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Взвешенные k-мерные диаграммы Вороного, также известные
как диаграммы Лагерра, можно получить при пересечении обычной
диаграммы Вороного в Rn с k-плоскостью. Для каждого симплек-
са двойственной взвешенной триангуляции Делоне существует един-
ственная сфера минимального радиуса с центром в этой k-плоско-
сти, описанная вокруг этого симплекса, и сопоставление симплек-
су радиуса этой сферы является обобщенной дискретной функцией
Морса. В статье рассмотрены случайные взвешенные триангуляции
Делоне, порожденные стационарным пуассоновским точечным про-
цессом в Rn, и посчитаны, как функции радиуса, математические
ожидания количества симплексов и интервалов дискретной функ-
ции Морса. В качестве приложения предлагается новое доказатель-
ство для математического ожидания количества компонент связно-
сти (кластеров) в прямолинейном сечении булевой модели в теории
перколяции.
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1. Introduction. Given a discrete set of points Y ⊆ Rk, the Voronoi
tessellation tiles the k-dimensional Euclidean space with convex polyhedra,
each consisting of all points a∈Rk for which a particular point y is the closest
among all points in Y . To generalize, suppose each y ∈Y has a weight wy ∈R,
and substitute the power distance of a from y, defined as ∥a−y∥2−wy, for the
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squared Euclidean distance in the definition of the Voronoi tessellation. The
resulting tiling of Rk into convex polyhedra is known by several names, in-
cluding power diagrams [1] and Laguerre tessellations [13], but to streamline
language we will call them weighted Voronoi tessellations. They do indeed
look like unweighted Voronoi tessellations, except that the hyperplane sepa-
rating two neighboring polyhedra does not necessarily lie halfway between the
generating points; see Fig. 1. Our motivation for studying weighted Voronoi
tessellations derives from the extra degree of freedom — the weight — which
permits better approximations of observed tilings, such as cell cultures in
plants [19] and microstructures of materials [4]. Beyond this practical con-
sideration, there is an intriguing connection between the volumes of skeleta
of unweighted Voronoi tessellations and the number of simplices in weighted
Delaunay mosaics through the Crofton formula, which is worth exploring.
We will discuss it at the end of section 5.

Fig. 1. Weighted Voronoi tessellation in R2 with superimposed
weighted Delaunay mosaic. All points have zero weight except the
point with the shaded domain, which has positive weight.

Our preferred construction takes a k-dimensional slice through a Voronoi
tessellation in Rn (see [2], [21]). Specifically, if X is a discrete set of points
in Rn and Rk ↪→ Rn is spanned by the first k 6 n coordinate axes, then the
Voronoi tessellation of X in Rn intersects Rk in a k-dimensional weighted
Voronoi tessellation. The points in Rk that generate the weighted tessellation
are the orthogonal projections yx of the points x ∈ X, and their weights are
wx = −∥x−yx∥2. While all weights in this construction are nonpositive, this
is not a restriction of generality because the tessellation remains unchanged
when all weights are increased by the same amount. Indeed, every weighted
Voronoi tessellation with bounded weights can be obtained as a slice of an
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unweighted Voronoi tessellation. It is often more convenient to consider the
dual of a weighted Voronoi tessellation, which is again known by several
names, including Laguerre triangulation [17] and regular triangulation [9],
but we will call them weighted Delaunay mosaics. An important difference
to the unweighted concept is that the Voronoi polyhedron of a weighted point
may be empty, in which case this weighted point will not be a vertex of the
weighted Delaunay mosaic. For generic sets of weighted points, the weighted
Delaunay mosaic is a simplicial complex in Rk. Since we focus on slices of
unweighted Voronoi tessellations, we define the general position only in this
case. Specifically, we say a discrete set X ⊆ Rn is generic if the following
conditions are satisfied for every 0 6 j < n:

(a) no j + 2 points belong to a common j-plane;
(b) no j + 3 points belong to a common j-sphere;
(c) considering a unique j-sphere that passes through j + 2 points, no

j + 1 of these points belong to a j-plane that passes through the center of
the j-sphere;

(d) considering a unique j-plane that passes through j + 1 points, this
plane is neither orthogonal nor parallel to Rk;

(e) no two points have identical distance to Rk.
For j = 0, property (d) means that no point of X is in Rk. We note that

the Poisson point process is generic with probability 1.
Continuing the work started in [7], we are interested in the stochastic

properties of the weighted Delaunay mosaics and their radius functions. To
explain the latter concept, we assume the generic case in which the mosaic
is a simplicial complex, and for every simplex Q′ ∈ DelY with preimage
Q ⊆ Rn, we find the smallest (n − 1)-sphere that satisfies the following
properties:

(i) it passes through all vertices of Q (it is a circumscribed sphere of Q);
(ii) the open ball it bounds does not contain any points of X (it is empty);
(iii) its center lies in Rk (it is anchored).
The existence of such spheres for the simplices of the weighted mosaic

can be shown in a way similar to the unweighted case [5] and is left to the
reader. We call this sphere the weighted Delaunay sphere and its radius the
weighted Delaunay radius of Q′ ∈ DelY . Similarly, when considering Q in-
stead of Q′, we call this sphere the anchored Delaunay sphere and its center
the anchor of Q. The radius function of the weighted Delaunay mosaic,
R : DelY → R, maps every simplex to its weighted Delaunay radius. As
in the unweighted case, it partitions DelY into intervals of simplices that
share the same weighted Delaunay sphere and, therefore, the same function
value [3]. These intervals have topological significance [8]: adding the sim-
plices in the order of increasing radius, the homotopy type of the complex
changes whenever the interval contains a single simplex and it remains un-
changed whenever the interval contains two or more simplices. Indeed, the
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operation in the latter case is known as anticollapse and has been studied ex-
tensively in combinatorial topology. Each interval is defined by two simplices
L ⊆ U in the weighted Delaunay mosaic and consists of all simplices that
contain L and are contained in U . We call Q′ ∈ DelY a critical simplex of R
if it is the sole simplex in its interval: L = Q′ = U , and we call Q′ a regular
simplex of R, otherwise. The type of the interval is the pair of dimensions of
the lower and the upper bound: (ℓ,m) in which ℓ = dimL and m = dimU .
Our main result is an extension of the stochastic findings about the radius
function of the Poisson–Delaunay mosaic in [7] from the unweighted to the
weighted case.

Theorem 1 (Main result). Let X be a Poisson point process with den-
sity ρ in Rn and Rk ↪→ Rn . There are constants Ck,n

ℓ,m such that for any
r0 > 0, the expected number of intervals of type (ℓ,m) in the k-dimensional
weighted Poisson–Delaunay mosaic with center in a Borel set Ω ⊆ Rk and
weighted Delaunay radius at most r0 is

E[ck,nℓ,m(r0)] = Ck,n
ℓ,m

γ(m+ 1− k/n; ρνnr
n
0 )

Γ(m+ 1− k/n)
ρk/n∥Ω∥, (1)

in which νn is the volume of the unit ball in Rn , and we give explicit compu-
tations of the constants in k 6 2 dimensions. Similarly, the expected number
of j-dimensional simplices in the weighted Poisson–Delaunay mosaic with
center in a Borel set Ω ⊆ Rk and weighted Delaunay radius at most r0 is

E[dk,nj (r0)] =

[ k∑
m=j

γ(m+ 1− k/n; ρνnr
n
0 )

Γ(m+ 1− k/n)

j∑
ℓ=0

(
m− ℓ

m− j

)
Ck,n
ℓ,m

]
ρk/n∥Ω∥. (2)

Some of the values for constants Ck,n
ℓ,m are listed in Tables 1 and 2 (see sec-

tions 2 and 6, respectively). In an equivalent formulation, this theorem states
that the weighted Delaunay radius of a typical interval is Gamma-distributed,
whereas the weighted Delaunay radius of a typical simplex is a mixture of
Gamma distributions; cf. [7]. In a more general context, the contributions
of this paper are to the field of stochastic geometry, which was summa-
rized in the text by Schneider and Weil [20]. The particular questions on
Poisson–Delaunay mosaics studied in this paper have been pioneered by Miles
almost 50 years ago (see [14], [15]). Formulas for the weighted case have also
been derived by Møller [16], but these are restricted to top-dimensional sim-
plices whose expected numbers can be derived using Crofton formula and
expected volumes of Voronoi skeleta.

