)

which shows that D does not maximize the functional.
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5. Discussion

As a by-product of the Voronoi Optimality Theorem proved in Section 3,
we have the optimality of the Delaunay triangulation for the functional that
takes the sum over all triangles of the squared circumradius times the area.
More generally, we define

Radα(K) =
∑
∆∈K

Rα∆ area(∆),(28)

where R∆ is the circumradius of ∆. Indeed, Rad2(K)=3Rf(K)−3Vf(K) by
(5), so we conclude that Rad2 attains its minimum at the Delaunay trian-
gulation. Similarly, we can prove that Rad1 attains its minimum at the De-
launay triangulation. Writing p(ABC)=‖A−B‖·‖B−C‖·‖C−A‖, we have
4area(∆) =p(∆)/R∆ and therefore Rad1(K) = 1

4

∑
∆∈K p(∆). When we flip

an edge to turn a geometric triangulation into the Delaunay triangulation,
the sum of p(∆) cannot increase, which implies the Delaunay triangulation
is optimal. It would be interesting to prove optimality for all α≥1.

It might be interesting to generalize the Voronoi functional to points
with weights; see e.g. [4]. The inclusion-exclusion argument presented in
Section 3 extends to the weighted case, but is it true that the generalized
Voronoi functional is maximized by the Delaunay triangulation for weighted
points in R2?
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A. Optimality by Flipping

As an alternative to the proof in Section 3, we can show the optimality of
Delaunay triangulations for the Voronoi functional via flips. More precisely,
it suffices to prove that the Voronoi Optimality Theorem holds for any con-
vex quadrangle. Since the Delaunay triangulation may be derived from any
triangulation through a sequence of flips, this will imply that the theorem
is true for all finite sets S⊆R2.

4 (Voronoi Optimality Theorem for Flips). Let D and K be the De-
launay and the non-Delaunay triangulations of four points in convex position
in R2. Then gK(x)≤gD(x) for all x∈R2.

Proof. Let a,b,c,d∈R2 be the four points in convex position, x∈R2, and
assume ‖x−a‖≤‖x−b‖≤‖x−c‖≤‖x−d‖. Then

[A] the edge ab belongs to the Delaunay triangulation, because there is a
circle (centered at x) such that a,b are on or inside, and c,d are on or
outside the circle,

[B] the points c and d do not lie inside the triangle abx, else they would be
closer to x than a or b.

[A] implies that if ab is a diagonal of the quadrangle, then D consists of the
triangles abc,abd. The remainder of the proof is a case analysis, which we
illustrate in Figure 9.

Case I: x is inside the quadrangle; see Figure 9, 1st row.
Case I.1: ab is a side of the quadrangle. Then gD(x) = gK(x) because

the values of the two triangles are either ‖x−a‖2 and 0, or ‖x−b‖2
and ‖x−a‖2−‖x−b‖2.

Case I.2: ab is a diagonal. Using [A], we get gD(x)=‖x−a‖2, which is
greater than or equal to gK(x)=‖x−a‖2+‖x−b‖2−‖x−c‖2.

Case II: x lies outside the quadrangle, and only two vertices of the quad-
rangle are visible from x.
Case II.1: ab is a side; see Figure 9, 2nd row. We have four subcases

and gD(x)=gK(x) in each.
Case II.1.a: Both a and b are visible from x. Then g∆(x)=0 for all

four triangles.
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x

x b ax
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x

b a

x a

b

Figure 9. The cases considered by the flip algorithm. From top to bottom: Case I, Case
II.1, Case II.2, Case III.1, Case III.2. We draw the diagonal whenever we know that it

belongs to the Delaunay triangulation.

Case II.1.b: a is visible and b is invisible. Then g∆(x)=0 for all four
triangles.

Case II.1.c: b is visible and a is invisible. In both triangulations, the
values of the two triangles are 0 and ‖x−a‖2−‖x−b‖2.

Case II.1.d: Both a and b are invisible. For one triangulation the
values of the two triangles are ‖x−a‖2−‖x−b‖2 and ‖x−b‖2−
‖x−c‖2, while for the other triangulation the values are ‖x−a‖2−
‖x−c‖2 and 0.

Case II.2: ab is a diagonal; see Figure 9, 3rd row. We have two subcases
and gD(x)=gK(x)−‖x−b‖2+‖x−c‖2 in each. By [A] we know which
triangulation is Delaunay.
Case II.2.a: a is visible and b is invisible. Then gD(x) = 0 and

gK(x)=‖x−b‖2−‖x−c‖2.
Case II.2.b: b is visible and a is invisible. Then gD(x) = ‖x−a‖2−
‖x−b‖2 and gK(x)=‖x−a‖2−‖x−c‖2.

Case III: x lies outside the quadrangle, and three vertices of the quadrangle
are visible from x.
Case III.1: ab is a side; see Figure 9, 4th row. We have three subcases

and gD(x)=gK(x) in each.
Case III.1.a: a is invisible. By [B] there is only one choice of b for

which the line through x and a separates b from c,d. Both tri-
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angulations contain one triangle with value 0 and the other with
‖x−a‖2−‖x−b‖2.

Case III.1.b: b is invisible. Again, there is only one choice of a, and
g∆(x)=0 for all four triangles.

case III.1.c a and b are both visible. Then g∆(x) = 0 for all four
triangles.

Case III.2: ab is a diagonal; see Figure 9, 5th row. We have two subcases
and gD(x)=gK(x)−‖x−b‖2+‖x−c‖2 in each. By [A] we know which
triangulation is Delaunay.
Case III.2.a: a is invisible. gD(x) = ‖x−a‖2−‖x−b‖2 and gK(x) =
‖x−a‖2−‖x−c‖2.

