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WEIGHTED POISSON-DELAUNAY MOSAICSY

Bssemrennnie k-mepHble auarpaMMbl BopoHOTO, Tak»Ke W3BECTHbBIE
KaK JuarpaMMbl Jlareppa, MOXKHO IIOJIyYUTh IIPY IIepeceveHun OObIIHOM
muarpaMmmbl Boponoro B R™ ¢ k-miaockocTbio. st Kayka0ro CUMILIEK-
ca JIBOWCTBEHHOU B3BEIIEHHON TpUaHTysuu Jletone CyIecTByer eamH-
cTBeHHAas cdepa MUHUMAJIHHOIO PAJMYCA C IEHTPOM B 3TON Kk-ILIOCKO-
CTH, OIUCAHHAS BOKDPYI STOTO CHMILJIEKCA, M COINOCTABJIEHUE CHMILIEK-
cy pajuyca 3Toit chephl saBseTcs 0000IEeHHON TUCKpeTHON (hyHKITHEt
Mopca. B crarbe paccMOTpeHb! ciydaiiHble B3BEIIEHHBIE TPUAHTYJIAIAN
Ilenone, MOPOXKIEHHBIE CTAITMOHAPHBIM IIYACCOHOBCKUM TOYEYHBIM IIPO-
meccom B R™, u mocumranbl, KaKk QYHKIMH PaInyca, MaTEMaTHAIeCKUE
OXKUJIAHUS KOJMYECTBA CHMIIJIEKCOB U UHTEPBAJOB IUCKPETHON (DyHK-
nun Mopca. B kadecTBe mpusIoXKeHns IpesjiaraeTcs HOBOE JT0KA3aTel b
CTBO JIJIsl MATEMATUIECKOTO OXKUJIAHUS KOJIMIECTBA KOMIIOHEHT CBSI3HO-
ctu (KJIACTEpOB) B IPSMOJMHEHHOM CedeHun OyJIeBOH MOJE/IU B T€OPUU
TIEPKOJISITIAN.

Karuesnvie crosa u ¢hpasdor: muarpammbl Boponoro, merpuka Jlareppa,
B3BellleHHble TpuaHry/sinuu Jlejone, muckperHasi Teopusi Mopca, Kpu-
TUYECKHE CUMILIEKChI, THTEPBAJIBI, CTOXaCTUIECKasl TeOMETPHUS, IyacCco-
HOBCKHUII TOYEUHBII mporiecc, OyaeBa MOJIE/b, MEPKOJIAINs, KJIACTEPHI,
dopmymna Cousasrka—Mekke, dopmyia Bismke—Ilerkananna.

DOT: https://doi.org/10.4213 /tvp5196

1. Introduction. Given a discrete set of points Y C RF, the Voronoi
tessellation tiles the k-dimensional Euclidean space with convex polyhedra,
each consisting of all points a € R* for which a particular point y is the closest
among all points in Y. To generalize, suppose each y € Y has a weight w, € R,
and substitute the power distance of a from y, defined as |la—y||*> —wy, for the
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squared Euclidean distance in the definition of the Voronoi tessellation. The
resulting tiling of R into convex polyhedra is known by several names, in-
cluding power diagrams [1] and Laguerre tessellations [13], but to streamline
language we will call them weighted Voronoi tessellations. They do indeed
look like unweighted Voronoi tessellations, except that the hyperplane sepa-
rating two neighboring polyhedra does not necessarily lie halfway between the
generating points; see Fig. 1. Our motivation for studying weighted Voronoi
tessellations derives from the extra degree of freedom — the weight — which
permits better approximations of observed tilings, such as cell cultures in
plants [19] and microstructures of materials [4]. Beyond this practical con-
sideration, there is an intriguing connection between the volumes of skeleta
of unweighted Voronoi tessellations and the number of simplices in weighted
Delaunay mosaics through the Crofton formula, which is worth exploring.
We will discuss it at the end of section 5.

Fig. 1. Weighted Voronoi tessellation in R? with superimposed
weighted Delaunay mosaic. All points have zero weight except the
point with the shaded domain, which has positive weight.

Our preferred construction takes a k-dimensional slice through a Voronoi
tessellation in R™ (see [2], [21]). Specifically, if X is a discrete set of points
in R"” and R* — R™ is spanned by the first k¥ < n coordinate axes, then the
Voronoi tessellation of X in R™ intersects R* in a k-dimensional weighted
Voronoi tessellation. The points in R that generate the weighted tessellation
are the orthogonal projections y, of the points € X, and their weights are
wy = —||x —y,||?>. While all weights in this construction are nonpositive, this
is not a restriction of generality because the tessellation remains unchanged
when all weights are increased by the same amount. Indeed, every weighted
Voronoi tessellation with bounded weights can be obtained as a slice of an
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unweighted Voronoi tessellation. It is often more convenient to consider the
dual of a weighted Voronoi tessellation, which is again known by several
names, including Laguerre triangulation [17] and regular triangulation [9],
but we will call them weighted Delaunay mosaics. An important difference
to the unweighted concept is that the Voronoi polyhedron of a weighted point
may be empty, in which case this weighted point will not be a vertex of the
weighted Delaunay mosaic. For generic sets of weighted points, the weighted
Delaunay mosaic is a simplicial complex in R¥. Since we focus on slices of
unweighted Voronoi tessellations, we define the general position only in this
case. Specifically, we say a discrete set X C R" is generic if the following
conditions are satisfied for every 0 < j < n:

(a) no j + 2 points belong to a common j-plane;

(b) no j + 3 points belong to a common j-sphere;

(c) considering a unique j-sphere that passes through j + 2 points, no
J + 1 of these points belong to a j-plane that passes through the center of
the j-sphere;

(d) considering a unique j-plane that passes through j + 1 points, this
plane is neither orthogonal nor parallel to R¥;

(e) no two points have identical distance to R*.

For j = 0, property (d) means that no point of X is in R*. We note that
the Poisson point process is generic with probability 1.

Continuing the work started in [7], we are interested in the stochastic
properties of the weighted Delaunay mosaics and their radius functions. To
explain the latter concept, we assume the generic case in which the mosaic
is a simplicial complex, and for every simplex Q' € DelY with preimage
@ C R", we find the smallest (n — 1)-sphere that satisfies the following
properties:

(i) it passes through all vertices of @ (it is a circumscribed sphere of @Q);

(ii) the open ball it bounds does not contain any points of X (it is empty);

(iii) its center lies in R¥ (it is anchored).

