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WEIGHTED POISSON–DELAUNAY MOSAICS∗

H. EDELSBRUNNER† AND A. NIKITENKO†

Abstract. Slicing a Voronoi tessellation in Rn with a k-plane gives a k-dimensional weighted
Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex
of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere
whose center lies in the k-plane gives a generalized discrete Morse function. Assuming the Voronoi
tessellation is generated by a Poisson point process in Rn, we study the expected number of simplices
in the k-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the
Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof
for the expected number of connected components (clumps) in a line section of a circular Boolean
model in Rn.

Key words. Voronoi tessellations, Laguerre distance, weighted Delaunay mosaics, discrete
Morse theory, critical simplices, intervals, stochastic geometry, Poisson point process, Boolean model,
clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula

DOI. 10.1137/S0040585X97T989726

1. Introduction. Given a discrete set of points Y ⊆ Rk, the Voronoi tessellation
tiles the k-dimensional Euclidean space with convex polyhedra, each consisting of all
points a∈Rk for which a particular point y is the closest among all points in Y . To
generalize, suppose each y ∈Y has a weight wy ∈R, and substitute the power distance
of a from y, defined as ∥a−y∥2−wy, for the squared Euclidean distance in the definition
of the Voronoi tessellation. The resulting tiling of Rk into convex polyhedra is known
under several names, including power diagrams [1] and Laguerre tessellations [13], but
to streamline language we call them weighted Voronoi tessellations. They do indeed
look like unweighted Voronoi tessellations, except that the hyperplane separating two
neighboring polyhedra does not necessarily lie halfway between the generating points;
see Figure 1. Our motivation for studying weighted Voronoi tessellations derives from
the extra degree of freedom—the weight—which permits better approximations of
observed tilings, such as cell cultures in plants [19] and microstructures of materials [4].
Beyond this practical consideration, there is an intriguing connection between the
volumes of skeleta of unweighted Voronoi tessellations and the number of simplices in
weighted Delaunay mosaics through the Crofton formula, which is worth exploring.
We discuss it at the end of section 5.

Our preferred construction takes a k-dimensional slice through a Voronoi tessel-
lation in Rn (see [2], [21]). Specifically, if X is a discrete set of points in Rn, and
Rk ↪→ Rn is spanned by the first k 6 n coordinate axes, then the Voronoi tessella-
tion of X in Rn intersects Rk in a k-dimensional weighted Voronoi tessellation. The
points in Rk that generate the weighted tessellation are the orthogonal projections
yx of the points x ∈ X, and their weights are wx = −∥x− yx∥2. While all the weights
in this construction are nonpositive, this is not a restriction of generality because
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2 H. EDELSBRUNNER AND A. NIKITENKO

Fig. 1. Weighted Voronoi tessellation in R2 with superimposed weighted Delaunay mosaic. All
points have zero weight except the point with the shaded domain, which has positive weight.

the tessellation remains unchanged when all the weights are increased by the same
amount. Indeed, every weighted Voronoi tessellation with bounded weights can be
obtained as a slice of an unweighted Voronoi tessellation. It is often more convenient
to consider the dual of a weighted Voronoi tessellation, which is again known under
several names, including Laguerre triangulation [17] and regular triangulation [9], but
we call them weighted Delaunay mosaics. An important difference to the unweighted
concept is that the Voronoi polyhedron of a weighted point may be empty, in which
case this weighted point is not a vertex of the weighted Delaunay mosaic. For generic
sets of weighted points, the weighted Delaunay mosaic is a simplicial complex in Rk.
Since we focus on slices of unweighted Voronoi tessellations, we define the general
position only in this case. Specifically, we say that a discrete set X ⊆ Rn is generic
if the following conditions are satisfied for every 0 6 j < n:

(a) no j + 2 points belong to a common j-plane;

(b) no j + 3 points belong to a common j-sphere;

(c) considering a unique j-sphere that passes through j + 2 points, no j + 1 of
these points belong to a j-plane that passes through the center of the j-sphere;

(d) considering a unique j-plane that passes through j + 1 points, this plane is
neither orthogonal nor parallel to Rk;

(e) no two points have identical distance to Rk.

For j = 0, property (d) means that no point of X is in Rk. We note that the
Poisson point process is generic with probability 1.

Continuing the work started in [7], we are interested in the stochastic properties
of the weighted Delaunay mosaics and their radius functions. To explain the latter
concept, we assume the generic case in which the mosaic is a simplicial complex,
and for every simplex Q′ ∈ DelY with preimage Q ⊆ Rn, we find the smallest
(n− 1)-sphere that satisfies the following properties:

(i) It passes through all vertices of Q (it is a circumscribed sphere of Q),

(ii) the open ball it bounds does not contain any points of X (it is empty), and

(iii) its center lies in Rk (it is anchored).

The existence of such spheres for the simplices of the weighted mosaic can be
shown in a way similar to the unweighted case [5] and is left to the reader. We
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call this sphere the weighted Delaunay sphere, and its radius the weighted Delaunay
radius of Q′ ∈ DelY . Similarly, when considering Q instead of Q′, we call this
sphere the anchored Delaunay sphere, and its center the anchor of Q. The radius
function of the weighted Delaunay mosaic, R : DelY → R, maps every simplex to
its weighted Delaunay radius. As in the unweighted case, it partitions DelY into
intervals of simplices that share the same weighted Delaunay sphere and, therefore,
the same function value [3]. These intervals have topological significance [8]: adding
the simplices in the order of increasing radius, the homotopy type of the complex
changes whenever the interval contains a single simplex, and it remains unchanged
whenever the interval contains two or more simplices. Indeed, the operation in the
latter case is known as anticollapse and has been studied extensively in combinatorial
topology. Each interval is defined by two simplices L ⊆ U in the weighted Delaunay
mosaic and consists of all simplices that contain L and are contained in U . We call
Q′ ∈ DelY a critical simplex of R if it is the sole simplex in its interval, L = Q′ = U ,
and we call Q′ a regular simplex of R otherwise. The type of the interval is the pair
of dimensions of the lower and the upper bounds, (ℓ,m), in which ℓ = dimL and
m = dimU . Our main result is an extension of the stochastic findings about the
radius function of the Poisson–Delaunay mosaic in [7] from the unweighted to the
weighted case.

Theorem 1 (main result). Let X be a Poisson point process with density ρ in

Rn and Rk ↪→ Rn. There are constants Ck,n
ℓ,m such that, for any r0 > 0, the expected

number of intervals of type (ℓ,m) in the k-dimensional weighted Poisson–Delaunay
mosaic with center in a Borel set Ω ⊆ Rk and weighted Delaunay radius at most r0 is

(1) E[ck,nℓ,m(r0)] = Ck,n
ℓ,m

γ(m+ 1− k/n; ρνnr
n
0 )

Γ(m+ 1− k/n)
ρk/n∥Ω∥,

in which νn is the volume of the unit ball in Rn, and we give explicit computations of
the constants in k 6 2 dimensions. Similarly, the expected number of j-dimensional
simplices in the weighted Poisson–Delaunay mosaic with center in a Borel set Ω ⊆ Rk

and weighted Delaunay radius at most r0 is

(2) E[dk,nj (r0)] =

[ k∑
m=j

γ(m+ 1− k/n; ρνnr
n
0 )

Γ(m+ 1− k/n)

j∑
ℓ=0

(
m− ℓ

m− j

)
Ck,n

ℓ,m

]
ρk/n∥Ω∥.