Outline. Section 2 discusses the case k = 1 as a warm-up exercise. It
is sufficiently elementary so that explicit formulas can be derived without
reliance on more difficult to prove general integral formulas. Section 3 shows
how to get the expected number of connected components in the intersection
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of a line with a circular Boolean model in Rn using discrete Morse the-
ory. Section 4 proves a Blaschke–Petkantschin type formula for the general
weighted case. Section 5 uses this formula to prove our main result. Section 6
develops explicit expressions for all types of intervals in two dimensions. Sec-
tion 7 concludes this paper. Appendix A introduces the special functions and
distributions used in the derivation of our results.

2. One dimension. In k = 1 dimension, the weighted Delaunay mosaic
has a simple structure so that results can be obtained by elementary means.

Slice construction. Let n > 2 and let X ⊆ Rn be a stationary Poisson
point process with density ρ > 0. We write R1 ↪→ Rn for the first coor-
dinate axis, which is a directed line passing through Rn. For each point
x = (x1, x2, . . . , xn) ∈ X, we write yx = (x1, 0, . . . , 0) for the projection
onto R1 and −wx = x22+x23+ · · ·+x2n for its squared distance from the line.
Letting Y = {(yx, wx) | x ∈ X} be the resulting set of weighted points
in R1, we are interested in its weighted Voronoi tessellation, VorY , and its
weighted Delaunay mosaic, DelY . By construction, the former is the in-
tersection of the n-dimensional (unweighted) Voronoi tessellation with the
line: VorY = {domain(x) ∩R1 | x ∈ X}. As discussed above, the interval
domain(x) ∩ R1 belongs to the weighted Voronoi tessellation if and only if
there is an anchored Delaunay sphere of x, that is: an empty sphere cen-
tered in R1 that passes through x. Similarly, two weighted Voronoi domains,
domain(x) ∩R1 and domain(u) ∩R1, share an endpoint if and only if there
is an empty anchored Delaunay sphere passing through x and u. It follows
that every edge in DelY is the projection of an edge in DelX; see Fig. 2.

Fig. 2. Left : a 1-dimensional weighted Voronoi tessellation as a slice
of a 2-dimensional unweighted Voronoi tessellation. The weighted
Delaunay mosaic in R1 is the projection of a chain of edges in the
2-dimensional unweighted Delaunay mosaic. Right : reflecting the
points across R1 affects the 2-dimensional Voronoi tessellation but
not the 1-dimensional slice.

As suggested in this figure, we can simplify the construction by reduc-
ing n to 2. Writing H for the half-plane of points whose first coordinate
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is arbitrary, whose second coordinate is nonnegative, and whose remain-
ing n − 2 coordinates vanish, we map x = (x1, . . . , xn) ∈ Rn to x′ =
(x1,

∑n
i=2 x

2
i , 0, . . . , 0)∈H. This amounts to rotating x about R1 into H. Let

X ′ be the resulting set of points in H and Y ′ the set of weighted points in R1

obtained by projection from X ′. Then Y = Y ′, which shows that X and X ′

define the same 1-dimensional weighted Voronoi tessellation and weighted De-
launay mosaic. There is a small price to pay for the simplification, namely
that the projected Poisson point process in H is not necessarily homoge-
neous. Specifically, the projected process in H is a Poisson point process
with intensity ϱ(x) = σn−1ρx

n−2
2 , in which σn−1 is the (n − 2)-dimensional

volume of the unit sphere in Rn−1.
Interval structure. We now return to the intervals of the radius func-

tion in one dimension, R : DelY → R. In the assumed generic case, DelY
contains only two kinds of simplices: vertices and edges. By definition, the
value of R at a simplex Q′ ∈ DelY is the radius of the anchored Delaunay
sphere of the preimage of Q′. There are only three types of intervals [L,U ]:

(0, 0): here L = U and dimL = dimU = 0. The interval contains a single
and, therefore, critical vertex.

(1, 1): here L = U and dimL = dimU = 1. The interval contains a single
and, therefore, critical edge.

(0, 1): here L ⊆ U and dimL = dimU−1. The interval is a pair consisting
of a regular vertex and a regular edge. We call it a vertex-edge pair if
the vertex precedes the edge as we go from left to right, and we call it
an edge-vertex pair, otherwise.

Fig. 3. From left to right on the horizontal line: a critical vertex,
an edge-vertex pair, a critical edge, a vertex-edge pair, and another
critical vertex.

The cases can be distinguished geometrically, as illustrated in Fig. 3. Let
x = (x1, x2) ∈ H and yx = (x1, 0) with weight wx = −x22. Then L =
U = {yx} is a critical vertex of DelY if and only if yx is the anchor of x.
Otherwise, the anchored Delaunay circle of x also passes through a second
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point, u ∈ X ⊆ H, with yx and yu on the same side of the anchor. In this
case, L = {yx} and U = {yx, yu} form a vertex-edge or an edge-vertex pair.
Finally, we have a critical edge L = U = {yx, yu} if yx and yu lie on opposite
sides of the anchor.

We will make essential use of the geometric characterization of interval
types when we compute their expected numbers. To simplify the computa-
tion, we note that the structure along R1 is a strict repetition of the following
pattern: a critical vertex, a nonnegative number of edge-vertex pairs, a crit-
ical edge, and a nonnegative number of vertex-edge pairs.

Critical vertices. We begin with computing the number of critical ver-
tices, c1,n0,0 , inside a region Ω ⊆ R1 and with weighted Delaunay radius at
most some threshold r0. Let x = (x1, x2) ∈ X ⊆ H and note that the
smallest anchored circle passing through x has the center yx = (x1, 0) and
the radius r = x2. Write P∅(x) for the probability that this circle is empty,
1Ω(x) for the indicator that yx ∈ Ω, and 1r0(x) for the indicator that r 6 r0.
We use the Slivnyak–Mecke formula to compute

E[c1,n0,0 (r0)] =

∫
x∈H

1Ω(x)1r0(x)P∅(x)ϱ(x) dx; (3)

compare with [7]. The intensity measure of the upper semicircle with radius r
is of course ρ times the volume of an n-ball with radius r, which we write
as ρνrr

n. Hence, P∅(x) = e−ρνnrn . In other words, the probability that the
anchored circle is empty is the probability that the n-ball whose points get
rotated into the semidisk is empty. So we have

E[c1,n0,0 (r0)] =

∫
x1∈Ω

∫ r0

r=0
e−ρνnrnρσn−1r

n−2 dr dx1

= ∥Ω∥σn−1ρ

∫ r0

r=0
rn−2e−ρνnrn dr. (4)

To evaluate this integral, we use the identity on Gamma functions proved as
Lemma 2 in Appendix A, where the functions are defined. In this application,
the integral on the right-hand side in (4) evaluates to γ(1− 1/n; ρνnr

n
0 )/[n ·

(ρνn)
1−1/n]. Writing c1,n0,0 = c1,n0,0 (∞), we set r0 = ∞ to get the expected total

number of critical vertices, and we write the expected number up to weighted
Delaunay radius r0 as a fraction of the former:

E[c1,n0,0 ] =
σn−1Γ(1− 1/n)

nν
1−1/n
n

∥Ω∥ρ1/n, (5)

E[c1,n0,0 (r0)] =
γ(1− 1/n; ρνnr

n
0 )

Γ(1− 1/n)
E[c1,n0,0 ]. (6)

Regular edges. To count the regular edges — or intervals of type (0, 1) —
we again use the Slivnyak–Mecke formula. Let x = (x1, x2) and u = (u1, u2)
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be two points in X ⊆ H. There is a unique anchored circle that passes
through both points, and the edge connecting yx and yu belongs to DelY
if and only if this circle is empty. Writing (z1, 0) for the center and r for
the radius, the edge is critical, if x1 < z1 < u1, and regular, otherwise;
see Fig. 3. Write P∅(x, u) for the probability that a unique anchored circle
passing through x and u is empty, 1Ω(x, u) for the indicator that z1 ∈ Ω,
write 1r0(x, u) for the indicator that r 6 r0, and 10,1(x, u) for the indicator
that x1 and u1 lie on the same side of z1. By Slivnyak–Mecke formula, we
have

E[c1,n0,1 (r0)] =
1

2!