The existence of such spheres for the simplices of the weighted mosaic
can be shown in a way similar to the unweighted case [5] and is left to the
reader. We call this sphere the weighted Delaunay sphere and its radius the
weighted Delaunay radius of Q' € Del Y. Similarly, when considering ) in-
stead of )", we call this sphere the anchored Delaunay sphere and its center
the anchor of Q. The radius function of the weighted Delaunay mosaic,
R: DelY — R, maps every simplex to its weighted Delaunay radius. As
in the unweighted case, it partitions DelY into intervals of simplices that
share the same weighted Delaunay sphere and, therefore, the same function
value [3|. These intervals have topological significance [8]: adding the sim-
plices in the order of increasing radius, the homotopy type of the complex
changes whenever the interval contains a single simplex and it remains un-
changed whenever the interval contains two or more simplices. Indeed, the



Weighted Poisson—Delaunay mosaics 749

operation in the latter case is known as anticollapse and has been studied ex-
tensively in combinatorial topology. Each interval is defined by two simplices
L C U in the weighted Delaunay mosaic and consists of all simplices that
contain L and are contained in U. We call Q" € DelY a critical simplex of R
if it is the sole simplex in its interval: L = Q' = U, and we call Q" a reqular
simplex of R, otherwise. The type of the interval is the pair of dimensions of
the lower and the upper bound: (¢, m) in which ¢ = dim L and m = dim U.
Our main result is an extension of the stochastic findings about the radius
function of the Poisson-Delaunay mosaic in [7| from the unweighted to the
weighted case.

Theorem 1 (Main result). Let X be a Poisson poz’nt process with den-
sity p in R™ and R¥ < R™. There are constants Ce such that for any
ro = 0, the expected number of intervals of type (¢, m) in the k-dimensional
weighted Poisson-Delaunay mosaic with center in a Borel set Q C R* and
weighted Delaunay radius at most rqo s

n nY(m+1—Fk/n; pvprg n
Bl )] = O WU LM ATt gy, 0

in which vy, is the volume of the unit ball in R™, and we give explicit compu-
tations of the constants in k < 2 dimensions. Similarly, the expected number
of j-dimensional simplices in the weighted Poisson—Delaunay mosaic with
center in a Borel set Q C RF and weighted Delaunay radius at most ro is

eu =[5 ML) - (O s,

=0

Some of the values for constants C ., are listed in Tables 1 and 2 (see sec-
tions 2 and 6, respectively). In an equlvalent formulation, this theorem states
that the weighted Delaunay radius of a typical interval is Gamma-distributed,
whereas the weighted Delaunay radius of a typical simplex is a mixture of
Gamma distributions; cf. [7]. In a more general context, the contributions
of this paper are to the field of stochastic geometry, which was summa-
rized in the text by Schneider and Weil [20]. The particular questions on
Poisson—Delaunay mosaics studied in this paper have been pioneered by Miles
almost 50 years ago (see [14], [15]). Formulas for the weighted case have also
been derived by Mgller [16], but these are restricted to top-dimensional sim-
plices whose expected numbers can be derived using Crofton formula and
expected volumes of Voronoi skeleta.

Outline. Section 2 discusses the case £ = 1 as a warm-up exercise. It
is sufficiently elementary so that explicit formulas can be derived without
reliance on more difficult to prove general integral formulas. Section 3 shows
how to get the expected number of connected components in the intersection
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of a line with a circular Boolean model in R"™ using discrete Morse the-
ory. Section 4 proves a Blaschke—Petkantschin type formula for the general
weighted case. Section 5 uses this formula to prove our main result. Section 6
develops explicit expressions for all types of intervals in two dimensions. Sec-
tion 7 concludes this paper. Appendix A introduces the special functions and
distributions used in the derivation of our results.

2. One dimension. In k£ = 1 dimension, the weighted Delaunay mosaic
has a simple structure so that results can be obtained by elementary means.

Slice construction. Let n > 2 and let X C R"™ be a stationary Poisson
point process with density p > 0. We write R! < R™ for the first coor-
dinate axis, which is a directed line passing through R"™. For each point
x = (x1,29,...,2) € X, we write y, = (21,0,...,0) for the projection
onto R! and —w, = 23+ 23+ - +22 for its squared distance from the line.
Letting Y = {(yz,wz) | ® € X} be the resulting set of weighted points
in R!, we are interested in its weighted Voronoi tessellation, VorY’, and its
weighted Delaunay mosaic, DelY. By construction, the former is the in-
tersection of the n-dimensional (unweighted) Voronoi tessellation with the
line: VorY = {domain(x) NR! | 2 € X}. As discussed above, the interval
domain(z) N R! belongs to the weighted Voronoi tessellation if and only if
there is an anchored Delaunay sphere of x, that is: an empty sphere cen-
tered in R! that passes through x. Similarly, two weighted Voronoi domains,
domain(z) NR! and domain(u) N R}, share an endpoint if and only if there
is an empty anchored Delaunay sphere passing through x and u. It follows
that every edge in DelY is the projection of an edge in Del X; see Fig. 2.

Fig. 2. Left: a 1-dimensional weighted Voronoi tessellation as a slice
of a 2-dimensional unweighted Voronoi tessellation. The weighted
Delaunay mosaic in R! is the projection of a chain of edges in the
2-dimensional unweighted Delaunay mosaic. Right: reflecting the
points across R! affects the 2-dimensional Voronoi tessellation but
not the 1-dimensional slice.

As suggested in this figure, we can simplify the construction by reduc-
ing n to 2. Writing H for the half-plane of points whose first coordinate
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is arbitrary, whose second coordinate is nonnegative, and whose remain-
ing n — 2 coordinates vanish, we map = = (z1,...,2,) € R" to 2/ =
(z1,> 0 5x2,0,...,0) € H. This amounts to rotating = about R! into H. Let
X’ be the resulting set of points in H and Y” the set of weighted points in R!
obtained by projection from X’. Then Y = Y’, which shows that X and X’
define the same 1-dimensional weighted Voronoi tessellation and weighted De-
launay mosaic. There is a small price to pay for the simplification, namely
that the projected Poisson point process in H is not necessarily homoge-
neous. Specifically, the projected process in H is a Poisson point process
with intensity o(x) = on_1pry 2, in which 0,1 is the (n — 2)-dimensional
volume of the unit sphere in R"71.

Interval structure. We now return to the intervals of the radius func-
tion in one dimension, R: DelY — R. In the assumed generic case, Del Y
contains only two kinds of simplices: vertices and edges. By definition, the
value of R at a simplex Q' € DelY is the radius of the anchored Delaunay
sphere of the preimage of . There are only three types of intervals [L, U]:

(0,0): here L = U and dim L = dim U = 0. The interval contains a single
and, therefore, critical vertex.