Some of the values for constants Ck,n
ℓ,m are listed in Tables 1 and 2 (see sections 2

and 6, respectively). In an equivalent formulation, this theorem states that the
weighted Delaunay radius of a typical interval is Gamma-distributed, whereas the
weighted Delaunay radius of a typical simplex is a mixture of Gamma distributions;
cf. [7]. In a more general context, the contributions of this paper apply to the field
of stochastic geometry; see the book by Schneider and Weil [20] for a basic review
of this field. The particular questions on Poisson–Delaunay mosaics studied in this
paper were pioneered by Miles almost 50 years ago (see [14], [15]). Formulas for
the weighted case have also been derived by Møller [16], but these are restricted to
top-dimensional simplices whose expected numbers can be derived using the Crofton
formula and expected volumes of Voronoi skeleta.

Outline. Section 2 discusses the case k = 1 as a warm-up exercise. It is suf-
ficiently elementary so that explicit formulas can be derived without reliance on
more difficult ones to prove general integral formulas. Section 3 shows how to get
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the expected number of connected components in the intersection of a line with
a circular Boolean model in Rn using the discrete Morse theory. Section 4 proves
a Blaschke–Petkantschin type formula for the general weighted case. Section 5 uses
this formula to prove our main result. Section 6 develops explicit expressions for
all types of intervals in two dimensions. Section 7 concludes this paper. Appendix A
introduces the special functions and distributions used in the derivation of our results.

2. One dimension. In k = 1 dimension, the weighted Delaunay mosaic has
a simple structure, and so results can be obtained by elementary means.

Slice construction. Let n > 2, and let X ⊆ Rn be a stationary Poisson point
process with density ρ > 0. We write R1 ↪→ Rn for the first coordinate axis, which
is a directed line passing through Rn. For each point x = (x1, x2, . . . , xn) ∈ X, we
write yx = (x1, 0, . . . , 0) for the projection onto R1, and −wx = x2

2 + x2
3 + · · · + x2

n

for its squared distance from the line. Denoting by Y = {(yx, wx) | x ∈ X} the
resulting set of weighted points in R1, we are interested in its weighted Voronoi
tessellation, VorY , and its weighted Delaunay mosaic, DelY . By construction, the
former is the intersection of the n-dimensional (unweighted) Voronoi tessellation with
the line: VorY = {domain(x) ∩ R1 | x ∈ X}. As discussed above, the interval
domain(x) ∩ R1 belongs to the weighted Voronoi tessellation if and only if there is
an anchored Delaunay sphere of x, that is, an empty sphere centered in R1 that
passes through x. Similarly, two weighted Voronoi domains, domain(x) ∩ R1 and
domain(u)∩R1, share an endpoint if and only if there is an empty anchored Delaunay
sphere passing through x and u. It follows that every edge in DelY is the projection
of an edge in DelX; see Figure 2.

Fig. 2. Left : a 1-dimensional weighted Voronoi tessellation as a slice of a 2-dimensional
unweighted Voronoi tessellation. The weighted Delaunay mosaic in R1 is the projection of a chain
of edges in the 2-dimensional unweighted Delaunay mosaic. Right : reflecting the points across R1

affects the 2-dimensional Voronoi tessellation but not the 1-dimensional slice.

As suggested in Figure 2, we can simplify the construction by reducing n to 2.
Writing H for the half-plane of points, whose first coordinate is arbitrary, whose
second coordinate is nonnegative, and whose remaining n − 2 coordinates vanish,
we map x = (x1, . . . , xn) ∈ Rn to x′ = (x1,

∑n
i=2 x

2
i , 0, . . . , 0)∈H. This amounts

to rotating x around R1 into H. Let X ′ be the resulting set of points in H, and
let Y ′ be the set of weighted points in R1 obtained by projection from X ′. Then
Y = Y ′, which shows that X and X ′ define the same 1-dimensional weighted Voronoi
tessellation and weighted Delaunay mosaic. There is a small price to pay for the
simplification, namely that the projected Poisson point process in H is not necessarily
homogeneous. Specifically, the projected process in H is a Poisson point process with
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intensity ϱ(x) = σn−1ρx
n−2
2 , in which σn−1 is the (n− 2)-dimensional volume of the

unit sphere in Rn−1.

Interval structure. We now return to the intervals of the radius function in
one dimension, R : DelY → R. In the assumed generic case, DelY contains only
two kinds of simplices: vertices and edges. By definition, the value of R at a simplex
Q′ ∈ DelY is the radius of the anchored Delaunay sphere of the preimage of Q′.
There are only three types of intervals [L,U ] as follows:

(0, 0): Here L = U and dimL = dimU = 0. The interval contains a single and,
therefore, critical vertex.

(1, 1): Here L = U and dimL = dimU = 1. The interval contains a single and,
therefore, critical edge.

(0, 1): Here L ⊆ U and dimL = dimU − 1. The interval is a pair consisting of
a regular vertex and a regular edge. We call it a vertex-edge pair if the vertex precedes
the edge as we go from left to right, and we call it an edge-vertex pair otherwise.

Fig. 3. From left to right on the horizontal line: a critical vertex, an edge-vertex pair, a critical
edge, a vertex-edge pair, and another critical vertex.

The cases can be distinguished geometrically, as illustrated in Figure 3. Let
x = (x1, x2) ∈ H and yx = (x1, 0) with weight wx = −x2

2. Then L = U = {yx} is
a critical vertex of DelY if and only if yx is the anchor of x. Otherwise, the anchored
Delaunay circle of x also passes through a second point, u ∈ X ⊆ H, with yx and
yu on the same side of the anchor. In this case, L = {yx} and U = {yx, yu} form
a vertex-edge or an edge-vertex pair. Finally, we have a critical edge L = U = {yx, yu}
if yx and yu lie on opposite sides of the anchor.

We make essential use of the geometric characterization of interval types when
we compute their expected numbers. To simplify the computation, we note that the
structure along R1 is a strict repetition of the following pattern: a critical vertex,
a nonnegative number of edge-vertex pairs, a critical edge, and a nonnegative number
of vertex-edge pairs.