∫
u∈H

∫
x∈H

1Ω(x, u)1r0(x, u)10,1(x, u)P∅(x, u)ϱ(x)ϱ(u) dx du.

(7)
We already know that P∅(x, u) = e−ρνnrn . To compute the rest, we do
a change of variables, reparametrizing the points by the center and radius of
a unique anchored circle passing through them and two angles: x = (z1 +
r cos ξ, r sin ξ) and u = (z1 + r cos υ, r sin υ), in which 0 6 ξ, υ < π. This is
a bijection up to a set of measure 0. The Jacobian of this change of variables
is the absolute determinant of the matrix of old variables derived by the new
variables:

J = abs


1 cos ξ −r sin ξ 0
0 sin ξ r cos ξ 0
1 cos υ 0 −r sin υ
0 sin υ 0 r cos υ

 = r2| cos υ − cos ξ|. (8)

With the new variables, the indicators can be absorbed into integration lim-
its: 1Ω(x, u) = 1 if and only if z1 ∈ Ω, and 10,1(x, u) = 1 if and only if ξ
and υ are either both smaller or both larger than π/2. The two cases are
symmetric, so we assume the former and multiply with 2. The integral in (7)
thus turns into

E[c1,n0,1 (r0)] =

∫
z1∈Ω

∫ r0

r=0
e−ρνnrn

∫
06ξ, υ<π/2

ρ2σ2
n−1(r

2 sin ξ sin υ)n−2r2

× | cos υ − cos ξ| dξ dυ dr dz1 (9)

= ∥Ω∥ρ2σ2
n−1

∫ r0

r=0
e−ρνnrnr2n−2 dr

∫
06ξ, υ<π/2

(sin ξ sin υ)n−2

× | cos υ − cos ξ| dξ dυ. (10)

We apply Lemma 2 to evaluate the integral over the radius, and we use the
Mathematica software to evaluate the integral over the two angles:∫

r6r0

r2n−2e−ρνnrn dr =
γ(2− 1/n; ρνnr

n
0 )

n(ρνn)2−1/n
, (11)
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∫
06ξ, υ<π/2

(sin ξ sin υ)n−2| cos υ − cos ξ| dξ dυ

=

√
π

n− 1

[
2Γ(n− 1)

Γ(n− 1/2)
− Γ((n− 1)/2)

Γ(n/2)

]
. (12)

Setting r0 = ∞, we get the expected total number of regular edges, and as
before we write the expected number up to weighted Delaunay radius r0 as
a fraction of the total number:

E[c1,n0,1 ] =
σ2
n−1Γ(2− 1/n)

nν
2−1/n
n

√
π

n− 1

[
2Γ(n− 1)

Γ(n− 1/2)
− Γ((n− 1)/2)

Γ(n/2)

]
∥Ω∥ρ1/n,

(13)

E[c1,n0,1 (r0)] =
γ(2− 1/n; ρνnr

n
0 )

Γ(2− 1/n)
E[c1,n0,1 ]. (14)

Summary. Recall that the critical vertices and the critical edges alter-
nate along R1, which implies that their expected total number is the same.
The dependence on the radius threshold, r0, is however different. Here we no-
tice that the dependence on the radius for c1,n1,1 is the same as for c1,n0,1 because
what changes in the integration are only the admissible angles. Extracting
the constants from the formulas for the expectation, we use (5) and (13) to
get

C1,n
0,0 = C1,n

1,1 =
σn−1Γ(1− 1/n)

nν
1−1/n
n

, (15)

C1,n
0,1 =

σ2
n−1

√
π Γ(2− 1/n)

n(n− 1)ν
2−1/n
n

[
2Γ(n− 1)

Γ(n− 1/2)
− Γ((n− 1)/2)

Γ(n/2)

]
; (16)

see Table 1. We write the expectations as fractions of these constants times
the size of the region times the n-th root of the density in Rn:

E[c1,n0,0 (r0)] = C1,n
0,0

γ(1− 1/n; ρνnr
n
0 )

Γ(1− 1/n)
∥Ω∥ρ1/n, (17)

E[c1,n0,1 (r0)] = C1,n
0,1

γ(2− 1/n; ρνnr
n
0 )

Γ(2− 1/n)
∥Ω∥ρ1/n, (18)

E[c1,n1,1 (r0)] = C1,n
1,1

γ(2− 1/n; ρνnr
n
0 )

Γ(2− 1/n)
∥Ω∥ρ1/n. (19)

To get the corresponding results for the simplices in the weighted Delaunay
mosaic, we note that the number of vertices is d1,n0 = c1,n0,0 + c1,n0,1 and the
number of edges is d1,n1 = c1,n0,1 + c1,n1,1 . The two are the same, but this is
not true if we limit the radius to a finite threshold. Indeed, the radius of
a typical edge is Gamma-distributed while the radius of a typical vertex
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follows a linear combination of two Gamma distributions. In the limit, when
n → ∞, the constants are limn→∞C1,n

0,0 =
√
e, limn→∞C1,n

0,1 =
√
e(
√
2 − 1),

and limn→∞D1,n
0 = limn→∞D1,n

1 =
√
2e, which can again be verified using

the Mathematica software.

Table 1. The rounded constants in the expressions of the expected
number of intervals and simplices of a 1-dimensional weighted Delau-
nay mosaic. The ratio of the expected number of critical edges over
the expected number of regular edges it is monotonically decreasing.
It follows that we can infer the ambient dimension from the ratio.

n = 2 3 4 5 6 7 8 9 . . . 20 . . . ∞
C1,n

0,0 1.00 1.09 1.16 1.22 1.26 1.29 1.32 1.35 . . . 1.47 . . . 1.65

C1,n
0,1 0.27 0.36 0.42 0.45 0.48 0.50 0.51 0.53 . . . 0.60 . . . 0.68

D1,n
0 1.27 1.46 1.58 1.67 1.74 1.79 1.84 1.87 . . . 2.07 . . . 2.33

3. Connection to Boolean model. Let X be a Poisson point process
with density ρ in Rn, and write Xr for the union of closed balls of fixed
radius r whose centers are in X. This random set is sometimes referred
to as the Boolean model [20]. Let Ω ⊆ R1 ⊆ Rn be a line segment,
and consider Xr ∩ Ω. We are interested in the connected components in
this intersection and claim that their number satisfies β0(Delr(Y ; Ω)) 6
β0(Xr ∩Ω) 6 β0(Delr(Y ; Ω)) + 2, in which Delr(Y ; Ω) is the subcomplex
of the weighted Delaunay mosaic that consists of all simplices with radius
at most r whose weighted Delaunay center lies in Ω. This follows from the
general observation that the weighted Delaunay mosaic of a set of points
y ∈ Rk with weights wy is homotopy equivalent to the union of power balls,
Yr = {a ∈ Rk | ∥a − y∥2 − wy 6 r2}, and Yr ∩ Ω = Xr ∩ Ω. Indeed, the
weighted Delaunay complex can be defined as the nerve of the decomposition
of Yr with the weighted Voronoi tessellation, so the Nerve Theorem asserts
the homotopy equivalence; see [6] for details. By restricting the Delaunay
mosaic to a line segment, we can lose up to two connected components at
the ends of Ω; see Fig. 4.