(1,1): here L =U and dim L = dim U = 1. The interval contains a single
and, therefore, critical edge.

(0,1): here L C U and dim L = dim U — 1. The interval is a pair consisting
of a regular vertex and a regular edge. We call it a wvertex-edge pair if
the vertex precedes the edge as we go from left to right, and we call it
an edge-vertex pair, otherwise.

\ /

Fig. 3. From left to right on the horizontal line: a critical vertex,
an edge-vertex pair, a critical edge, a vertex-edge pair, and another
critical vertex.

The cases can be distinguished geometrically, as illustrated in Fig. 3. Let
r = (z1,72) € H and y, = (71,0) with weight w, = —23. Then L =
U = {y,} is a critical vertex of DelY if and only if y, is the anchor of z.
Otherwise, the anchored Delaunay circle of z also passes through a second
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point, u € X C H, with y, and y, on the same side of the anchor. In this
case, L = {y,} and U = {y,, y,} form a vertex-edge or an edge-vertex pair.
Finally, we have a critical edge L = U = {yz, yu} if ¥ and y,, lie on opposite
sides of the anchor.

We will make essential use of the geometric characterization of interval
types when we compute their expected numbers. To simplify the computa-
tion, we note that the structure along R! is a strict repetition of the following
pattern: a critical vertex, a nonnegative number of edge-vertex pairs, a crit-
ical edge, and a nonnegative number of vertex-edge pairs.

Critical vertices. We begin with computing the number of critical ver-
tices, c(l):g, inside a region Q C R! and with weighted Delaunay radius at
most some threshold rg. Let x = (z1,22) € X C H and note that the
smallest anchored circle passing through x has the center y, = (x1,0) and
the radius r = xo. Write Pg(x) for the probability that this circle is empty,
1q(x) for the indicator that y, € Q, and 1,,(x) for the indicator that r < ro.
We use the Slivnyak—Mecke formula to compute

Blefy(ro)) = [ 101y @)Po(e)o(r) dr )

compare with [7]. The intensity measure of the upper semicircle with radius r
is of course p times the volume of an n-ball with radius r, which we write
as pvpr"™. Hence, Pgy(z) = e ”"»"". In other words, the probability that the
anchored circle is empty is the probability that the n-ball whose points get
rotated into the semidisk is empty. So we have

T0
E[c} 7 (ro)] = / / P o112 dr day
’ z1EQ Jr=0
T0 n
e B @)
r=0

To evaluate this integral, we use the identity on Gamma functions proved as
Lemma 2 in Appendix A, where the functions are defined. In this application,
the integral on the right-hand side in (4) evaluates to y(1 —1/n; pvyprd)/[n -
(pvn)' =Y. Writing 0(1):8 = cé:g(oo), we set rg = 00 to get the expected total
number of critical vertices, and we write the expected number up to weighted

Delaunay radius ry as a fraction of the former:

on—1I'(1 —1/n)

Elcyp) = ey e [ 0] PR (5)
oz
n (1 —1/n; pvpry ’n
Bl )] = T e pd ). (®

Regular edges. To count the regular edges — or intervals of type (0,1) —
we again use the Slivnyak—Mecke formula. Let z = (x1,z2) and u = (u1, u2)
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be two points in X C H. There is a unique anchored circle that passes
through both points, and the edge connecting y, and y, belongs to DelY
if and only if this circle is empty. Writing (z1,0) for the center and r for
the radius, the edge is critical, if 1 < 21 < w1, and regular, otherwise;
see Fig. 3. Write Pg(x,u) for the probability that a unique anchored circle
passing through x and w is empty, 1g(z,u) for the indicator that z; € €,
write 1,,(z,u) for the indicator that r < rg, and 1g1(z,u) for the indicator
that 1 and u; lie on the same side of z;. By Slivhyak—Mecke formula, we
have

E[c(l]:?(ro)] = % /JGH /erlg(x,u)lro(x,u)1071(x,u)Pg(x,u)Q(x)g(u) dz du.
(7)

We already know that Pg(z,u) = e ?»"". To compute the rest, we do
a change of variables, reparametrizing the points by the center and radius of
a unique anchored circle passing through them and two angles: = = (21 +
recos&, rsiné) and u = (21 + rcoswv, rsinv), in which 0 < £, v < 7. This is
a bijection up to a set of measure 0. The Jacobian of this change of variables
is the absolute determinant of the matrix of old variables derived by the new
variables:

1 cosé —rsiné 0
_ 0 siné rcosé 0 9
J = abs 1 coso 0 Crsinp| =7 lcosv cosé|. (8)
0 sinwv 0 7 COS U

With the new variables, the indicators can be absorbed into integration lim-
its: 1g(z,u) = 1 if and only if 2; € Q, and 1p;(z,u) = 1 if and only if £
and v are either both smaller or both larger than 7/2. The two cases are
symmetric, so we assume the former and multiply with 2. The integral in (7)
thus turns into

To
E[cé’?(rg)] = / / ep””""/ p20371(7“2 sin & sin U)”72r2
’ z21€Q Jr=0 0<E, v<m/2

X | cosv — cos&|d§ dvdrdz 9)
)
= |Q|lp%*02_, / e Pvnr" 202 dr/ (sin & sinv)" 2
r= 0, v<m/2
X | cosv — cos&| d€ dw. (10)

We apply Lemma 2 to evaluate the integral over the radius, and we use the
Mathematica software to evaluate the integral over the two angles:

. . n
[ et g = 2E ) (1)
r<ro n(pvp)2=1/m
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/ (sin € sinv)" 2| cos v — cos &| d€ dv
0<E, v<m/2

NG [ M(n—1) I((n— 1)/2)].