Critical vertices. We begin with computing the number of critical vertices, c1,n0,0 ,

inside a region Ω ⊆ R1 and with weighted Delaunay radius at most some threshold
r0. Let x = (x1, x2) ∈ X ⊆ H, and note that the smallest anchored circle passing
through x has the center yx = (x1, 0) and the radius r = x2. Write P∅(x) for the
probability that this circle is empty, 1Ω(x) for the indicator that yx ∈ Ω, and 1r0(x)
for the indicator that r 6 r0. We use the Slivnyak–Mecke formula to compute

(3) E[c1,n0,0 (r0)] =

∫
x∈H

1Ω(x)1r0(x)P∅(x)ϱ(x) dx;
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cf. [7]. The intensity measure of the upper semicircle with radius r is of course
ρ times the volume of an n-ball with radius r, which we write as ρνrr

n. Hence
P∅(x) = e−ρνnr

n

. In other words, the probability that the anchored circle is empty is
the probability that the n-ball, whose points get rotated into the semidisk, is empty.
So we have

E[c1,n0,0 (r0)] =

∫
x1∈Ω

∫ r0

r=0

e−ρνnr
n

ρσn−1r
n−2 dr dx1

= ∥Ω∥σn−1ρ

∫ r0

r=0

rn−2e−ρνnr
n

dr.(4)

To evaluate this integral, we use the identity on Gamma functions proved in Lemma 2
in Appendix A, where the functions are defined. In this application, the integral on
the right of (4) evaluates to γ(1−1/n; ρνnr

n
0 )/[n·(ρνn)1−1/n]. Writing c1,n0,0 = c1,n0,0 (∞),

we set r0 = ∞ to get the expected total number of critical vertices, and we write the
expected number up to weighted Delaunay radius r0 as a fraction of the former:

E[c1,n0,0 ] =
σn−1Γ(1− 1/n)

nν
1−1/n
n

∥Ω∥ρ1/n,(5)

E[c1,n0,0 (r0)] =
γ(1− 1/n; ρνnr

n
0 )

Γ(1− 1/n)
E[c1,n0,0 ].(6)

Regular edges. To count the regular edges (or intervals of type (0, 1)) we again
use the Slivnyak–Mecke formula. Let x = (x1, x2) and u = (u1, u2) be two points
in X ⊆ H. There is a unique anchored circle that passes through both points, and
the edge connecting yx and yu belongs to DelY if and only if this circle is empty.
Writing (z1, 0) for the center and r for the radius, the edge is critical if x1 < z1 < u1;
otherwise it is regular; see Figure 3. Write P∅(x, u) for the probability that a unique
anchored circle passing through x and u is empty, 1Ω(x, u) for the indicator that
z1 ∈ Ω, 1r0(x, u) for the indicator that r 6 r0, and 10,1(x, u) for the indicator that
x1 and u1 lie on the same side of z1. By the Slivnyak–Mecke formula,

(7) E[c1,n0,1 (r0)] =
1

2!

∫
u∈H

∫
x∈H

1Ω(x, u)1r0(x, u)10,1(x, u)P∅(x, u)ϱ(x)ϱ(u) dxdu.

We already know that P∅(x, u) = e−ρνnr
n

. To compute the rest, we do a change of
variables, reparametrizing the points by the center and radius of a unique anchored
circle passing through them and two angles, x = (z1 + r cos ξ, r sin ξ) and u = (z1 +
r cos υ, r sin υ), in which 0 6 ξ, υ < π. This is a bijection up to a set of measure 0.
The Jacobian of this change of variables is the absolute determinant of the matrix of
old variables derived by the new variables:

(8) J = abs


1 cos ξ −r sin ξ 0
0 sin ξ r cos ξ 0
1 cos υ 0 −r sin υ
0 sin υ 0 r cos υ

 = r2| cos υ − cos ξ|.

With the new variables, the indicators can be absorbed into integration limits as
follows: 1Ω(x, u) = 1 if and only if z1 ∈ Ω, and 10,1(x, u) = 1 if and only if ξ and υ
are either both smaller or both larger than π/2. The two cases are symmetric, so we
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assume the former and multiply by 2. The integral in (7) thus turns into

E[c1,n0,1 (r0)] =

∫
z1∈Ω

∫ r0

r=0

e−ρνnr
n

∫
06ξ, υ<π/2

ρ2σ2
n−1(r

2 sin ξ sin υ)n−2r2

× | cos υ − cos ξ|dξ dυ dr dz1(9)

= ∥Ω∥ρ2σ2
n−1

∫ r0

r=0

e−ρνnr
n

r2n−2 dr

∫
06ξ, υ<π/2

(sin ξ sin υ)n−2

× | cos υ − cos ξ|dξ dυ.(10)

We apply Lemma 2 to evaluate the integral over the radius, and we use Mathematica
software to evaluate the integral over the two angles:∫

r6r0

r2n−2e−ρνnr
n

dr =
γ(2− 1/n; ρνnr

n
0 )

n(ρνn)2−1/n
,(11) ∫

06ξ, υ<π/2

(sin ξ sin υ)n−2| cos υ − cos ξ|dξ dυ

=

√
π

n− 1

[
2Γ(n− 1)

Γ(n− 1/2)
− Γ((n− 1)/2)

Γ(n/2)

]
.

(12)

Setting r0 = ∞, we get the expected total number of regular edges, and as before
we write the expected number up to weighted Delaunay radius r0 as a fraction of the
total number:

E[c1,n0,1 ] =
σ2
n−1Γ(2− 1/n)

nν
2−1/n
n

√
π

n− 1

[
2Γ(n− 1)

Γ(n− 1/2)
− Γ((n− 1)/2)

Γ(n/2)

]
∥Ω∥ρ1/n,(13)

E[c1,n0,1 (r0)] =
γ(2− 1/n; ρνnr

n
0 )

Γ(2− 1/n)
E[c1,n0,1 ].(14)

Summary. Recall that the critical vertices and the critical edges alternate along
R1, which implies that their expected total number is the same. The dependence on
the radius threshold, r0, however, is different. Here we notice that the dependence on
the radius for c1,n1,1 is the same as for c1,n0,1 because only the admissible angles change
in the integral. Extracting the constants from the formulas for the expectation, we
use (5) and (13) to get

C1,n
0,0 = C1,n

1,1 =
σn−1Γ(1− 1/n)

nν
1−1/n
n

,(15)

C1,n
0,1 =

σ2
n−1

√
π Γ(2− 1/n)

n(n− 1)ν
2−1/n
n

[
2Γ(n− 1)

Γ(n− 1/2)
− Γ((n− 1)/2)

Γ(n/2)

]
;(16)

see Table 1. We write the expectations as fractions of these constants times the size
of the region times the nth root of the density in Rn:

E[c1,n0,0 (r0)] = C1,n
0,0

γ(1− 1/n; ρνnr
n
0 )

Γ(1− 1/n)
∥Ω∥ρ1/n,(17)

E[c1,n0,1 (r0)] = C1,n
0,1

γ(2− 1/n; ρνnr
n
0 )

Γ(2− 1/n)
∥Ω∥ρ1/n,(18)

E[c1,n1,1 (r0)] = C1,n
1,1

γ(2− 1/n; ρνnr
n
0 )

Γ(2− 1/n)
∥Ω∥ρ1/n.(19)
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To get the corresponding results for the simplices in the weighted Delaunay mosaic,
we note that the number of vertices is d1,n0 = c1,n0,0 + c1,n0,1 and the number of edges is

d1,n1 = c1,n0,1 + c1,n1,1 . The two are the same, but this is not true if we limit the radius to
a finite threshold. Indeed, the radius of a typical edge is Gamma-distributed, while the
radius of a typical vertex follows a linear combination of two Gamma distributions.
In the limit, as n → ∞, the constants are limn→∞ C1,n

0,0 =
√
e, limn→∞ C1,n

0,1 =
√
e(
√
2 − 1), and limn→∞ D1,n

0 = limn→∞ D1,n
1 =

√
2e, which can again be verified

using Mathematica.