Following the evolution of the nested complexes Delr(Y ; Ω), as r goes
from 0 to ∞, we observe that upon entering the complex a critical vertex
creates a new component, a regular interval does not affect the homotopy
type, and a critical edge connects two components; cf. Fig. 3. It follows that
the expected number of components in Delr(Y ; Ω) is

E[c1,n0,0 (r)− c1,n1,1 (r)]

=
σn−1Γ(1− 1/n)

nν
1−1/n
n

[
γ(1− 1/n; ρνnr

n)

Γ(1− 1/n)
− γ(2− 1/n; ρνnr

n)

Γ(2− 1/n)

]
ρ1/n∥Ω∥

(20)
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Fig. 4. Intersection of a union of 2-dimensional balls with a line
segment Ω. This intersection has three components, two more than the
restricted weighted Delaunay mosaic, which consists of two vertices and
the connecting edge in the middle of Ω. The restricted mosaic misses
the two tail components because the centers of the corresponding balls
do not project into Ω.

=
σn−1

nν
1−1/n
n

[
γ(1− 1

n
; ρνnr

n)− γ(2− 1/n; ρνnr
n)

1− 1/n

]
ρ1/n∥Ω∥. (21)

We write A = ρνnr
n, use the definition of the incomplete Gamma function,

and integrate by parts to get

γ(2− 1/n; A) =

∫ A

0
x1−1/ne−x dx

= [−x1−1/ne−x]A0 +

(
1− 1

n

)∫ A

0
x−1/ne−x dx (22)

= −A1−1/ne−A +

(
1− 1

n

)
γ

(
1− 1

n
; A

)
. (23)

Noticing that A1−1/nρ1/n = (ρνnr
n)1−1/nρ1/n = ρν

1−1/n
n rn−1, we plug (23)

into (21) to obtain

E[β0(Delr(Y ; Ω))] =
σn−1

nν
1−1/n
n

1

1− 1/n
e−ρνnrnρν1−1/n

n rn−1∥Ω∥

=
σn−1

n− 1
rn−1e−ρνnrnρ∥Ω∥ (24)

= νn−1r
n−1e−ρνnrnρ∥Ω∥, (25)

where we use the identity σn−1/(n− 1) = νn−1 in the last transition. In
short, (25) gives an explicit formula for the expected density of connected
components in the Boolean model in Rn intersected with a line. While
the authors did not find the explicit expression in the literature, this result
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is not new and follows after some straightforward computations from [11,
Excercise 4.8]. Our aim is to provide another, more topological view on the
problem. The graphs of β0 for different dimensions n are shown in Fig. 5.

Fig. 5. The expected number of connected components per unit length
as a function of the radius. To facilitate the comparison of the graphs in
different dimensions, n, we rescale such that a unit along the horizontal
axis is the expected number of points inside a ball of radius r in Rn.

Using the Crofton formula [20, Theorem 9.4.7] but see also [10] and the
fact that almost every connected component is a line segment that meets the
boundary of the Boolean model in two points, (25) can be transformed into
a statement about the boundary of Xr:

V n−1(Xr) = 2
√
π

Γ(n/2)

Γ((n+ 1)/2)
νn−1r

n−1e−ρνnrnρ, (26)

in which V n−1(Xr) is the expected density of (n− 1)-dimensional volume of
the boundary; see [20, section 9] for the detailed discussion of the quantity.

4. Anchored Blaschke–Petkantschin formula. To extend the results
in the previous section from 1 to k dimensions, we first generalize the Blasch-
ke–Petkantschin formula for spheres stated as Theorem 7.3.1 in [20].

Setting the stage. Recall that k 6 n are positive integers, and that
we write Rk for the k-dimensional linear subspace spanned by the first k
coordinate vectors of Rn. While we used uppercase letters to denote simplices
in the previous sections, we now write x for a sequence of m + 1 6 k + 1
points in Rn. The reason for the change of notation is that we integrate over
all such sequences and do not limit ourselves to points in the Poisson point
process. Similarly, we write u if the m+ 1 points lie on the unit sphere. As
usual, we do not distinguish between a simplex and its vertices, so we write
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Volm(x) for the m-dimensional Lebesgue measure of the convex hull of x.
Assuming the m+1 points are in general position in Rn, the affine hull of x
is an m-plane, M = aff x. Furthermore, the set of centers of the spheres
that pass through all points of x is an (n−m)-plane, M⊥, orthogonal to M .
Generically, the intersection of M⊥ with Rk is a plane of dimension k −m.
The center of the smallest anchored sphere passing through x is the point of
this intersection that is the closest to x.

Top-dimensional case. We first show how to transform an integral over
m+ 1 = k + 1 points to the integral over a unique anchored sphere passing
through these points.

Lemma 1 (Blaschke–Petkantschin for top-dimensional simplices). Let
0 6 k 6 n. Then every measurable nonnegative function f : (Rn)k+1 → R
satisfies

∫
x∈(Rn)k+1

f(x) dx

=

∫
y∈Rk

∫
r>0

∫
u∈(Sn−1)k+1

f(y + ru)r(n−1)(k+1)k! Volk(u
′) dudr dy, (27)

in which u′ is the projection of u to Rk , Volk(u′) is the Lebesgue measure of
the k-simplex, and we use the standard spherical measure on Sn−1 .

Proof. We follow the proof of Theorem 7.3.1 in [20], with just slight mod-
ifications. Recall first that we choose the coordinates in Rn so that the
projection of x = (x1, . . . , xn) to Rk ↪→ Rn is x′ = (x1, . . . , xk, 0, . . . , 0).
The claimed relation is a change of variables: on the right-hand side, we
represent the points x by the center y ∈ Rk ↪→ Rn of the anchored sphere
passing through these points, its radius r, and k points u on the unit sphere
Sn−1 ↪→ Rn. This change of variables is the mapping ϕ : Rk × [0,∞) ×
(Sn−1)k+1 → (Rn)k+1 defined by ϕ(y, r,u0,u1, . . . ,uk) = (y + ru0, y + ru1,
. . . , y + ruk), we note that ϕ is bijective up to a measure 0 subset of the
domain. We claim the Jacobian of ϕ is

J(y, r,u) = r(n−1)(k+1)k! Volk(u
′), (28)

in which u′ = (u′
0,u

′
1, . . . ,u

′
k) is the projection of u to Rk. To prove (28) at

a particular point (y, r,u), we choose local coordinates around every point ui

on the sphere. We choose them such that the matrix [uiu̇i] is orthogonal,
for every 0 6 i 6 k, in which u̇i is the (n × (n − 1))-matrix of partial
derivatives with respect to the n − 1 local coordinates. This is the same
parametrization as in [20]. With this, the Jacobian is the absolute value of
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the (n(k + 1)× n(k + 1))-determinant

J(y, r,u) = abs

∣∣∣∣∣∣∣∣∣
En,k u0 ru̇0 0 . . . 0
En,k u1 0 ru̇1 . . . 0

...
...

...
...

. . .
...

En,k uk 0 0 . . . ru̇k

∣∣∣∣∣∣∣∣∣ , (29)

where we write the matrix in block notation, with En,k the (n × k)-matrix
with all elements zero and ones in the diagonal. Similarly, ui is a column
vector of length n, ru̇i is an (n× (n− 1))-matrix, and 0 is the zero matrix of
appropriate size, which in this case is an (n× (n− 1))-matrix. Like in [20],
we extract r from (k + 1)(n− 1) columns, and use the fact that transposing
the matrix does not affect the determinant to get

(
J(y, r,u)

r(k+1)(n−1)

)2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ek,n Ek,n . . . Ek,n

uT
0 uT

1 . . . uT
k

u̇T
0 0 . . . 0
0 u̇T

1 . . . 0
...

...
. . .

...
0 0 . . . u̇T

k

∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣
En,k u0 u̇0 0 . . . 0
En,k u1 0 u̇1 . . . 0

...
...

...
...

. . .
...