(12)

T n—1|Tn—-1/2)  T(n/2)

Setting g = 0o, we get the expected total number of regular edges, and as
before we write the expected number up to weighted Delaunay radius rg as
a fraction of the total number:

w02 T(2-1/n) 7 [2I'(n—1 I'((n—1)/2 N
Eley] = iwél/n/ ),[1 [F(n(—l/Z)) - ((I‘(n/2))/ )}’Q””l/ ’
(13)

Blep (o)) = L2 M) oty (14)

T(2—1/n)

Summary. Recall that the critical vertices and the critical edges alter-
nate along R', which implies that their expected total number is the same.
The dependence on the radius threshold, rg, is however different. Here we no-
tice that the dependence on the radius for ci? is the same as for cé:? because
what changes in the integration are only the admissible angles. Extracting
the constants from the formulas for the expectation, we use (5) and (13) to
get

on—1I'(1 —1/n)

cij = ol = 2Ll 15
W BLVATE-Un)[Am-1)  T((n-1)/2)].
B T e v R v e AL

see Table 1. We write the expectations as fractions of these constants times
the size of the region times the n-th root of the density in R™:

n a1 —1/n; PVnT( n
Bley o)) = O35 1 e 1

nY(2 —1/n;5 prpry)

Bleyi (ro)) = Co =5 /) 1Y (18)

. n
Blel )] = 01 1L A (19
To get the corresponding results for the simplices in the weighted Delaunay
mosaic, we note that the number of vertices is d(l)’" = c(l):g + c(l):? and the
number of edges is d}’n = c(l)"f + c}? The two are the same, but this is
not true if we limit the radius to a finite threshold. Indeed, the radius of
a typical edge is Gamma-distributed while the radius of a typical vertex
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follows a linear combination of two Gamma distributions. In the limit, when
n — 0o, the constants are lim,,_ C, 0 o = Ve, lim, o C 0 = = e(v2 - 1),
and lim,, .~ D(l)’n = lim,, oo D%’n = v/2e, which can again be verified using
the Mathematica software.

Table 1. The rounded constants in the expressions of the expected
number of intervals and simplices of a 1-dimensional weighted Delau-
nay mosaic. The ratio of the expected number of critical edges over
the expected number of regular edges it is monotonically decreasing.
It follows that we can infer the ambient dimension from the ratio.

[n=2 3 4 5 6 7 8 9 .. 20 ...
Coo || 1.00 1.09 1.16 1.22 1.26 1.29 1.32 1.35 ... 147 ... 165
Cot || 027 036 042 045 048 0.50 0.51 0.53 ... 0.60 ... 0.68
Dy™ || 127 146 1.58 1.67 174 1.79 1.84 187 ... 2.07 ... 2.33

3. Connection to Boolean model. Let X be a Poisson point process
with density p in R", and write X, for the union of closed balls of fixed
radius » whose centers are in X. This random set is sometimes referred
to as the Boolean model [20]. Let © C R! C R™ be a line segment,
and consider X, N €). We are interested in the connected components in
this intersection and claim that their number satisfies 5p(Del,(Y;Q)) <
Bo(XrNQ) < Bo(Del(Y;Q)) + 2, in which Del,(Y;€Q) is the subcomplex
of the weighted Delaunay mosaic that consists of all simplices with radius
at most r whose weighted Delaunay center lies in 2. This follows from the
general observation that the weighted Delaunay mosaic of a set of points
y € R* with weights wy is homotopy equivalent to the union of power balls,
Y, ={a € R* | la —y|? —wy, < 7%}, and Y, N Q = X, N Q. Indeed, the
weighted Delaunay complex can be defined as the nerve of the decomposition
of Y, with the weighted Voronoi tessellation, so the Nerve Theorem asserts
the homotopy equivalence; see [6] for details. By restricting the Delaunay
mosaic to a line segment, we can lose up to two connected components at
the ends of €Q; see Fig. 4.

Following the evolution of the nested complexes Del,.(Y;Q), as r goes
from 0 to oo, we observe that upon entering the complex a critical vertex
creates a new component, a regular interval does not affect the homotopy
type, and a critical edge connects two components; cf. Fig. 3. It follows that
the expected number of components in Del,.(Y; ) is

Elco(r) — e’} (r)]
— Un,1F(1 — 1/”) 7(1 — 1/7’L; pynrn) o ’7(2 — 1/”5 pynrn) l/nHQH
A1 T(1—1/n) re—1/n) |°

(20)
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Fig. 4. Intersection of a union of 2-dimensional balls with a line

segment ). This intersection has three components, two more than the
restricted weighted Delaunay mosaic, which consists of two vertices and
the connecting edge in the middle of 2. The restricted mosaic misses
the two tail components because the centers of the corresponding balls
do not project into 2.

_ On-1 1 Y(2 = 1/n; prypr™) 1/
=l 2 ey - 2 i,y
n

We write A = pv,r"™, use the definition of the incomplete Gamma function,
and integrate by parts to get

A
v(2—=1/n; A) = / Ve g
0

A
= [~z Vre 4 (1 - 1> / Ve dx (22)
0
= —AlTnemA 4 (1 - 1)7(1 - l; A>. (23)
n n

Noticing that A'=1/7pl/" = (py,rm)i=1/npl/n = pyyll_l/nr"_l, we plug (23)
into (21) to obtain

On—1 1 — n o 1-1/n,n—1
E[6o(Del, (Y5 Q)] = —- e gyt L)
' k1= 1/n "
= Sl ) (24)
= vp_1r" e p|1Q, (25)

where we use the identity o,—1/(n — 1) = v,—1 in the last transition. In
short, (25) gives an explicit formula for the expected density of connected
components in the Boolean model in R” intersected with a line. While
the authors did not find the explicit expression in the literature, this result
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is not new and follows after some straightforward computations from [11,
Excercise 4.8]. Our aim is to provide another, more topological view on the
problem. The graphs of 5y for different dimensions n are shown in Fig. 5.

Bo
0.7
0.6 F n
E —1
0.5;* 2
04 F 5
E 10
0.3
[ 20
0.2:’ 40
0.1 f 200
L R 5 pu,r"

Fig. 5. The expected number of connected components per unit length
as a function of the radius. To facilitate the comparison of the graphs in
different dimensions, n, we rescale such that a unit along the horizontal
axis is the expected number of points inside a ball of radius r in R".

Using the Crofton formula [20, Theorem 9.4.7| but see also [10| and the
fact that almost every connected component is a line segment that meets the
boundary of the Boolean model in two points, (25) can be transformed into
a statement about the boundary of X,

T I'(n/2)

Vao1(Xy) =2V —————
in which V,,_1(X,) is the expected density of (n — 1)-dimensional volume of
the boundary; see |20, section 9| for the detailed discussion of the quantity.

4. Anchored Blaschke—Petkantschin formula. To extend the results
in the previous section from 1 to k dimensions, we first generalize the Blasch-
ke—Petkantschin formula for spheres stated as Theorem 7.3.1 in [20].