Table 1
The rounded constants in the expressions of the expected number of intervals and simplices of

a 1-dimensional weighted Delaunay mosaic. The ratio of the expected number of critical edges over
the expected number of regular edges is monotonically decreasing. It follows that we can infer the
ambient dimension from the ratio.

n = 2 3 4 5 6 7 8 9 . . . 20 . . . ∞
C1,n

0,0 1.00 1.09 1.16 1.22 1.26 1.29 1.32 1.35 . . . 1.47 . . . 1.65

C1,n
0,1 0.27 0.36 0.42 0.45 0.48 0.50 0.51 0.53 . . . 0.60 . . . 0.68

D1,n
0 1.27 1.46 1.58 1.67 1.74 1.79 1.84 1.87 . . . 2.07 . . . 2.33

3. Connection to Boolean model. Let X be a Poisson point process with
density ρ in Rn, and write Xr for the union of closed balls of fixed radius r, whose
centers are in X. This random set is sometimes referred to as the Boolean model [20].
Let Ω ⊆ R1 ⊆ Rn be a line segment, and consider Xr ∩ Ω. We are interested in
the connected components in this intersection and claim that their number satisfies
β0(Delr(Y ; Ω)) 6 β0(Xr ∩Ω) 6 β0(Delr(Y ; Ω)) + 2, in which Delr(Y ; Ω) is the sub-
complex of the weighted Delaunay mosaic that consists of all simplices with radius at
most r, whose weighted Delaunay center lies in Ω. This follows from the general obser-
vation that the weighted Delaunay mosaic of a set of points y ∈ Rk with weights wy is
homotopy equivalent to the union of power balls, Yr = {a ∈ Rk | ∥a−y∥2−wy 6 r2},
and Yr ∩ Ω = Xr ∩ Ω. Indeed, the weighted Delaunay complex can be defined as
the nerve of the decomposition of Yr with the weighted Voronoi tessellation, so the
Nerve Theorem asserts the homotopy equivalence; see [6] for details. By restricting
the Delaunay mosaic to a line segment, we can lose up to two connected components
at the ends of Ω; see Figure 4.

Fig. 4. Intersection of a union of 2-dimensional balls with a line segment Ω. This intersection
has three components, two more than the restricted weighted Delaunay mosaic, which consists of
two vertices and the connecting edge in the middle of Ω. The restricted mosaic misses the two tail
components because the centers of the corresponding balls do not project into Ω.
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Following the evolution of the nested complexes Delr(Y ; Ω), as r goes from 0 to∞,
we observe that upon entering the complex a critical vertex creates a new component,
a regular interval does not affect the homotopy type, and a critical edge connects
two components; cf. Figure 3. It follows that the expected number of components in
Delr(Y ; Ω) is

E[c1,n0,0 (r)− c1,n1,1 (r)]

=
σn−1Γ(1− 1/n)

nν
1−1/n
n

[
γ(1− 1/n; ρνnr

n)

Γ(1− 1/n)
− γ(2− 1/n; ρνnr

n)

Γ(2− 1/n)

]
ρ1/n∥Ω∥(20)

=
σn−1

nν
1−1/n
n

[
γ

(
1− 1

n
; ρνnr

n

)
− γ(2− 1/n; ρνnr

n)

1− 1/n

]
ρ1/n∥Ω∥.(21)

We write A = ρνnr
n, use the definition of the incomplete Gamma function, and

integrate by parts to get

γ(2− 1/n; A) =

∫ A

0

x1−1/ne−x dx

= [−x1−1/ne−x]A0 +

(
1− 1

n

)∫ A

0

x−1/ne−x dx(22)

= −A1−1/ne−A +

(
1− 1

n

)
γ

(
1− 1

n
; A

)
.(23)

Noticing that A1−1/nρ1/n = (ρνnr
n)1−1/nρ1/n = ρν

1−1/n
n rn−1, we plug (23) into (21)

to obtain

E[β0(Delr(Y ; Ω))] =
σn−1

nν
1−1/n
n

1

1− 1/n
e−ρνnr

n

ρν1−1/n
n rn−1∥Ω∥

=
σn−1

n− 1
rn−1e−ρνnr

n

ρ∥Ω∥(24)

= νn−1r
n−1e−ρνnr

n

ρ∥Ω∥,(25)

where we use the identity σn−1/(n− 1) = νn−1 in the last transition. In short, (25)
gives an explicit formula for the expected density of connected components in the
Boolean model in Rn intersected with a line. While the authors did not find the
explicit expression in the literature, this result is not new and follows after some
straightforward computations from [11, Excercise 4.8]. Our aim is to provide another,
more topological view of the problem. The graphs of β0 for different dimensions n
are shown in Figure 5.

Using the Crofton formula [20, Theorem 9.4.7] (but see also [10]) and the fact
that almost every connected component is a line segment that meets the boundary of
the Boolean model in two points, (25) can be transformed into a statement about the
boundary of Xr,

(26) V n−1(Xr) = 2
√
π

Γ(n/2)

Γ((n+ 1)/2)
νn−1r

n−1e−ρνnr
n

ρ,

in which V n−1(Xr) is the expected density of the (n− 1)-dimensional volume of the
boundary; see [20, section 9] for a detailed discussion of the quantity.

4. Anchored Blaschke–Petkantschin formula. To extend the results in the
previous section from 1 to k dimensions, we first generalize the Blaschke–Petkantschin
formula for spheres stated as Theorem 7.3.1 in [20].
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Fig. 5. The expected number of connected components per unit length as a function of the
radius. To facilitate the comparison of the graphs in different dimensions n, we rescale such that
a unit along the horizontal axis is the expected number of points inside a ball of radius r in Rn.

Setting the stage. Recall that k 6 n are positive integers, and that we write
Rk for the k-dimensional linear subspace spanned by the first k coordinate vectors
of Rn. While we used uppercase letters to denote simplices in the previous sections,
we now write x for a sequence of m+1 6 k+1 points in Rn. The reason for the change
of notation is that we integrate over all such sequences and do not limit ourselves to
points in the Poisson point process. Similarly, we write u if the m + 1 points lie on
the unit sphere. As usual, we do not distinguish between a simplex and its vertices,
so we write Volm(x) for the m-dimensional Lebesgue measure of the convex hull of x.
Assuming that the m + 1 points are in a general position in Rn, the affine hull of x
is an m-plane, M = aff x. Furthermore, the set of centers of the spheres that pass
through all points of x is an (n −m)-plane, M⊥, orthogonal to M . Generically, the
intersection of M⊥ with Rk is a plane of dimension k−m. The center of the smallest
anchored sphere passing through x is the point of this intersection that is the closest
to x.

Top-dimensional case. We first show how to transform an integral overm+1 =
k + 1 points into the integral over a unique anchored sphere passing through these
points.

Lemma 1 (Blaschke–Petkantschin for top-dimensional simplices). Let 0 6 k 6 n.
Then every measurable nonnegative function f : (Rn)k+1 → R satisfies∫

x∈(Rn)k+1

f(x) dx

=

∫
y∈Rk

∫
r>0

∫
u∈(Sn−1)k+1

f(y + ru)r(n−1)(k+1)k! Volk(u
′) du dr dy,(27)

in which u′ is the projection of u to Rk, Volk(u
′) is the Lebesgue measure of the

k-simplex, and we use the standard spherical measure on Sn−1.