En,k uk 0 0 . . . u̇k

∣∣∣∣∣∣∣∣∣ .
(30)

The orthogonality of the matrices [uiu̇i] implies that uT
i ui = 1, u̇T

i u̇i =
En−1,n−1, whereas uT

i u̇i is the zero row vector of length n − 1, and u̇T
i ui is

the zero column vector of length n−1, for each 0 6 i 6 k. We can, therefore,
multiply the matrices and get

(
J(y, r,u)

r(k+1)(n−1)

)2

=

∣∣∣∣∣∣∣∣∣∣∣

(k + 1)Ek,k
∑

u′
i u̇′

0 . . . u̇′
k∑

u′T
i k + 1 0 . . . 0

u̇′T
0 0 En−1,n−1 . . . 0
...

...
...

. . .
...

u̇′T
k 0 0 . . . En−1,n−1

∣∣∣∣∣∣∣∣∣∣∣
, (31)

in which we write u′
i for the vector consisting of the first k coordinates of ui.

Similarly, u̇′
i is the (k × (n − 1))-matrix obtained from u̇i by dropping the

bottom n − k rows. As written, the (n(k + 1) × n(k + 1))-matrix in (31) is
a ((k + 3) × (k + 3))-matrix of blocks, not all of the same size. To zero out
the last k + 1 blocks in the first row, we subtract the third row times u̇′

0,
the fourth row times u̇′

1, and so on. The determinant is, therefore, the
product of the determinants of the upper left (2 × 2)-block matrix and the
lower right ((k + 1) × (k + 1))-block matrix, the latter being 1. To further
simplify the (2× 2)-block matrix, we use [uiu̇i][uiu̇i]

T = En,n, which implies
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[u′
iu̇

′
i][u

′
iu̇

′
i]
T = Ek,k, and we write the matrix as a product of two matrices:(

J(y, r,u)

r(k+1)(n−1)

)2

=

∣∣∣∣(k + 1)Ek,k −
∑

u̇′
iu̇

′T
i

∑
u′
i∑

u′T
i k + 1

∣∣∣∣ (32)

=

∣∣∣∣∣
∑

u′
iu

′T
i

∑
u′
i∑

u′T
i k + 1

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
[
u′
0 u′

1 . . . u′
k

1 1 . . . 1

]
u′T
0 1

u′T
1 1
...

...
u′T
k 1


∣∣∣∣∣∣∣∣∣ ,
(33)

in which we get from (32) to (33) using u̇′
iu̇

′T
i = Ek,k − u′

iu
′T
i . Finally, the

determinant of the vectors u′
i with appended 1 is k! times the k-dimensional

volume of u′. Hence, J(y, r,u) = r(k+1)(n−1)k! Volk(u
′), as claimed in (28).

This completes the proof of (27).
General case. Further, we generalize to the case m 6 k. Recall that

for a sequence x of m + 1 6 k + 1 points in Rn, there is a unique smallest
anchored sphere passing through them. We claim that its center lies inside
the orthogonal projection P of the m-dimensional affine hull of x onto Rk.
Indeed, orthogonally projecting the center of any anchored sphere passing
through x to P in Rk we clearly get a point, which is a center of a smaller
anchored sphere still passing through x. The following theorem tells us how
to integrate over these smallest anchored circumscribed spheres.

Theorem 2 (Anchored Blaschke–Petkantschin formula). Let 0 6 m 6
k 6 n and α = n(m + 1) − (k + 1). Then every measurable nonnegative
function f : (Rn)m+1 → R satisfies∫

x∈(Rn)m+1

f(x) dx

=

∫
y∈Rk

∫
P∈Lk

m

∫
r>0

∫
u∈(S)m+1

f(y+ ru)rα[m! Volm(u′)]k−m+1 dudr dP dy,

(34)

in which Lk
m is the Grassmannian of (linear) m-planes in Rk , u′ is the

projection of u to P , and S is short for the unit sphere in P ×Rn−k .
Proof. We use Blaschke–Petkantschin formula twice, first in its standard

form. For P ∈ Lk
m, we write P ×Rn−k ∈ Ln

m+n−k for the (m+ n− k)-plane
whose orthogonal projection to Rk is P . The first application of Blaschke–
Petkantschin formula integrates over all (affine) m-planes in Rk, spanned by
the projections of x to Rk:∫

x∈(Rn)m+1

f(x) dx

=

∫
P∈Lk

m

∫
h∈P⊥

∫
x∈(P×Rn−k)m+1

f(h+ x)[m! Volm(x′)]k−m dx dhdP. (35)
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For every m-plane P in Rk, we consider the vertical (m + n − k)-plane
P × Rn−k in Rn and apply Lemma 1 inside it. Recalling that S is a unit
sphere in P ×Rn−k, this gives∫

x∈(Rn)m+1

f(x) dx

=

∫
P∈Lk

m

∫
h∈P⊥

∫
z∈P

∫
r>0

∫
u∈(S)m+1

f(h+ z + ru)r(m+n−k−1)(m+1)

(36)

×m! Volm(u′)[m! Volm(ru′)]k−m dudr dz dhdP. (37)

Note that Volm(ru′) = rmVolm(u′), which implies that the final power of r
is (m + n − k − 1)(m + 1) + m(k − m) = α. Finally, we get the claimed
relation by setting y = z + h and exchanging the integral over P ∈ Lk

m with
the integral over y ∈ Rk.

5. Expected number of intervals. In this section, we use the anchored
Blaschke–Petkantschin formula of the previous section to compute the ex-
pected numbers of intervals of a weighted Delaunay mosaic in Rk. We do
this for every type and use a weighted Delaunay radius threshold to get more
detailed probabilistic information. Recall that the weighted mosaic is a ran-
dom k-dimensional slice of the (unweighted) Poisson–Delaunay mosaic with
density ρ > 0 in Rn.

Slivnyak–Mecke formula. To count the type (ℓ,m) intervals, we focus
our attention by restricting the center of the weighted Delaunay sphere to
a region Ω ⊆ Rk and the weighted Delaunay radius to be less than or equal
to r0. Any sequence x = (x0,x1, . . . ,xm) of m+1 points in Rn defines such
an interval if it satisfies the following conditions:

(a) the smallest anchored sphere passing through x is empty, writing P∅(x)
for the probability of this event;

(b) the center z of this sphere lies in Ω, writing 1Ω(x) for the indicator;
(c) the radius r of this sphere is bounded from above by r0, writing 1r0(x)

for the indicator;
(d) the origin of Rk sees exactly m− ℓ facets of the projected m-simplex

from the outside, writing 1m−ℓ(x) for the indicator.
These are the same conditions as in [7] and [3] with the only difference

that the sphere is now required to be anchored, and modulo this remark the
proofs are identical. Combining these conditions with the Slivnyak–Mecke
formula, we get an integral expression for the expected number of type (ℓ,m)
intervals, which we partially evaluate using Theorem 2 and Lemma 2:

E[ck,nℓ,m(r0)] =
1

(m+ 1)!

∫
x∈(Rn)m+1

P∅(x)1Ω(x)1r0(x)1m−ℓ(x) dx (38)
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= ∥Ω∥∥Lk
m∥ρm+1m!k−m+1

(m+ 1)!

∫
r6r0

e−ρνnrnrα dr

×
∫
u∈(S)m+1

1m−ℓ(u)Volm(u′)
k−m+1

du (39)

= ∥Ω∥ρk/nm!k−m

m+ 1
∥Lk

m∥γ(m+ 1− k/n; ρνnr
n
0 )

nν
m+1−k/n
n

×
∫
u∈(S)m+1

1m−ℓ(u)Volm(u′)
k−m+1

du (40)

= Ck,n
ℓ,m · γ(m+ 1− k/n; ρνnr

n
0 )

Γ(m+ 1− k/n)
· ∥Ω∥ρk/n. (41)

Specifically, we get (39) by noting P∅(x) = e−ρνnrn , applying Theorem 2 to
the right-hand side of (38), collapsing the indicators, using rotational invari-
ance, and writing S for the unit sphere in Rm+n−k. We get (40) from (39) by
applying Lemma 2 with j = α+ 1 = n(m+ 1)− k, c = ρνn, p = n, t0 = r0,
which asserts that the integral over the radius evaluates to the fraction in-
volving the incomplete Gamma function. Finally, we get (41) by defining the
constant

Ck,n
ℓ,m =

m!k−m∥Lk
m∥Γ(m+ 1− k/n)

(m+ 1)nν
m+1−k/n
n

∫
u∈(S)m+1

1m−ℓ(u)Volm(u′)
k−m+1

du.