Setting the stage. Recall that k < n are positive integers, and that
we write R for the k-dimensional linear subspace spanned by the first k
coordinate vectors of R™. While we used uppercase letters to denote simplices
in the previous sections, we now write x for a sequence of m +1 < k+ 1
points in R™. The reason for the change of notation is that we integrate over
all such sequences and do not limit ourselves to points in the Poisson point
process. Similarly, we write u if the m + 1 points lie on the unit sphere. As
usual, we do not distinguish between a simplex and its vertices, so we write

Up_qr" tem P p, (26)
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Vol,,(x) for the m-dimensional Lebesgue measure of the convex hull of x.
Assuming the m + 1 points are in general position in R™, the affine hull of x
is an m-plane, M = aff x. Furthermore, the set of centers of the spheres
that pass through all points of x is an (n —m)-plane, M=, orthogonal to M.
Generically, the intersection of M+ with RF is a plane of dimension k — m.
The center of the smallest anchored sphere passing through x is the point of
this intersection that is the closest to x.

Top-dimensional case. We first show how to transform an integral over
m + 1 =k + 1 points to the integral over a unique anchored sphere passing
through these points.

Lemma 1 (Blaschke—Petkantschin for top-dimensional simplices). Let
0 < k < n. Then every measurable nonnegative function f: (R™*!1 - R
satisfies

/ £() dx
xe(Rn)k+1

B / RF />0/ (Sn—1)k+1 Jly+ ru)r(nil)(ml)k! VOlk(u/) dudrdy, (27)
ye r> ue(Srn—

in which u' is the projection of u to R*, Vol (1) is the Lebesgue measure of
the k-simplex, and we use the standard spherical measure on S 1.

Proof. We follow the proof of Theorem 7.3.1 in [20], with just slight mod-
ifications. Recall first that we choose the coordinates in R™ so that the
projection of x = (x1,...,2,) to R¥ < R" is 2/ = (21,...,24,0,...,0).
The claimed relation is a change of variables: on the right-hand side, we
represent the points x by the center y € R*¥ < R” of the anchored sphere
passing through these points, its radius r, and k£ points u on the unit sphere
S»~1 < R™ This change of variables is the mapping ¢: R* x [0,00) x
(SP=hHA+L 5 (R™)*+! defined by o(y,r,ug,uy, ..., ux) = (y + rug,y + ruy,

..,y + rug), we note that ¢ is bijective up to a measure 0 subset of the
domain. We claim the Jacobian of ¢ is

J(y,r,u) = r=DED p1vol, (u), (28)

in which u’ = (uj, u},...,u}) is the projection of u to R¥. To prove (28) at
a particular point (y,r, u), we choose local coordinates around every point u;
on the sphere. We choose them such that the matrix [u;0;] is orthogonal,
for every 0 < i < k, in which w; is the (n X (n — 1))-matrix of partial
derivatives with respect to the n — 1 local coordinates. This is the same
parametrization as in [20]. With this, the Jacobian is the absolute value of
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the (n(k + 1) x n(k + 1))-determinant

En,k ugp Tﬁo 0 N 0
E L 5 0 7“1'11 PN 0

Jl,rw =abs| (29)
En,k: ug 0 0 e Tflk

where we write the matrix in block notation, with E, j the (n x k)-matrix
with all elements zero and ones in the diagonal. Similarly, u; is a column
vector of length n, ra; is an (n X (n — 1))-matrix, and 0 is the zero matrix of
appropriate size, which in this case is an (n x (n — 1))-matrix. Like in [20],
we extract r from (k4 1)(n — 1) columns, and use the fact that transposing
the matrix does not affect the determinant to get

Ek n Ek,n Ek:,n
uy ul . owp | |Bup ouwp iy 0 ... 0
J(y, T, U_) 2 uOT 0 . 0 En,k u 0 u ... 0
(7’(’“‘1)("_1)> = 0 1'1? 0 o . . . . .
: En,k Uy 0 0 N l'lk
0 0 u;
(30)

The orthogonality of the matrices [u;1;] implies that ulu; = 1, a}

E,_1,n—1, whereas u;rili is the zero row vector of length n — 1, and iliTui is
the zero column vector of length n— 1, for each 0 < ¢ < k. We can, therefore,
multiply the matrices and get

W =

(k+ DBy Yuwj  uy ... oW
J( 12 Su'  k+1l 0 0
y,r,a i R i
<r(k+1)(n—1)> - u, 0 , Pn=ln-1 ... 0 ’ (31)
: . | : .. .
) ! : . :
ﬁ;CT 0 1 0 ce En—l,n—l

in which we write u} for the vector consisting of the first k coordinates of u;.
Similarly, 0} is the (k x (n — 1))-matrix obtained from w; by dropping the
bottom n — k rows. As written, the (n(k + 1) x n(k + 1))-matrix in (31) is
a ((k+ 3) x (k + 3))-matrix of blocks, not all of the same size. To zero out
the last k 4 1 blocks in the first row, we subtract the third row times g,
the fourth row times ), and so on. The determinant is, therefore, the
product of the determinants of the upper left (2 x 2)-block matrix and the
lower right ((k+ 1) x (k + 1))-block matrix, the latter being 1. To further

simplify the (2 x 2)-block matrix, we use [u;1;][u;1;]T = E,, n, which implies
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[w))[ui]]T = Ej k., and we write the matrix as a product of two matrices:

(J(y,r,u) >2_ (k+1)Epp — > T dou) (32)
rE+D)(n=1) | S ult k+1
/T 1
S’ Y o] a1
Sul k41 11 ... 1| ol
u}CT 1
(33)

in which we get from (32) to (33) using Wit = Ej; — w/u/l. Finally, the
determinant of the vectors uj with appended 1 is k! times the k-dimensional
volume of u’. Hence, J(y,r,u) = r*+DE=DEIVol, (v'), as claimed in (28).
This completes the proof of (27).

General case. Further, we generalize to the case m < k. Recall that
for a sequence x of m + 1 < k + 1 points in R”, there is a unique smallest
anchored sphere passing through them. We claim that its center lies inside
the orthogonal projection P of the m-dimensional affine hull of x onto R”.
Indeed, orthogonally projecting the center of any anchored sphere passing
through x to P in R¥ we clearly get a point, which is a center of a smaller
anchored sphere still passing through x. The following theorem tells us how
to integrate over these smallest anchored circumscribed spheres.

Theorem 2 (Anchored Blaschke-Petkantschin formula). Let 0 < m <
E<nand o« = n(m+1) — (k+1). Then every measurable nonnegative
function f: (R™)™! — R satisfies

/ f(x)dx
xe(Rn)m+1

= / / / / f(y +ra)r®[m! Vol,, (0)]*= ! dudr dP dy,
yeRFk JpecLk Jr>0 Jue(S)mtl
(34)

in which LF, is the Grassmannian of (linear) m-planes in R¥ u’ is the
projection of u to P, and S is short for the unit sphere in P x R"™F.