Proof. We follow the proof of Theorem 7.3.1 in [20], with just slight modifica-
tions. Recall first that we choose the coordinates in Rn so that the projection of
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x = (x1, . . . , xn) to Rk ↪→ Rn is x′ = (x1, . . . , xk, 0, . . . , 0). The claimed relation is
a change of variables: on the right-hand side, we represent the points x by the center
y ∈ Rk ↪→ Rn of the anchored sphere passing through these points, its radius r, and
k points u on the unit sphere Sn−1 ↪→ Rn. This change of variables is the mapping
ϕ : Rk × [0,∞)× (Sn−1)k+1 → (Rn)k+1 defined by ϕ(y, r,u0,u1, . . . ,uk) = (y + ru0,
y + ru1, . . . , y + ruk); we note that ϕ is bijective up to a measure 0 subset of the
domain. We claim the Jacobian of ϕ is

(28) J(y, r,u) = r(n−1)(k+1)k! Volk(u
′),

in which u′ = (u′
0,u

′
1, . . . ,u

′
k) is the projection of u to Rk. To prove (28) at a partic-

ular point (y, r,u), we choose local coordinates around every point ui on the sphere.
We choose them such that the matrix [uiu̇i] is orthogonal, for every 0 6 i 6 k, in
which u̇i is the (n×(n−1))-matrix of partial derivatives with respect to the n−1 local
coordinates. This is the same parametrization as in [20]. With this, the Jacobian is
the absolute value of the (n(k + 1)× n(k + 1))-determinant

(29) J(y, r,u) = abs

∣∣∣∣∣∣∣∣∣
En,k u0 ru̇0 0 . . . 0
En,k u1 0 ru̇1 . . . 0
...

...
...

...
. . .

...
En,k uk 0 0 . . . ru̇k

∣∣∣∣∣∣∣∣∣ ,
where we write the matrix in block notation, with En,k the (n × k)-matrix with all
elements zero and ones in the diagonal. Similarly, ui is a column vector of length n,
ru̇i is an (n × (n − 1))-matrix, and 0 is the zero matrix of appropriate size, which
in this case is an (n × (n − 1))-matrix. As in [20], we extract r from (k + 1)(n − 1)
columns and use the fact that transposing the matrix does not affect the determinant
to get

(30)

(
J(y, r,u)

r(k+1)(n−1)

)2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ek,n Ek,n . . . Ek,n

uT
0 uT

1 . . . uT
k

u̇T
0 0 . . . 0
0 u̇T

1 . . . 0
...

...
. . .

...
0 0 . . . u̇T

k

∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣
En,k u0 u̇0 0 . . . 0
En,k u1 0 u̇1 . . . 0
...

...
...

...
. . .

...
En,k uk 0 0 . . . u̇k

∣∣∣∣∣∣∣∣∣ .

The orthogonality of the matrices [uiu̇i] implies that uT
i ui = 1, u̇T

i u̇i = En−1,n−1,
whereas uT

i u̇i is the zero row vector of length n − 1, and u̇T
i ui is the zero column

vector of length n − 1, for each 0 6 i 6 k. We can therefore multiply the matrices
and get

(31)

(
J(y, r,u)

r(k+1)(n−1)

)2

=

∣∣∣∣∣∣∣∣∣∣∣

(k + 1)Ek,k

∑
u′
i u̇′

0 . . . u̇′
k∑

u′T
i k + 1 0 . . . 0

u̇′T
0 0 En−1,n−1 . . . 0
...

...
...

. . .
...

u̇′T
k 0 0 . . . En−1,n−1

∣∣∣∣∣∣∣∣∣∣∣
,

in which we write u′
i for the vector consisting of the first k coordinates of ui. Similarly,

u̇′
i is the (k × (n− 1))-matrix obtained from u̇i by dropping the bottom n− k rows.
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As written, the (n(k+ 1)× n(k+ 1))-matrix in (31) is a ((k+ 3)× (k+ 3))-matrix of
blocks, all of which are not the same size. To zero out the last k+1 blocks in the first
row, we subtract the third row times u̇′

0, the fourth row times u̇′
1, and so on. The

determinant is therefore the product of the determinants of the upper left (2×2)-block
matrix and the lower right ((k + 1) × (k + 1))-block matrix, the latter being 1. To
further simplify the (2× 2)-block matrix, we use [uiu̇i][uiu̇i]

T = En,n, which implies
[u′

iu̇
′
i][u

′
iu̇

′
i]
T = Ek,k, and we write the matrix as a product of two matrices,(
J(y, r,u)

r(k+1)(n−1)

)2

=

∣∣∣∣(k + 1)Ek,k −
∑

u̇′
iu̇

′T
i

∑
u′
i∑

u′T
i k + 1

∣∣∣∣(32)

=

∣∣∣∣∣
∑

u′
iu

′T
i

∑
u′
i∑

u′T
i k + 1

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
[
u′
0 u′

1 . . . u′
k

1 1 . . . 1

]
u′T
0 1

u′T
1 1
...

...
u′T
k 1


∣∣∣∣∣∣∣∣∣ ,(33)

in which we move from (32) to (33) using u̇′
iu̇

′T
i = Ek,k − u′

iu
′T
i . Finally, the deter-

minant of the vectors u′
i with appended 1 is k! times the k-dimensional volume of

u′. Hence, J(y, r,u) = r(k+1)(n−1)k! Volk(u
′), as claimed in (28). This completes the

proof of (27).

General case. Further, we generalize to the case m 6 k. Recall that for a se-
quence x of m + 1 6 k + 1 points in Rn, there is a unique smallest anchored sphere
passing through them. We claim that its center lies inside the orthogonal projection P
of the m-dimensional affine hull of x onto Rk. Indeed, by orthogonally projecting the
center of any anchored sphere passing through x to P in Rk, we clearly get a point,
which is a center of a smaller anchored sphere still passing through x. The following
theorem tells us how to integrate over these smallest anchored circumscribed spheres.

Theorem 2 (anchored Blaschke–Petkantschin formula). Let 0 6 m 6 k 6 n and
α = n(m+1)−(k+1). Then every measurable nonnegative function f : (Rn)m+1 → R
satisfies∫

x∈(Rn)m+1

f(x) dx

=

∫
y∈Rk

∫
P∈Lk

m

∫
r>0

∫
u∈(S)m+1

f(y+ ru)rα[m! Volm(u′)]k−m+1 dudr dP dy,(34)

in which Lk
m is the Grassmannian of (linear) m-planes in Rk, u′ is the projection of

u to P, and S is short for the unit sphere in P ×Rn−k.

Proof. We use the Blaschke–Petkantschin formula twice, first in its standard form.
For P ∈ Lk

m, we write P×Rn−k ∈ Ln
m+n−k for the (m+n−k)-plane, whose orthogonal

projection to Rk is P . The first application of the Blaschke–Petkantschin formula
integrates over all (affine) m-planes in Rk, spanned by the projections of x to Rk:∫

x∈(Rn)m+1

f(x) dx

=

∫
P∈Lk

m

∫
h∈P⊥

∫
x∈(P×Rn−k)m+1

f(h+ x)[m! Volm(x′)]k−m dx dhdP.(35)
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For every m-plane P in Rk, we consider the vertical (m + n − k)-plane P × Rn−k

in Rn and apply Lemma 1 inside it. Recalling that S is a unit sphere in P ×Rn−k,
this gives∫

x∈(Rn)m+1

f(x) dx

=

∫
P∈Lk

m

∫
h∈P⊥

∫
z∈P

∫
r>0

∫
u∈(S)m+1

f(h+ z + ru)r(m+n−k−1)(m+1)(36)

×m! Volm(u′)[m! Volm(ru′)]k−m du dr dz dhdP.(37)

Note that Volm(ru′) = rm Volm(u′), which implies that the final power of r is (m +
n − k − 1)(m + 1) +m(k −m) = α. Finally, we get the claimed relation by setting
y = z + h and exchanging the integral over P ∈ Lk

m with the integral over y ∈ Rk.