(42)
As a sanity check, we set ℓ = m = 0 and k = 1, and get C1,n

0,0 = σn−1Γ(1 −
1/n)/(nν

1−1/n
n ) because S ⊆ Rn−1 has volume σn−1, and we have 10(u0) = 1

and Vol0(u0) = 1 for all points u0 ∈ S. This agrees with (15) in section 2.
Simplices in the weighted Delaunay mosaic. Since this constant

in (42) does not depend on r0, we deduce that the weighted Delaunay ra-
dius of a typical type (ℓ,m) interval is Gamma-distributed. The weighted
Delaunay radius of a typical j-simplex in the weighted Poisson–Delaunay
mosaic, therefore, follows a linear combination of Gamma distributions. In-
deed, we get the total number of j-simplices as dk,nj =

∑j
ℓ=0

∑k
m=j

(
m−ℓ
m−j

)
ck,nℓ,m;

see [7]. The same relation holds if we limit the simplices to weighted Delau-
nay radius at most r0, and also if we replace the simplex counts by the
constants Ck,n

ℓ,m and the analogously defined Dk,n
j . Before continuing, we con-

sider the top-dimensional case, j = k, in which Dk,n
k =

∑k
ℓ=0C

k,n
ℓ,k . Taking

the sum eliminates the indicator function in (42), and we get

Dk,n
k =

Γ(k + 1− k/n)

(k + 1)nν
k+1−k/n
n

∫
u∈(Sn−1)k+1

Volk(u
′) du. (43)

We can compare this with the expression for the number of Voronoi ver-
tices by Møller [16] using Crofton formula [10, Chap. 6]; see also [20, The-
orem 10.2.4]. By duality, the number of vertices in the weighted Voronoi
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tessellation is the number of top-dimensional simplices in the weighted De-
launay mosaic. Each vertex is the intersection of an (n − k)-dimensional
Voronoi polyhedron with the k-plane, and if we know the expected number
of intersections, then we also know the integral, over all k-planes. Crofton for-
mula applies and gives the (n−k)-dimensional volume of the (n−k)-skeleton
of the Voronoi tessellation as σn/(2∥Ln

k∥νn−1) times the mentioned integral.
It turns out that the expected volume is not so difficult to compute oth-
erwise [16], so we can turn the argument around and deduce the expected
number of vertices from the expected (n−k)-dimensional volume. This gives

Dk,n
k =

σ1σn+1

σk+1σn−k+1

2k+1πk/2

n(k + 1)!

Γ((kn+ n− k + 1)/2)

Γ((kn+ n− k)/2)

× Γ((n+ 2)/2)k+1−k/n

Γ((n+ 1)/2)k
Γ(k + 1− k/n)

Γ(n− k + 1/2)
. (44)

Comparing (44) with (43), we get an explicit expression for the expected
k-dimensional volume of the projection of a random k-simplex inscribed
in Sn−1.

6. Computations. We now return to (42) and note that the integral
on the right-hand side is σm+1

m+n−k times the expected value of the random
variable

Uk,n
ℓ,m = 1m−ℓ(u)Volm(u′)k−m+1, (45)

where u is a sequence of m+ 1 random points uniformly and independently
distributed on the unit sphere in Rm+n−k, and u′ is the corresponding se-
quence of points projected to Rm ↪→ Rm+n−k. Our goal is to compute
E[Uk,n

ℓ,m] in some special cases. Instead of working with the original points,
we prefer to study their projections to Rm, but the distribution of the m+1
points in Rm has yet to be determined. If the upper bound is a vertex or an
edge, then we find explicit expressions of the expected number of intervals.

Critical vertices. For m = 0, we count intervals of type (0, 0) or, equiv-
alently, critical vertices. Since Uk,n

0,0 = 1, for all k 6 n, we get

Ck,n
0,0 = σn−k

Γ(1− k/n)

nν
1−k/n
n

(46)

from (42). Accordingly, the expected number of critical vertices in Ω with
weighted Delaunay radius at most r0 is Ck,n

0,0 times the normalized incomplete
Gamma function times ∥Ω∥ρk/n; compare with (5) and (6) in section 2.

Vertex-edge pairs. Further, we count the intervals of type (0, 1) or,
equivalently, the regular vertex-edge pairs. For this, we need the expectation
of Uk,n

0,1 : picking two random points on the unit sphere in Rn−k+1 and pro-
jecting them to R1 ↪→ Rn−k+1, this is the expectation when we get the kth
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power of the distance between the projected points, if they lie on the same
side of the origin, and we get 0, otherwise. Writing u′

0,u
′
1 ∈ [−1, 1] for the

projected points and x = |u′
0|, y = |u′

1| for their absolute values, we note
that the signs and magnitudes are independent. It follows that we get zero
with probability 1/2, so the desired expectation is

E[Uk,n
0,1 ] =

1

2
E[|x− y|k] = E[(x− y)k1x>y]. (47)

We can, therefore, restrict our attention to the half of the unit sphere that
projects to [0, 1]. To integrate over this hemisphere, we use that x2 and y2

are independent Beta-distributed random variables; see Appendix A. Setting
a = x2 and b = y2, we have

E[Uk,n
0,1 ] =

1

B((n− k)/2, 1/2)2

×
∫ 1

a=0

∫ a

b=0
[
√
a−

√
b]ka−1/2(1− a)(n−k−2)/2b−1/2(1− b)(n−k−2)/2 da db

(48)

=
4

B((n− k)/2, 1/2)2

×
∫ 1

x=0

∫ x

y=0
[x− y]k(1− x2)(n−k−2)/2(1− y2)(n−k−2)/2 dx dy (49)

=
Γ(k + 1)Γ((n− k + 1)/2)2

2k
√
π Γ((n− k)/2)2

· 3F̃2

(
1

2
, 1,

k − n+ 2

2
;
k + 3

2
,
n+ 2

2
; 1

)
,

(50)

in which 3F̃2 is the regularized hypergeometric function considered in Ap-
pendix A and we use the Mathematica software to get from (49) to (50). As
mentioned at the end of this appendix,

k + 3

2
+

n+ 2

2
>

1

2
+ 1 +

k − n+ 2

2

is a sufficient condition for the convergence of the infinite sum that defines
the value of the regularized hypergeometric function. This is equivalent to
n > 0, which is always satisfied. Plugging (50) into (42), we get an expression
for the corresponding constant:

Ck,n
0,1 =

σ2
n−k+1σkΓ(2− k/n)

4nν
2−k/n
n

Γ(k + 1)Γ((n− k + 1)/2)2

2k
√
π Γ((n− k)/2)

× 3F̃2

(
1

2
, 1,

k − n+ 2

2
;
k + 3

2
,
n+ 2

2
; 1

)
. (51)

Critical edges. Further, we count the intervals of type (1, 1) or, equiva-
lently, the critical edges. Here the expectation of Uk,n

1,1 is relevant: picking two
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points on the unit sphere in Rn−k+1 and projecting them to R1 ↪→ Rn−k+1,
this is the expectation in which we get the kth power of the distance between
the projected points, if they lie on opposite sides of the origin, and we get 0,
otherwise. Using again that the signs and magnitude of the projected points
are independent, we note that this expectation is E[Uk,n

1,1 ] = (1/2)E[(x+y)k].
Setting a = x2, b = y2, and integrating as before, we get

E[Uk,n
1,1 ] =

1

B((n− k)/2, 1/2)2

×
∫ 1

a=0

∫ 1

b=0
[
√
a+

√
b]ka−1/2(1− a)(n−k−2)/2b−1/2(1− b)(n−k−2)/2 da db

(52)

=
1

B((n− k)/2, 1/2)2

×
∫ 1

a=0

∫ 1

b=0

k∑
i=0

(
k

i

)
a(i−1)/2b(k−i−1)/2(1− a)(n−k−2)/2(1− b)(n−k−2)/2 dadb

(53)

=
1

B((n− k)/2, 1/2)2

k∑
i=0

(
k

i

)
B

(
n− k

2
,
i+ 1

2

)
B

(
n− k

2
,
k − i+ 1

2

)
.