Proof. We use Blaschke—Petkantschin formula twice, first in its standard
form. For P € £k, we write P x R"™% € L7, for the (m +n — k)-plane
whose orthogonal projection to R¥ is P. The first application of Blaschke-
Petkantschin formula integrates over all (affine) m-planes in R*, spanned by
the projections of x to RF:

/x - F(x) dx

/ / / f(h +x)[m! Vol,,(x")]* "™ dx dh dP. (35)
peLk, JhePt Jxe(PxRn—Fk)m+1
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For every m-plane P in RF, we consider the vertical (m + n — k)-plane
P x R"* in R" and apply Lemma 1 inside it. Recalling that S is a unit
sphere in P x R"™*, this gives

/ f(x)dx
x€(Rm)m+1
_/ / / / / f(h+Z+Tu)T(m+n_k_1)(m+l)
pelk, JhePt JzeP Jrz0 Jue(S)m+1
(36)
x m! Vol,,, (0')[m! Vol,,, (ra’)]*~™ du dr dz dh d P. (37)

Note that Vol,,(ru’) = r™ Vol,,(u’), which implies that the final power of r
is(m+n—k—1)(m+1)+m(k —m) = a. Finally, we get the claimed
relation by setting y = z 4+ h and exchanging the integral over P € £F, with
the integral over y € RF.

5. Expected number of intervals. In this section, we use the anchored
Blaschke—Petkantschin formula of the previous section to compute the ex-
pected numbers of intervals of a weighted Delaunay mosaic in R*. We do
this for every type and use a weighted Delaunay radius threshold to get more
detailed probabilistic information. Recall that the weighted mosaic is a ran-
dom k-dimensional slice of the (unweighted) Poisson-Delaunay mosaic with
density p > 0 in R".

Slivnyak—Mecke formula. To count the type (¢, m) intervals, we focus
our attention by restricting the center of the weighted Delaunay sphere to
a region Q C RF and the weighted Delaunay radius to be less than or equal
to ro. Any sequence X = (Xg, X1, ..., Xm) of m+ 1 points in R" defines such
an interval if it satisfies the following conditions:

(a) the smallest anchored sphere passing through x is empty, writing Pz (x)
for the probability of this event;

(b) the center z of this sphere lies in €, writing 1o(x) for the indicator;

(c) the radius r of this sphere is bounded from above by r¢, writing 1,,(x)
for the indicator;

(d) the origin of RF sees exactly m — £ facets of the projected m-simplex
from the outside, writing 1,,_¢(x) for the indicator.

These are the same conditions as in [7] and [3] with the only difference
that the sphere is now required to be anchored, and modulo this remark the
proofs are identical. Combining these conditions with the Slivnyak—Mecke
formula, we get an integral expression for the expected number of type (¢, m)
intervals, which we partially evaluate using Theorem 2 and Lemma 2:

1

E[CIZ,’Z(TO)] BECE]

/ Po(x)10(xX)1r, (X)L (x)dx  (38)
xe(Rn)m+1
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1k—m+1 "
=l o [ et ar
( + 1) r<ro
x / Lon_o(u) Vol (u')F ™! du (39)
ue(S)m+1
1— . T
— U/ g L L s prr)
m+1 nv,,
X / s L —p(w)Vol,, (u))* ™ du (40)

en A+ 1= k/ns prarh)
tm " T(m+1— k/n)

Specifically, we get (39) by noting Py (x) = e #*»"", applying Theorem 2 to
the right-hand side of (38), collapsing the indicators, using rotational invari-
ance, and writing S for the unit sphere in R™*"~*_ We get (40) from (39) by
applying Lemma 2 with j =a+1=n(m+1) —k, ¢ = pvy, p =mn, tg = ro,
which asserts that the integral over the radius evaluates to the fraction in-
volving the incomplete Gamma function. Finally, we get (41) by defining the
constant

th=m| gk |T 1—k m
chn = £ (TZ; - /n) / Ly (1) Vol ()" du,
(m+ 1)nuy, ue(g)m+1

(162 o7 (41)

(42)
As a sanity check, we set £ = m =0 and k = 1, and get C’&’g =o,-11'(1 —
1/n)/(n1/n /n) because S C R™~! has volume o,,_1, and we have 1g(ug) = 1
and Volg(ug) = 1 for all points ug € S. This agrees with (15) in section 2.
Simplices in the weighted Delaunay mosaic. Since this constant
in (42) does not depend on 79, we deduce that the weighted Delaunay ra-
dius of a typical type (¢,m) interval is Gamma-distributed. The weighted
Delaunay radius of a typical j-simplex in the weighted Poisson—Delaunay
mosaic, therefore, follows a linear combination of Gamma distributions. In-
deed, we get the total number of j-simplices as df " -0 Z m=j ( - ) ?:1,
see [7] The same relation holds if we limit the sunphces to Welghted Delau—
nay radius at most rg, and also if we replace the simplex counts by the
constants CZ;Z and the analogously defined Df’n. Before continuing, we con-

sider the top-dimensional case, 7 = k, in which Dllz’" = ]Z:O C’f ’]:L Taking
the sum eliminates the indicator function in (42), and we get
N'k+1-k%
phn = L+ 1=k/n) Vol (0') du. (43)
k k+1—k/n
(k+ Dnvy e(Sn—1)k+1

We can compare this with the expression for the number of Voronoi ver-
tices by Mpgller [16] using Crofton formula [10, Chap. 6]; see also [20, The-
orem 10.2.4]. By duality, the number of vertices in the weighted Voronoi
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tessellation is the number of top-dimensional simplices in the weighted De-
launay mosaic. FEach vertex is the intersection of an (n — k)-dimensional
Voronoi polyhedron with the k-plane, and if we know the expected number
of intersections, then we also know the integral, over all k-planes. Crofton for-
mula applies and gives the (n — k)-dimensional volume of the (n — k)-skeleton
of the Voronoi tessellation as o, /(2||£}||#n—1) times the mentioned integral.
It turns out that the expected volume is not so difficult to compute oth-
erwise [16], so we can turn the argument around and deduce the expected
number of vertices from the expected (n— k)-dimensional volume. This gives

01011 2R D((kn+n —k+1)/2)
Ok+10n—k+1 n(k‘ + 1)! F((k‘n +n— k)/Q)
D((n+42)/2)1=k/" Tk +1—k/n)
T(n+1)/2)F Tn—k+1/2)

k7n p—
D" =

(44)

Comparing (44) with (43), we get an explicit expression for the expected
k-dimensional volume of the projection of a random k-simplex inscribed
in S*1.