5. Expected number of intervals. In this section, we use the anchored
Blaschke–Petkantschin formula of the previous section to compute the expected num-
bers of intervals of a weighted Delaunay mosaic in Rk. We do this for every type
and use a weighted Delaunay radius threshold to get more detailed probabilistic in-
formation. Recall that the weighted mosaic is a random k-dimensional slice of the
(unweighted) Poisson–Delaunay mosaic with density ρ > 0 in Rn.

Slivnyak–Mecke formula. To count the type (ℓ,m) intervals, we focus our
attention by restricting the center of the weighted Delaunay sphere to a region Ω ⊆ Rk

and the weighted Delaunay radius to be less than or equal to r0. Any sequence
x = (x0,x1, . . . ,xm) of m + 1 points in Rn defines such an interval if it satisfies the
following conditions:

(a) The smallest anchored sphere passing through x is empty, and we write P∅(x)
for the probability of this event;

(b) the center z of this sphere lies in Ω, and we write 1Ω(x) for the indicator;
(c) the radius r of this sphere is bounded from above by r0, and we write 1r0(x)

for the indicator;
(d) the origin of Rk sees exactly m − ℓ facets of the projected m-simplex from

the outside, and we write 1m−ℓ(x) for the indicator.
These are the same conditions as in [7] and [3] with the only difference being that

the sphere is now required to be anchored, and modulo this remark the proofs are
identical. Combining these conditions with the Slivnyak–Mecke formula, we get an
integral expression for the expected number of type (ℓ,m) intervals, which we partially
evaluate using Theorem 2 and Lemma 2:

E[ck,nℓ,m(r0)] =
1

(m+ 1)!

∫
x∈(Rn)m+1

P∅(x)1Ω(x)1r0(x)1m−ℓ(x) dx(38)

= ∥Ω∥∥Lk
m∥ρm+1m!k−m+1

(m+ 1)!

∫
r6r0

e−ρνnr
n

rα dr

×
∫
u∈(S)m+1

1m−ℓ(u)Volm(u′)
k−m+1

du(39)

= ∥Ω∥ρk/nm!k−m

m+ 1
∥Lk

m∥γ(m+ 1− k/n; ρνnr
n
0 )

nν
m+1−k/n
n

×
∫
u∈(S)m+1

1m−ℓ(u)Volm(u′)
k−m+1

du(40)
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= Ck,n
ℓ,m · γ(m+ 1− k/n; ρνnr

n
0 )

Γ(m+ 1− k/n)
· ∥Ω∥ρk/n.(41)

Specifically, we get (39) by noting P∅(x) = e−ρνnr
n

, applying Theorem 2 to the
right-hand side of (38), collapsing the indicators, using rotational invariance, and
writing S for the unit sphere in Rm+n−k. We get (40) from (39) by applying Lemma 2
with j = α+1 = n(m+1)−k, c = ρνn, p = n, t0 = r0, which asserts that the integral
over the radius evaluates to the fraction involving the incomplete Gamma function.
Finally, we get (41) by defining the constant

(42) Ck,n
ℓ,m =

m!k−m∥Lk
m∥Γ(m+ 1− k/n)

(m+ 1)nν
m+1−k/n
n

∫
u∈(S)m+1

1m−ℓ(u)Volm(u′)
k−m+1

du.

As a sanity check, we get C1,n
0,0 = σn−1Γ(1 − 1/n)/(nν

1−1/n
n ) with ℓ = m = 0 and

k = 1, because S ⊆ Rn−1 has volume σn−1, and we have 10(u0) = 1 and Vol0(u0) = 1
for all points u0 ∈ S. This agrees with (15) in section 2.

Simplices in the weighted Delaunay mosaic. Since the expression in (42)
does not depend on r0, we deduce that the weighted Delaunay radius of a typical
type (ℓ,m) interval is Gamma-distributed. The weighted Delaunay radius of a typical
j-simplex in the weighted Poisson–Delaunay mosaic therefore follows a linear combi-
nation of Gamma distributions. Indeed, we get the total number of j-simplices to be
dk,nj =

∑j
ℓ=0

∑k
m=j

(
m−ℓ
m−j

)
ck,nℓ,m; see [7]. The same relation holds if we limit the sim-

plices to a weighted Delaunay radius of at most r0, and also if we replace the simplex
counts by the constants Ck,n

ℓ,m and the analogously defined Dk,n
j . Before continuing,

we consider the top-dimensional case, j = k, in which Dk,n
k =

∑k
ℓ=0 C

k,n
ℓ,k . Taking the

sum eliminates the indicator function in (42), and we get

(43) Dk,n
k =

Γ(k + 1− k/n)

(k + 1)nν
k+1−k/n
n

∫
u∈(Sn−1)k+1

Volk(u
′) du.

We can compare this with the expression for the number of Voronoi vertices by
Møller [16] using the Crofton formula [10, Chap. 6]; see also [20, Theorem 10.2.4].
By duality, the number of vertices in the weighted Voronoi tessellation is the number
of top-dimensional simplices in the weighted Delaunay mosaic. Each vertex is the
intersection of an (n − k)-dimensional Voronoi polyhedron with the k-plane, and if
we know the expected number of intersections, then we also know the integral over
all k-planes. The Crofton formula applies and gives the (n − k)-dimensional volume
of the (n− k)-skeleton of the Voronoi tessellation as σn/(2∥Ln

k∥νn−1) times the men-
tioned integral. It turns out that the expected volume is not so difficult to compute
otherwise [16], so we can turn the argument around and deduce the expected number
of vertices from the expected (n− k)-dimensional volume. This gives

Dk,n
k =

σ1σn+1

σk+1σn−k+1

2k+1πk/2

n(k + 1)!

Γ((kn+ n− k + 1)/2)

Γ((kn+ n− k)/2)

× Γ((n+ 2)/2)k+1−k/n

Γ((n+ 1)/2)k
Γ(k + 1− k/n)

Γ(n− k + 1/2)
.(44)

Comparing (44) with (43), we get an explicit expression for the expected k-dimensional
volume of the projection of a random k-simplex inscribed in Sn−1.
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6. Computations. We now return to (42) and note that the integral on the
right-hand side is σm+1

m+n−k times the expected value of the random variable (r.v.)

(45) Uk,n
ℓ,m = 1m−ℓ(u)Volm(u′)k−m+1,

where u is a sequence of m + 1 random points uniformly and independently distrib-
uted on the unit sphere in Rm+n−k, and u′ is the corresponding sequence of points
projected to Rm ↪→ Rm+n−k. Our goal is to compute E[Uk,n

ℓ,m] in some special cases.
Instead of working with the original points, we prefer to study their projections toRm,
but the distribution of the m+1 points in Rm has yet to be determined. If the upper
bound is a vertex or an edge, then we find explicit expressions of the expected number
of intervals.