Case III.2.b: b is invisible. Then gD(x) = 0 and gK(x) = ‖x−b‖2−
‖x−c‖2.

That a and b are both visible is impossible because it would contra-
dict [B].

The case analysis is exhaustive, which implies gD(x)≥gK(x), as claimed.

We remark that a flip can have only two possible outcomes: it leaves the
value of gK(x) the same, or it increases this value by −‖x−b‖2 +‖x−c‖2.
The latter case happens iff the two vertices closest to x form a diagonal.
We also note that for each flip of a convex quadrangle whose vertices do not
lie on a common circle, there exists a point x such that gK(x)<gD(x). For
example, almost every point sufficiently close to the midpoint of the Voronoi
edge dual to the Delaunay diagonal will do. Combining this observation
with optimality, we conclude that for any set of points in general position
Vf(K)<Vf(D) for every geometric triangulation K 6=D.

B. Calculations

In this section, we derive formula (5), both for the acute and obtuse cases.
We will be working in R3 and denote the three Cartesian coordinates by
x,y,z. The Voronoi functional is invariant under planar isometries, so we
may assume that the circumcenter of the triangle is at the origin. The
points A′,B′,C ′ thus have a common z-coordinate, which is R2, and the
z-coordinate of 0′ is −R2. We denote the angles of ABC by α,β,γ and the
area of ABC by σ. We begin with the formula from Section 2:

(29)
Vf(ABC) = vol(ABC)− Rf(ABC)

− vol(QA)− vol(QB)− vol(QC).

We divide the quadrangle QA into two triangles, AB10 and AC10, and sim-
ilarly for QB and QC . The triangles adjacent to side AB are congruent, and
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we denote both of them by TAB. Similarly, two of the other triangles are
denoted by TBC , and two by TCA. Now we rewrite (29):

(30)
Vf(ABC) = vol(ABC)− Rf(ABC)

− 2 vol(TAB)− 2 vol(TBC)− 2 vol(TCA).

Since ABCA′B′C ′ is a prism, vol(ABC) = σR2. To compute vol(TAB),
vol(TBC), vol(TAC), we use the following result.

5 (Angle Lemma). Let KLM be a triangle with vertices K=(0,0,−R2),
L=(R,0,R2), a right angle at M , and the plane KLM perpendicular to the
xz-plane. Then vol(KLM)= 1

24R
4 sin4φ, in which φ=∠MKL.

Proof. We draw the altitude MH to divide KLM into KHM and LHM .
Then we can find the area under this triangle for each plane perpendicular
to the x-axis and integrate it:

vol(KHM) =

∫ R cos2 φ

0
x tanφ(2Rx−R2) dx

=
[
tanφ

(
2
3Rx

3 − 1
2R

2x2
)]R cos2 φ

0

= R4 tanφ
(
2
3 cos6 φ− 1

2 cos4 φ
)
.

Similarly, vol(LHM)=−R4 cotφ
(
2
3 sin6φ− 1

2 sin4φ
)
. Writing κ=vol(KLM)=

vol(LHM)+vol(KHM), we get

κ = R4 tanφ
(
2
3 cos6 φ− 1

2 cos4 φ
)
−R4 cotφ

(
2
3 sin6 φ− 1

2 sin4 φ
)

= R4 sinφ cosφ
(
2
3 cos4 φ− 1

2 cos2 φ− 2
3 sin4 φ+ 1

2 sin2 φ
)

= R4 sinφ cosφ
(
2
3(cos4 φ− sin4 φ)− 1

2(cos2 φ− sin2 φ)
)

= 1
6R

4 sinφ cosφ
(
cos2 φ− sin2 φ

)
= 1

12R
4 sin 2φ cos 2φ

which evaluates to κ= 1
24R

4 sin4φ, as claimed.
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Writing υ=2vol(TAB)+2vol(TBC)+2vol(TCA), we apply the lemma to
all six triangles to obtain

υ = 1
12R

4(sin 4α+ sin 4β + sin 4γ)

= 1
12R

4(2 sin (2α+ 2β) cos (2α− 2β) + sin 4γ)

= 1
12R

4(−2 sin 2γ cos (2α− 2β) + 2 sin 2γ cos 2γ)

= 1
3R

4 sin 2γ sin (α− β − γ) sin (α+ γ − β)

= −8
3R

4 sinα sinβ sin γ cosα cosβ cos γ

= −1
3Rabc cosα cosβ cos γ

= −4
3R

2σ cosα cosβ cos γ.

Finally, we combine it with (30) and (4):

Vf(ABC) = σR2 − 1
12σR

2(4 sin2 α+ 4 sin2 β + 4 sin2 γ)

+ 4
3σR

2 cosα cosβ cos γ.

We use the identities

cosα cosβ cos γ =
p2 − (2R+ r)2

4R2
,

sin2 α+ sin2 β + sin2 γ =
p2 − r2 − 4Rr

2R2
,

where p is the half-perimeter of ABC, and r is its inradius; see [9, 12.43a,b]
for details. Then

Vf(ABC) = σ
(
R2 + 1

3(p2 − (2R+ r)2)− 1
6(p2 − r2 − 4Rr)

)
= σ

(
1
6(p2 − r2 − 4Rr)− 1

3R
2
)

= 1
12σ(a2 + b2 + c2)− 1

3σR
2.

The sequence of calculations for the obtuse triangle is almost the same.
Assume that the angle at C exceeds π

2 , as in Figure 2. Then the formula
(30) is transformed to:

(31)
Vf(ABC) = vol(ABC)− Rf(ABC)

+ 2 vol(TAB)− 2 vol(TBC)− 2 vol(TCA).

In this case, vol(TAB) = 1
24R

4 sin4(π−γ) =− 1
24R

4 sin4γ. Therefore, all fur-
ther calculations are completely the same as in the acute case.
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