6. Computations. We now return to (42) and note that the integral
on the right-hand side is Jﬂii_k times the expected value of the random
variable

Uzﬁ = 1,_¢(u) Vol,, (w/)F=m+1 (45)

where u is a sequence of m + 1 random points uniformly and independently
distributed on the unit sphere in R™*"~* and u’ is the corresponding se-
quence of points projected to R™ — R™*" % Qur goal is to compute
E[Uz ;Z] in some special cases. Instead of working with the original points,
we prefer to study their projections to R™, but the distribution of the m + 1
points in R™ has yet to be determined. If the upper bound is a vertex or an
edge, then we find explicit expressions of the expected number of intervals.

Critical vertices. For m = 0, we count intervals of type (0,0) or, equiv-
alently, critical vertices. Since Ugi o =1, for all k < n, we get

k.n F(l — k/n)
Coo = Tn—k 1k/n
Nnip

(46)

from (42). Accordingly, the expected number of critical vertices in Q with
weighted Delaunay radius at most rq is C'(’i’(? times the normalized incomplete
Gamma function times ||Q||p*/™; compare with (5) and (6) in section 2.
Vertex-edge pairs. Further, we count the intervals of type (0,1) or,
equivalently, the regular vertex-edge pairs. For this, we need the expectation
of U(Ii 1" picking two random points on the unit sphere in R **! and pro-

jecting them to R' < R™ **1 this is the expectation when we get the kth
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power of the distance between the projected points, if they lie on the same
side of the origin, and we get 0, otherwise. Writing ug, u} € [—1,1] for the
projected points and z = |uf|, y = |u]] for their absolute values, we note
that the signs and magnitudes are independent. It follows that we get zero
with probability 1/2, so the desired expectation is

B[UST) = 5Bl — yl) = Bl(w — 1) 1oy (47)

We can, therefore, restrict our attention to the half of the unit sphere that
projects to [0,1]. To integrate over this hemisphere, we use that x? and y?
are independent Beta-distributed random variables; see Appendix A. Setting
a = z? and b = y?, we have

1
B((n—k)/2,1/2)?

1 a
> / [\/a _ \/l;]ka—l/2(1 _ a)(n—k—Q)/Qb—l/Q(l _ b)(n—k—Q)/Q da db
a=0 Jb=0

k,n
E[Uo,l | =

(48)
B 4
- B((n—k) /2 1/2)2
1
X / E(1 = 2)h=2)/2(1 _ 2)(nk=2)/2 4y 4 (49)
=0 Jy=
F(k+1)F((n—k+1)/2)2 ~ (1 _ k—-n+2 k+3 n+2
T 2R/ED((n—k)/2)? '3F2< 2 2 72 ’1)’
(50)

in which 3ﬁ2 is the regularized hypergeometric function considered in Ap-
pendix A and we use the Mathematica software to get from (49) to (50). As
mentioned at the end of this appendix,

k+3 n+2 1 k—n+2

-4+1
2 2>2++ 2

is a sufficient condition for the convergence of the infinite sum that defines
the value of the regularized hypergeometric function. This is equivalent to
n > 0, which is always satisfied. Plugging (50) into (42), we get an expression
for the corresponding constant:

kn  On p10kl(2 = k/n) T(k+ 1) ((n — k + 1)/2)?

C‘7 pu—
o1 dnv2” k/n 2k\/mT((n —k)/2)
1 k—nm+2 k+3 n+2
Fyl -1 ; ;1. 1
X3 2(27 ) 2 ) 2 ) 2 ) ) (5)

Critical edges. Further, we count the intervals of type (1, 1) or, equiva-
lently, the critical edges. Here the expectation of Uﬁ 1" is relevant: picking two
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points on the unit sphere in R*“**1 and projecting them to R! — R?*+1
this is the expectation in which we get the kth power of the distance between
the projected points, if they lie on opposite sides of the origin, and we get 0,
otherwise. Using again that the signs and magnitude of the projected points
are independent, we note that this expectation is E[Ufln] = (1/2)E[(z+1y)¥].
Setting a = 22, b = 4?2, and integrating as before, we get

. 1
E[U7] = B((n —k)/2,1/2)2

1 1
% / [\/a_’_ \/g]ka—l/Q(l o a)(n—k—Q)/Qb—l/Q(l - b)(n—k—2)/2 da db
a=0 Jb=0

(52)

" B((n- >/2 1/2)?

LS (Bt et
(53)

" B((n- /21/22i<>< o )t )
(54)

Plugging (54) into (42), we get the expression for the corresponding constant:

121 k+1akf(2—k/n)
 Sun " B((n - k)/2,1/2)2

XZ() ( k’z—;1>B(n;k7k—;’+1>. 55)

Constants in low dimensions. The authors have checked the k-di-
mensional formulas against the 1-dimensional formulas in section 2, both
symbolically and numerically. In k = 2 dimensions, the formulas provide
sufficient information to compute all constants governing the expectations of
the six types of intervals. We get three constants from (46), (51), (55):

ool (1 — 2/n)

k,n
Cl 1

Coo = o (56)
nvy,
om0 WTD(2-2/n)T((n-1)/2)> =~ /1  4-n 5 n+2
CO:I = 2-2/ T '3F2 7717 P ) 1 ’
dnvy " (n—2)/2) 2 2 27 2
(57)
w02 T(2—2/n)rm 1 I'((n—1)/2)?
Ol =" 2n |m—1 ((F )/2) } (58)
2nuy, n wl'(n/2)
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The critical simplices satisfy the Euler relation [8]: C’a’g - 012? + 022; =0,

which gives us the constant for the critical triangles. We get another linear
relation from the fact that in the plane the number of triangles is twice
the number of vertices |20, p.458, Theorem 10.1.2]: C’g”; + Ci’; + 022,’; =
Q(Cg”g’ + C’g”? + C’g:g ). Finally, we get a relation for the number of weighted
Delaunay triangles from (44), which we restate for k = 2:

p2n _ 20n41 T((3n —1)/2) T((n+2)/2)372/™ T'(3-2/n)

2 3nopo1 I((Bn—2)/2) T((n+1)/2)2 T((n—1)/2)
Combining Cg:g +Cl2:§ —&—C’;’; = Dg’n with the two linear relations mentioned
above, we get

(59)

1

2, 2, 2, 2,

Coz = —Coy — Co' + §D2 " (60)
1

Gy =iy + ciy— B+ Low o)

Cy3 = —Cop +Cr1- (62)

For small values of n, the constants are approximated in Table 2.

Table 2. The rounded constants in the expressions of the expected
number of intervals and simplices of a 2-dimensional weighted Delau-
nay mosaic obtained from a Poisson point process in n dimensions.