Critical vertices. For m = 0, we count the intervals of type (0, 0) or, equiva-

lently, the critical vertices. Since Uk,n
0,0 = 1, for all k 6 n, we get

(46) Ck,n
0,0 = σn−k

Γ(1− k/n)

nν
1−k/n
n

from (42). Accordingly, the expected number of critical vertices in Ω with weighted

Delaunay radius at most r0 is Ck,n
0,0 times the normalized incomplete Gamma function

times ∥Ω∥ρk/n; compare with (5) and (6) in section 2.

Vertex-edge pairs. Further, we count the intervals of type (0, 1) or, equiv-

alently, the regular vertex-edge pairs. For this, we need the expectation of Uk,n
0,1 :

picking two random points on the unit sphere in Rn−k+1 and projecting them to
R1 ↪→ Rn−k+1, this is the expectation when we get the kth power of the distance
between the projected points if they lie on the same side of the origin, and we get 0
otherwise. Writing u′

0,u
′
1 ∈ [−1, 1] for the projected points and x = |u′

0|, y = |u′
1|

for their absolute values, we note that the signs and magnitudes are independent. It
follows that we get zero with probability 1/2, so the desired expectation is

(47) E[Uk,n
0,1 ] =

1

2
E[|x− y|k] = E[(x− y)k1x>y].

We can therefore restrict our attention to the half of the unit sphere that projects
onto [0, 1]. To integrate over this hemisphere, we use the fact that x2 and y2 are
independent Beta-distributed r.v.’s; see Appendix A. Setting a = x2 and b = y2, we
have

E[Uk,n
0,1 ] =

1

B((n− k)/2, 1/2)2

×
∫ 1

a=0

∫ a

b=0

[
√
a−

√
b]ka−1/2(1− a)(n−k−2)/2b−1/2(1− b)(n−k−2)/2 da db(48)

=
4

B((n− k)/2, 1/2)2

×
∫ 1

x=0

∫ x

y=0

[x− y]k(1− x2)(n−k−2)/2(1− y2)(n−k−2)/2 dxdy(49)

=
Γ(k + 1)Γ((n− k + 1)/2)2

2k
√
π Γ((n− k)/2)2

· 3F̃2

(
1

2
, 1,

k − n+ 2

2
;
k + 3

2
,
n+ 2

2
; 1

)
,(50)
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in which 3F̃2 is the regularized hypergeometric function considered in Appendix A,
and we use Mathematica to move from (49) to (50). As mentioned at the end of
Appendix A,

k + 3

2
+

n+ 2

2
>

1

2
+ 1 +

k − n+ 2

2

is a sufficient condition for the convergence of the infinite sum that defines the value
of the regularized hypergeometric function. This is equivalent to the inequality n > 0,
which is always satisfied. Plugging (50) into (42), we get the following expression for
the corresponding constant:

Ck,n
0,1 =

σ2
n−k+1σkΓ(2− k/n)

4nν
2−k/n
n

Γ(k + 1)Γ((n− k + 1)/2)2

2k
√
π Γ((n− k)/2)

× 3F̃2

(
1

2
, 1,

k − n+ 2

2
;
k + 3

2
,
n+ 2

2
; 1

)
.(51)

Critical edges. Further, we count the intervals of type (1, 1) or, equivalently, the

critical edges. Here the expectation of Uk,n
1,1 is relevant: picking two points on the unit

sphere in Rn−k+1 and projecting them onto R1 ↪→ Rn−k+1, this is the expectation
in which we get the kth power of the distance between the projected points if they
lie on opposite sides of the origin, and we get 0 otherwise. Using again the fact that
the signs and magnitude of the projected points are independent, we note that this
expectation is E[Uk,n

1,1 ] = (1/2)E[(x+ y)k]. Setting a = x2, b = y2 and integrating as
before, we get

E[Uk,n
1,1 ] =

1

B((n− k)/2, 1/2)2

×
∫ 1

a=0

∫ 1

b=0

[
√
a+

√
b]ka−1/2(1− a)(n−k−2)/2b−1/2(1− b)(n−k−2)/2 da db(52)

=
1

B((n− k)/2, 1/2)2

×
∫ 1

a=0

∫ 1

b=0

k∑
i=0

(
k

i

)
a(i−1)/2b(k−i−1)/2(1− a)(n−k−2)/2(1− b)(n−k−2)/2 dadb(53)

=
1

B((n− k)/2, 1/2)2

k∑
i=0

(
k

i

)
B

(
n− k

2
,
i+ 1

2

)
B

(
n− k

2
,
k − i+ 1

2

)
.(54)

Plugging (54) into (42), we get the following expression for the corresponding constant:

Ck,n
1,1 =

σ2
n−k+1σkΓ(2− k/n)

8nν
2−k/n
n B((n− k)/2, 1/2)2

×
k∑

i=0

(
k

i

)
B

(
n− k

2
,
i+ 1

2

)
B

(
n− k

2
,
k − i+ 1

2

)
.(55)

Constants in low dimensions. The authors have checked the k-dimensional
formulas against the 1-dimensional formulas in section 2, both symbolically and nu-
merically. In k = 2 dimensions, the formulas provide sufficient information to compute
all constants governing the expectations of the six types of intervals. We get three
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constants from (46), (51), (55):

C2,n
0,0 =

σn−2Γ(1− 2/n)

nν
1−2/n
n

,(56)

C2,n
0,1 =

σ2
n−1

√
π Γ(2− 2/n)

4nν
2−2/n
n

Γ((n− 1)/2)2

Γ((n− 2)/2)
· 3F̃2

(
1

2
, 1,

4− n

2
;
5

2
,
n+ 2

2
; 1

)
,(57)

C2,n
1,1 =

σ2
n−1Γ(2− 2/n)π

2nν
2−2/n
n

·
[

1

n− 1
+

Γ((n− 1)/2)2

πΓ(n/2)2

]
.(58)

The critical simplices satisfy the Euler relation [8]: C2,n
0,0 − C2,n

1,1 + C2,n
2,2 = 0, which

gives us the constant for the critical triangles. We get another linear relation from
the fact that in the plane the number of triangles is twice the number of vertices [20,
Thm. 10.1.2, p. 458]: C2,n

0,2 + C2,n
1,2 + C2,n

2,2 = 2(C2,n
0,0 + C2,n

0,1 + C2,n
0,2 ). Finally, we get

a relation for the number of weighted Delaunay triangles from (44), which we restate
for k = 2:

(59) D2,n
2 =

2σn+1

3nσn−1

Γ((3n− 1)/2)

Γ((3n− 2)/2)

Γ((n+ 2)/2)3−2/n

Γ((n+ 1)/2)2
Γ(3− 2/n)

Γ((n− 1)/2)
.

Combining C2,n
0,2 +C2,n

1,2 +C2,n
2,2 = D2,n

2 with the two linear relations mentioned above,
we get

C2,n
0,2 = −C2,n

0,0 − C2,n
0,1 +

1

2
D2,n

2 ,(60)

C2,n
1,2 = C2,n

0,0 + C2,n
0,1 − C2,n

2,2 +
1

2
D2,n

2 ,(61)

C2,n
2,2 = −C2,n

0,0 + C2,n
1,1 .(62)

For small values of n, the constants are approximated in Table 2.