(54)

Plugging (54) into (42), we get the expression for the corresponding constant:

Ck,n
1,1 =

σ2
n−k+1σkΓ(2− k/n)

8nν
2−k/n
n B((n− k)/2, 1/2)2

×
k∑

i=0

(
k

i

)
B

(
n− k

2
,
i+ 1

2

)
B

(
n− k

2
,
k − i+ 1

2

)
. (55)

Constants in low dimensions. The authors have checked the k-di-
mensional formulas against the 1-dimensional formulas in section 2, both
symbolically and numerically. In k = 2 dimensions, the formulas provide
sufficient information to compute all constants governing the expectations of
the six types of intervals. We get three constants from (46), (51), (55):

C2,n
0,0 =

σn−2Γ(1− 2/n)

nν
1−2/n
n

, (56)

C2,n
0,1 =

σ2
n−1

√
π Γ(2− 2/n)

4nν
2−2/n
n

Γ((n− 1)/2)2

Γ((n− 2)/2)
· 3F̃2

(
1

2
, 1,

4− n

2
;
5

2
,
n+ 2

2
; 1

)
,

(57)

C2,n
1,1 =

σ2
n−1Γ(2− 2/n)π

2nν
2−2/n
n

·
[

1

n− 1
+

Γ((n− 1)/2)2

πΓ(n/2)2

]
. (58)
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The critical simplices satisfy the Euler relation [8]: C2,n
0,0 − C2,n

1,1 + C2,n
2,2 = 0,

which gives us the constant for the critical triangles. We get another linear
relation from the fact that in the plane the number of triangles is twice
the number of vertices [20, p. 458, Theorem 10.1.2]: C2,n

0,2 + C2,n
1,2 + C2,n

2,2 =

2(C2,n
0,0 +C2,n

0,1 +C2,n
0,2 ). Finally, we get a relation for the number of weighted

Delaunay triangles from (44), which we restate for k = 2:

D2,n
2 =

2σn+1

3nσn−1

Γ((3n− 1)/2)

Γ((3n− 2)/2)

Γ((n+ 2)/2)3−2/n

Γ((n+ 1)/2)2
Γ(3− 2/n)

Γ((n− 1)/2)
. (59)

Combining C2,n
0,2 +C2,n

1,2 +C2,n
2,2 = D2,n

2 with the two linear relations mentioned
above, we get

C2,n
0,2 = −C2,n

0,0 − C2,n
0,1 +

1

2
D2,n

2 , (60)

C2,n
1,2 = C2,n

0,0 + C2,n
0,1 − C2,n

2,2 +
1

2
D2,n

2 , (61)

C2,n
2,2 = −C2,n

0,0 + C2,n
1,1 . (62)

For small values of n, the constants are approximated in Table 2.

Table 2. The rounded constants in the expressions of the expected
number of intervals and simplices of a 2-dimensional weighted Delau-
nay mosaic obtained from a Poisson point process in n dimensions.

n = 3 4 5 6 7 8 9 10 . . . 20 . . . 1000

C2,n
0,0 1.11 1.25 1.38 1.49 1.58 1.66 1.73 1.79 . . . 2.12 . . . 2.69

C2,n
0,1 0.26 0.42 0.54 0.63 0.71 0.77 0.82 0.86 . . . 1.12 . . . 1.54

C2,n
0,2 0.09 0.15 0.21 0.25 0.28 0.31 0.33 0.35 . . . 0.47 . . . 0.65

C2,n
1,1 2.47 2.92 3.30 3.61 3.87 4.09 4.28 4.44 . . . 5.37 . . . 6.92

C2,n
1,2 1.46 1.83 2.13 2.37 2.57 2.74 2.89 3.01 . . . 3.72 . . . 4.88

C2,n
2,2 1.37 1.67 1.92 2.12 2.29 2.43 2.55 2.66 . . . 3.25 . . . 4.23

D2,n
0 1.46 1.83 2.13 2.37 2.57 2.74 2.89 3.01 . . . 3.72 . . . 4.88

D2,n
1 4.37 5.48 6.38 7.10 7.71 8.22 8.66 9.03 . . . 11.16 . . . 14.65

D2,n
2 2.92 3.66 4.25 4.74 5.14 5.48 5.77 6.02 . . . 7.44 . . . 9.77

7. Discussion. The main result of this paper is the stochastic analysis
of the radius function of a weighted Poisson–Delaunay mosaic. As a conse-
quence, we get formulas for the expected number of simplices in weighted
Poisson–Delaunay mosaics (cf. [12], [13]). The main technical steps leading
up to this result are a new Blaschke–Petkantschin formula for spheres, stated
as Theorem 2, and the discrete Morse theory approach recently introduced
in [7].

There are a number of open questions that remain:
(1) We have explicit expressions for the constants in the expected number

of intervals of all types for dimension k 6 2. To go beyond two dimensions,
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Wendel’s method of reflecting vertices of a simplex through the origin [23]
should be useful. Short of getting precise formulas, can we say something
about the asymptotic behavior of the constants, as k and n go to infinity?

(2) The connection to Crofton formula and the volumes of Voronoi skeleta
has been mentioned in section 5. Are there further connections that relate
such volumes with simplices of dimension strictly less than k, or with subsets
of simplices limited to radii at most r0?

(3) The slice construction implies a repulsive force among the vertices: the
vertices of the weighted Poisson–Delaunay mosaic are more evenly spread
than a Poisson point process. For fixed k, the repulsion gets stronger with
increasing n. It would be interesting to study this repulsive force and its
consequences analytically.

Appendix A. On special functions. In this appendix, we define and
discuss three types of special functions used in the main body of this paper:
Gamma functions, Beta functions, and hypergeometric functions.

Gamma functions. We recall that the lower-incomplete Gamma func-
tion takes two parameters, j and t0 > 0, and is defined by

γ(j; t0) =

∫ t0

t=0
tj−1e−t dt. (63)

The corresponding complete Gamma function is Γ(j) = γ(j;∞). An impor-
tant relation for Gamma functions is Γ(j + 1) = jΓ(j), which holds for any
real j that is not a nonpositive integer. We often use the ratio, γ(j; t0)/Γ(j),
which is the density of a probability distribution and called the Gamma dis-
tribution with parameter j. We prove a technical lemma about incomplete
Gamma functions, which is repeatedly used in the main body of this paper.