[n=3 4 5 6 7 8 9 10 ... 20 ... 1000
Coyll 111 125 1.38 1.49 1.58 1.66 1.73 1.79 ... 212 ... 2.69
Cot |l 026 042 054 0.63 071 0.77 0.82 0.86 ... 112 ... 154
Coyll 009 015 021 025 0.28 0.31 0.33 035 ... 047 ... 0.65
CPT || 247 292 3.30 3.61 3.87 4.09 4.28 4.44 ... 537 ... 6.92
CYy |l 146 1.83 213 2.37 2.57 2.74 2.89 3.01 ... 372 ... 488
Cyy |l 1.37 1.67 1.92 212 2.29 243 2.55 2.66 ... 325 ... 4.23
DY | 146 1.83 213 237 257 274 289 3.01 ... 3.72 ... 488
DY™ || 4.37 548 6.38 7.10 7.71 8.22 8.66 9.03 ... 11.16 ... 14.65
D™ || 292 3.66 4.25 4.74 514 548 577 6.02 ... 744 ... 9.77

7. Discussion. The main result of this paper is the stochastic analysis
of the radius function of a weighted Poisson—Delaunay mosaic. As a conse-
quence, we get formulas for the expected number of simplices in weighted
Poisson—Delaunay mosaics (cf. [12], [13]). The main technical steps leading
up to this result are a new Blaschke—Petkantschin formula for spheres, stated
as Theorem 2, and the discrete Morse theory approach recently introduced
in [7].

There are a number of open questions that remain:

(1) We have explicit expressions for the constants in the expected number
of intervals of all types for dimension k£ < 2. To go beyond two dimensions,
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Wendel’s method of reflecting vertices of a simplex through the origin [23]
should be useful. Short of getting precise formulas, can we say something
about the asymptotic behavior of the constants, as k and n go to infinity?

(2) The connection to Crofton formula and the volumes of Voronoi skeleta
has been mentioned in section 5. Are there further connections that relate
such volumes with simplices of dimension strictly less than k, or with subsets
of simplices limited to radii at most r¢?

(3) The slice construction implies a repulsive force among the vertices: the
vertices of the weighted Poisson—Delaunay mosaic are more evenly spread
than a Poisson point process. For fixed k, the repulsion gets stronger with
increasing n. It would be interesting to study this repulsive force and its
consequences analytically.

Appendix A. On special functions. In this appendix, we define and
discuss three types of special functions used in the main body of this paper:
Gamma functions, Beta functions, and hypergeometric functions.

Gamma functions. We recall that the lower-incomplete Gamma func-
tion takes two parameters, j and tg > 0, and is defined by

to
Wisto) = [ 67l (63)
t=0
The corresponding complete Gamma function is I'(j) = v(j;00). An impor-
tant relation for Gamma functions is I'(j + 1) = jI'(j), which holds for any
real j that is not a nonpositive integer. We often use the ratio, v(j; to)/T'(4),
which is the density of a probability distribution and called the Gamma dis-
tribution with parameter j. We prove a technical lemma about incomplete
Gamma functions, which is repeatedly used in the main body of this paper.
Lemma 2 (Gamma function). Let ¢,p,j,to € R with p # 0 and ty > 0.

Then . . »
/O p—1e—ct qp = 13/P3 cto) (64)
=0 pcj/P

Proof. We rewrite the numerator of the right-hand side on (64) using the
definition of the right-incomplete Gamma function (63) and substituting u =
ct? and du = cptP~ dt:

P

j cty
7(; ctﬁ) :/ w/P e du (65)
p u=0

to )
— /t_o(ctp)j/pleCtpcptpldt (66)
= / pcd/Pti~ e gy, (67)
t=0

Dividing by pc?/P gives the claimed relation.
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Beta functions. Given real numbers a, b, and 0 < tg < 1, the incomplete
Beta function is defined by

to
By, (a,b) = / 11— bt (68)
t=0

and the complete Beta function is B(a,b) = Bj(a,b), which can be expressed
in terms of complete Gamma functions: B(a,b) = I'(a)I'(b)/T'(a + b).

The Beta functions can be used to integrate over the projection of a sphere
in R” to a linear subspace R¥ < R", as we now explain. Assuming
RF is spanned by the first k coordinate vectors of R™, the projection of
a point means dropping coordinates k + 1 to n. Suppose now that we
pick a point * = (z1,...,7,) uniformly on S"! by normalizing a vec-
tor of n normally distributed random variables: X; ~ N(0,1) for 1 <
i <nandz; = Xj/(Z?:l Xf)l/2 for 1 < j < n. Its projection to RF
is ' = (x1,...,21,0,...,0), and the squared distance from the origin is
|2'||? = (Zle 22) /(37 ?). It can be written as r? = X/(X+Y), in which
X and Y are y2-distributed independent random variables with & and n — k
degrees of freedom, respectively. This implies that 2 ~ B(k/n, (n — k)/n)
[22, section 4.2|. Consider, for example, the case k = n — 1. Integrating
in R* over all points with distance at most r¢ from the origin is the same
as integrating over two spherical caps of S”~!, namely the cap around the
north-pole bounded by (n — 2)-spheres of radius ry, and a similar cap around
the south-pole. To compute the volume of a single such cap, we set ty = T(Q)
and integrate the incomplete Beta function:

o to
_ n (n=1)/2—1(1 _ p)1/2—1
Vbt r0) = 5B = 1)/2,172) I (=8 ds

_ Bu((n—1)/2)1/2
9B((n —1)/2,1/2)°

(69)

Similarly, we can integrate over a ball in a k-dimensional projection and get
the volume of the preimage, which is a solid torus inside the (n — 1)-sphere.

Hypergeometric functions. The family of hypergeometric functions
takes p + g parameters and one argument and can be defined as a sum of
products of Gamma functions, while the regularized version of this function
is obtained by normalizing by the product of T'(b;):

pFa(ar, ... ap; by, ... by 2) = i {ﬁ F(I{(:i;”)} []2[1 Fé(ii)bi)} 2 (70)
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q
pFg(ar, ... ap; b1, .. bgs 2) = pFy(ar, ... ap; b1, ..., by; 2) / Hf(bi)
(71

)
) {H e [13 el 3

.' .
j=0 “i=1 J:

We are interested in the type p = 3 and ¢ = 2. Here convergence of the
infinite sum depends on the values of the parameters. We always have con-

ve

b1

10.

11.

12.

13.

rgence for |z| < 1, and if z = 1, a sufficient condition for convergence is
4+ by > a1+ a9 + as [18].
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