Table 2
The rounded constants in the expressions of the expected number of intervals and simplices of

a 2-dimensional weighted Delaunay mosaic obtained from a Poisson point process in n dimensions.

n = 3 4 5 6 7 8 9 10 . . . 20 . . . 1000

C2,n
0,0 1.11 1.25 1.38 1.49 1.58 1.66 1.73 1.79 . . . 2.12 . . . 2.69

C2,n
0,1 0.26 0.42 0.54 0.63 0.71 0.77 0.82 0.86 . . . 1.12 . . . 1.54

C2,n
0,2 0.09 0.15 0.21 0.25 0.28 0.31 0.33 0.35 . . . 0.47 . . . 0.65

C2,n
1,1 2.47 2.92 3.30 3.61 3.87 4.09 4.28 4.44 . . . 5.37 . . . 6.92

C2,n
1,2 1.46 1.83 2.13 2.37 2.57 2.74 2.89 3.01 . . . 3.72 . . . 4.88

C2,n
2,2 1.37 1.67 1.92 2.12 2.29 2.43 2.55 2.66 . . . 3.25 . . . 4.23

D2,n
0 1.46 1.83 2.13 2.37 2.57 2.74 2.89 3.01 . . . 3.72 . . . 4.88

D2,n
1 4.37 5.48 6.38 7.10 7.71 8.22 8.66 9.03 . . . 11.16 . . . 14.65

D2,n
2 2.92 3.66 4.25 4.74 5.14 5.48 5.77 6.02 . . . 7.44 . . . 9.77

7. Discussion. The main result of this paper is the stochastic analysis of the
radius function of a weighted Poisson–Delaunay mosaic. As a consequence, we get
formulas for the expected number of simplices in weighted Poisson–Delaunay mo-
saics (cf. [12], [13]). The main technical steps leading up to this result are a new
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Blaschke–Petkantschin formula for spheres, stated as Theorem 2, and the discrete
Morse theory approach recently introduced in [7].

There are a number of open questions that remain:
(1) We have explicit expressions for the constants in the expected number of

intervals of all types for dimension k 6 2. To go beyond two dimensions, Wendel’s
method of reflecting vertices of a simplex through the origin [23] should be useful.
Short of getting precise formulas, can we say something about the asymptotic behavior
of the constants, as k and n go to infinity?

(2) The connection to the Crofton formula and the volumes of Voronoi skeleta has
been mentioned in section 5. Are there further connections that relate such volumes
with simplices of dimension strictly less than k, or with subsets of simplices limited
to radii at most r0?

(3) The slice construction implies a repulsive force among the vertices: the vertices
of the weighted Poisson–Delaunay mosaic are more evenly spread than a Poisson
point process. For fixed k, the repulsion gets stronger with increasing n. It would be
interesting to analytically study this repulsive force and its consequences.

Appendix A. On special functions. In this appendix, we define and discuss
three types of special functions used in the main part of this paper: Gamma functions,
Beta functions, and hypergeometric functions.

Gamma functions. We recall that the lower-incomplete Gamma function takes
two parameters, j and t0 > 0, and is defined by

(63) γ(j; t0) =

∫ t0

t=0

tj−1e−t dt.

The corresponding complete Gamma function is Γ(j) = γ(j;∞). An important re-
lation for Gamma functions is Γ(j + 1) = j Γ(j), which holds for any real j that is
not a nonpositive integer. We often use the ratio, γ(j; t0)/Γ(j), which is the density
of a probability distribution and called the Gamma distribution with parameter j.
We prove a technical lemma about incomplete Gamma functions, which is repeatedly
used in the main part of this paper.

Lemma 2 (Gamma function). Let c, p, j, t0 ∈ R with p ̸= 0 and t0 > 0. Then

(64)

∫ t0

t=0

tj−1e−ctp dt =
γ(j/p; ctp0)

pcj/p
.

Proof. We rewrite the numerator on the right-hand side of (64) using the def-
inition of the right-incomplete Gamma function (63) and substituting u = ctp and
du = cptp−1 dt:

γ

(
j

p
; ctp0

)
=

∫ ctp0

u=0

uj/p−1e−u du(65)

=

∫ t0

t=0

(ctp)j/p−1e−ctpcptp−1 dt(66)

=

∫ t0

t=0

pcj/ptj−1e−ctp dt.(67)

Dividing by pcj/p gives the claimed relation.
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Beta functions. Given real numbers a, b, and 0 6 t0 6 1, the incomplete Beta
function is defined by

(68) Bt0(a, b) =

∫ t0

t=0

ta−1(1− t)b−1 dt,

and the complete Beta function is B(a, b) = B1(a, b), which can be expressed in terms
of complete Gamma functions as B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

The Beta functions can be used to integrate over the projection of a sphere in
Rn to a linear subspace Rk ↪→ Rn, as we now explain. Assuming that Rk is spanned
by the first k coordinate vectors of Rn, the projection of a point means dropping
coordinates from k + 1 to n. Suppose now that we pick a point x = (x1, . . . , xn)
uniformly on Sn−1 by normalizing a vector of n normally distributed r.v.’s: Xi ∼
N (0, 1), 1 6 i 6 n, and xj = Xj/

(∑n
i=1 X

2
i

)1/2
for 1 6 j 6 n. Its projection to

Rk is x′ = (x1, . . . , xk, 0, . . . , 0), and the squared distance from the origin is ∥x′∥2 =(∑k
i=1 x

2
i

)
/
(∑n

i=1 x
2
i

)
. This can be written as r2 = X/(X+Y ), in which X and Y are

χ2-distributed independent r.v.’s with k and n − k degrees of freedom, respectively.
This implies that r2 ∼ B(k/n, (n − k)/n) [22, section 4.2]. Consider, for example,
the case k = n − 1. Integrating in Rk over all points with distance at most r0 from
the origin is the same as integrating over two spherical caps of Sn−1, namely the cap
around the north pole bounded by (n − 2)-spheres of radius r0, and a similar cap
around the south pole. To compute the volume of a single such cap, we set t0 = r20
and integrate the incomplete Beta function:

Voln−1(r0) =
σn

2B((n− 1)/2, 1/2)

∫ t0

t=0

t(n−1)/2−1(1− t)1/2−1 dt

=
Bt0((n− 1)/2)1/2

2B((n− 1)/2, 1/2)
.(69)

Similarly, we can integrate over a ball in a k-dimensional projection and get the
volume of the preimage, which is a solid torus inside the (n− 1)-sphere.

Hypergeometric functions. The family of hypergeometric functions takes p+q
parameters and one argument and can be defined as a sum of products of Gamma
functions, while the regularized version of this function is obtained by normalizing by
the product of Γ(bi):

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
j=0

[ p∏
i=1

Γ(j + ai)

Γ(ai)

][ q∏
i=1

Γ(bi)

Γ(j + bi)

]
zj

j!
,(70)

pF̃q(a1, . . . , ap; b1, . . . , bq; z) = pFq(a1, . . . , ap; b1, . . . , bq; z)

/ q∏
i=1

Γ(bi)(71)

=

∞∑
j=0

[ p∏
i=1

Γ(j + ai)

Γ(ai)

][ q∏
i=1

1

Γ(j + bi)

]
zj

j!
.(72)

We are interested in the type p = 3 and q = 2. Here convergence of the infinite sum
depends on the values of the parameters. We always have convergence for |z| < 1,
and if z = 1, a sufficient condition for convergence is b1+ b2 > a1+a2+a3 (see [18]).
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