Lemma 2 (Gamma function). Let c, p, j, t0 ∈ R with p ̸= 0 and t0 > 0.
Then ∫ t0

t=0
tj−1e−ctp dt =

γ(j/p; ctp0)

pcj/p
. (64)

Proof. We rewrite the numerator of the right-hand side on (64) using the
definition of the right-incomplete Gamma function (63) and substituting u =
ctp and du = cptp−1 dt:

γ

(
j

p
; ctp0

)
=

∫ ctp0

u=0
uj/p−1e−u du (65)

=

∫ t0

t=0
(ctp)j/p−1e−ctpcptp−1 dt (66)

=

∫ t0

t=0
pcj/ptj−1e−ctp dt. (67)

Dividing by pcj/p gives the claimed relation.
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Beta functions. Given real numbers a, b, and 0 6 t0 6 1, the incomplete
Beta function is defined by

Bt0(a, b) =

∫ t0

t=0
ta−1(1− t)b−1 dt, (68)

and the complete Beta function is B(a, b) = B1(a, b), which can be expressed
in terms of complete Gamma functions: B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

The Beta functions can be used to integrate over the projection of a sphere
in Rn to a linear subspace Rk ↪→ Rn, as we now explain. Assuming
Rk is spanned by the first k coordinate vectors of Rn, the projection of
a point means dropping coordinates k + 1 to n. Suppose now that we
pick a point x = (x1, . . . , xn) uniformly on Sn−1 by normalizing a vec-
tor of n normally distributed random variables: Xi ∼ N (0, 1) for 1 6

i 6 n and xj = Xj/
(∑n

i=1X
2
i

)1/2 for 1 6 j 6 n. Its projection to Rk

is x′ = (x1, . . . , xk, 0, . . . , 0), and the squared distance from the origin is
∥x′∥2 =

(∑k
i=1 x

2
i

)
/
(∑n

i=1 x
2
i

)
. It can be written as r2 = X/(X+Y ), in which

X and Y are χ2-distributed independent random variables with k and n− k
degrees of freedom, respectively. This implies that r2 ∼ B(k/n, (n − k)/n)
[22, section 4.2]. Consider, for example, the case k = n − 1. Integrating
in Rk over all points with distance at most r0 from the origin is the same
as integrating over two spherical caps of Sn−1, namely the cap around the
north-pole bounded by (n−2)-spheres of radius r0, and a similar cap around
the south-pole. To compute the volume of a single such cap, we set t0 = r20
and integrate the incomplete Beta function:

Voln−1(r0) =
σn

2B((n− 1)/2, 1/2)

∫ t0

t=0
t(n−1)/2−1(1− t)1/2−1 dt

=
Bt0((n− 1)/2)1/2

2B((n− 1)/2, 1/2)
. (69)

Similarly, we can integrate over a ball in a k-dimensional projection and get
the volume of the preimage, which is a solid torus inside the (n− 1)-sphere.

Hypergeometric functions. The family of hypergeometric functions
takes p + q parameters and one argument and can be defined as a sum of
products of Gamma functions, while the regularized version of this function
is obtained by normalizing by the product of Γ(bi):

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
j=0

[ p∏
i=1

Γ(j + ai)

Γ(ai)

][ q∏
i=1

Γ(bi)

Γ(j + bi)

]
zj

j!
, (70)
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pF̃q(a1, . . . , ap; b1, . . . , bq; z) = pFq(a1, . . . , ap; b1, . . . , bq; z)

/ q∏
i=1

Γ(bi)

(71)

=

∞∑
j=0

[ p∏
i=1

Γ(j + ai)

Γ(ai)

][ q∏
i=1

1

Γ(j + bi)

]
zj

j!
. (72)

We are interested in the type p = 3 and q = 2. Here convergence of the
infinite sum depends on the values of the parameters. We always have con-
vergence for |z| < 1, and if z = 1, a sufficient condition for convergence is
b1 + b2 > a1 + a2 + a3 [18].
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Oberfläche und Isoperimetrie, Grundlehren Math. Wiss., 93, Springer-Verlag,
Berlin–Göttingen–Heidelberg, 1957, xiii+312 pp.

11. P. Hall, Introduction to the theory of coverage processes, Wiley Ser. Probab.
Math. Statist. Probab. Math. Statist., John Wiley & Sons, Inc., New York,
1988, xx+408 pp.

12. C. Lautensack, Random Laguerre tessellations, Ph.D. thesis, Math. Dept., Univ.
Karlsruhe, Karlsruhe, 2007.

13. C. Lautensack, S. Zuyev, “Random Laguerre tessellations”, Adv. in Appl.
Probab., 40:3 (2008), 630–650.

https://doi.org/10.1137/0216006
https://doi.org/10.1137/0216006
https://doi.org/10.1007/BF00181613
https://doi.org/10.1007/BF00181613
https://doi.org/10.1090/tran/6991
https://doi.org/10.1090/tran/6991
https://doi.org/10.4028/www.scientific.net/AMM.756.426
https://doi.org/10.4028/www.scientific.net/AMM.756.426
https://doi.org/10.4028/www.scientific.net/AMM.756.426
https://doi.org/10.1017/CBO9780511530067
https://doi.org/10.1017/CBO9780511530067
https://doi.org/10.1017/CBO9780511530067
https://zbmath.org/?q=an:1193.55001
https://zbmath.org/?q=an:1193.55001
https://doi.org/10.1017/apr.2017.20
https://doi.org/10.1017/apr.2017.20
https://doi.org/10.1017/apr.2017.20
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1007/978-0-8176-4771-1
https://doi.org/10.1007/978-0-8176-4771-1
https://doi.org/10.1007/978-0-8176-4771-1
http://zbmath.org/?q=an:0145.19104
http://zbmath.org/?q=an:0145.19104
http://zbmath.org/?q=an:0078.35703
http://zbmath.org/?q=an:0078.35703
http://zbmath.org/?q=an:0078.35703
http://zbmath.org/?q=an:0659.60024
http://zbmath.org/?q=an:0659.60024
http://zbmath.org/?q=an:0659.60024
https://doi.org/10.1239/aap/1222868179
https://doi.org/10.1239/aap/1222868179


770 Edelsbrunner H., Nikitenko A.

14. R. E. Miles, “On the homogeneous planar Poisson point process”,Math. Biosci.,
6 (1970), 85–127.

15. R. E. Miles, “Isotropic random simplices”, Adv. in Appl. Probab., 3:2 (1971),
353–382.

16. J. Møller, “Random tessellations in Rd”, Adv. in Appl. Probab., 21:1 (1989),
37–73.

17. A. Okabe, B. Boots, K. Sugihara, Sung Nok Chui, Spatial tessellations : concepts
and applications of Voronoi diagrams, 2nd ed., Wiley Ser. Probab. Stat., John
Wiley & Sons, Ltd., Chichester, 2000, xvi+671 pp.

18. NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier,
R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Insti-
tute of Standards and Technology, Washington, DC; Cambridge Univ. Press,
Cambridge, 2010, xvi+951 pp.

19. N. Prunet, E. M. Meyerowitz, “Genetics and plant development”, C. R. Biolo-
gies, 339:7-8 (2016), 240–246.

20. R. Schneider, W. Weil, Stochastic and integral geometry, Probab. Appl. (N. Y.),
Springer-Verlag, Berlin, 2008, xii+693 pp.

21. R. Sibson, “A vector identity for the Dirichlet tessellation”, Math. Proc. Cam-
bridge Philos. Soc., 87:1 (1980), 151–155.

22. C. Walck, Hand-book on statistical distributions for experimentalists, Internal
Report SUF-PFY/96-01, Stockholm Univ., Stockholm, 1996, 190 pp.

23. J. G. Wendel, “A problem in geometric probability”, Math. Scand., 11 (1962),
109–111.

Поступила в редакцию
17.III.2018

https://doi.org/10.1016/0025-5564(70)90061-1
https://doi.org/10.1016/0025-5564(70)90061-1
https://doi.org/10.2307/1426176
https://doi.org/10.2307/1426176
https://doi.org/10.2307/1427197
https://doi.org/10.2307/1427197
https://doi.org/10.1002/9780470317013
https://doi.org/10.1002/9780470317013
https://doi.org/10.1002/9780470317013
http://zbmath.org/?q=an:1198.00002
http://zbmath.org/?q=an:1198.00002
http://zbmath.org/?q=an:1198.00002
http://zbmath.org/?q=an:1198.00002
https://doi.org/10.1016/j.crvi.2016.05.003
https://doi.org/10.1016/j.crvi.2016.05.003
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1017/S0305004100056589
https://doi.org/10.1017/S0305004100056589
https://doi.org/10.7146/math.scand.a-10655
https://doi.org/10.7146/math.scand.a-10655

	1 Introduction
	2 One dimension
	3 Connection to Boolean model
	4 Anchored Blaschke–Petkantschin formula
	5 Expected number of intervals
	6 Computations
	7 Discussion
	A On special functions
	References

