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Two common representations of close packings of identical spheres consisting of hexagonal lay-
ers, called Barlow stackings, appear abundantly in minerals and metals. These motifs, however,
occupy an identical portion of space and bear identical first-order topological signatures as mea-
sured by persistent homology. [Saadatfar et al., Nat. Comm., 2017, 8, 1–11]. Here we present a
novel method based on k-fold covers that unambiguously distinguishes between these patterns.
Moreover, our approach provides topological evidence that the FCC motif is the more stable of the
two in the context of evolving experimental sphere packings during the transition from disordered
to an ordered state. We conclude that our approach can be generalised to distinguish between
various Barlow stackings manifested in minerals and metals.

1 Introduction

When identical hard spheres are packed together, they naturally
form a disordered granular structure that fills 64% of the space.
Although the packing structure is disordered, the limiting pack-
ing density of 64% is highly reproducible. This phenomenon was
extensively studied by J. D. Bernal in the 1950s and 1960s and
the limiting density of 64% is known as the Bernal density or
ϕBernal . Numerous experimental and numerical studies have ex-
tended Bernal’s seminal findings and reported that a stable con-
figuration of frictional mono-disperse spheres can exist at densi-
ties ranging from ϕ = 0.55 to ϕ = 0.641–3. It is possible to break
through ϕBernal by intensely vibrating4 or cyclically shearing5 of
the packing structure. This forces the density of the packing to
increase to the maximum of ϕ ≈ 74%, which is reserved for the
FCC (face-centred-cubic) or HCP (hexagonal-close-packing) crys-
talline structures. Beyond Bernal’s density, ϕBernal , crystalline
clusters inevitably appear in highly mono-disperse sphere pack-
ings. An obvious question to ask is: How are the spheres packed
together locally in the disordered regime and what happens to
these local structures during the transition through ϕBernal all the
way to ϕmax = 74% of FCC or HCP. A thorough understanding of
the crystallisation process in such systems crucially relies on find-
ing key sphere scale patterns in the amorphous states and their
evolution while the packing density increases to ≈ 74%.

The topological and analytical paradigms presented in this pa-
per provide a new approach to understanding the accessible re-
gions of the configurational landscape of granular matter. Using
the new approach, we study experimental and numerical pack-
ings of hard-sphere granular materials. Our experiments harness
X-ray computed tomography, three-dimensional image analysis,
and numerical simulations to accurately access the 3D structure
of the sphere packings. Recent studies have analysed sphere
packings using persistent homology (“persistence”), and shown
that FCC and HCP motifs have identical persistence diagrams
when only considering the union of balls around the sphere cen-
ter points4. However, it is critically important to distinguish the
topological signatures of FCC and HCP in order to understand
structural and topological evolution of granular packings during
disorder-order transition that could lead to the prevalence of FCC
or HCP patterns.

This paper aims to address the shortcomings of persistent ho-
mology of the union of balls by introducing persistent homology
of the k-fold cover, or k-cover persistence for short. We show that
k-cover persistence can successfully characterise the crystallisa-
tion process of our experimental granular packings and, further,
unambiguously distinguish between FCC and HCP patterns. Our
results open new perspectives to describe the grain-scale order-
ing of granular structure while grains re-arrange to increase their
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structural density. We show, for the first time, that with k-cover
persistence already for k = 4, FCC and HCP show distinct features
in their k-cover persistence diagrams as seen in Figure 4.

Fig. 1 3D rendering of the experimental packing. A cut-out section shows
the bulk crystallisation and partially crystallised regions

2 Persistent homology of multi-covers
Persistent homology6–8 has been used to analyze sphere packings
before.4 In this setting, persistence is applied to a discrete point
set X , such as the set of sphere centers of a packing. Ordinarily,
the union of balls of some variable radius r around these points is
considered, and how the topology of this union of balls changes
as r increases from 0 to infinity. Persistent homology tracks these
topological changes, i.e. the emergence (births) and disappear-
ance (deaths) of topological features. In the 3-dimensional set-
ting, these topological features are connected components (or the
gaps between them), closed loops (or the tunnels they form), and
closed surfaces (or the hollow voids they surround). The output
is a persistence diagram Dgm( f), capturing the “life” of each topo-
logical feature, represented by a point in 2D with the x-coordinate
being the time (or more precisely radius) of birth (i.e. when the
feature emerges), and the y-coordinate being the time of death
(i.e. when the feature disappears). The persistence diagram is
invariant under isometries (rotations, translations, reflections) of
the discrete point set. Furthermore, it has an important stabil-
ity property: Small perturbations in the original point set cannot
lead to large changes in the persistence diagram.9

Here we generalize this notion of persistence of a discrete point
set to what we call persistence of the k-fold cover (or k-cover persis-
tence for short)10. In this formalism, instead of the union of balls,
we consider the k-fold cover, which is the subset of R3 where at
least k balls overlap. (The k-fold covers can also be viewed as sub-
level sets of the k-th distance function, fk, measuring the distance

of a point in R3 to its k-th closest point in X .) The previously
described case for the union of balls is the special case for k = 1.
Just like the union of balls, the k-fold cover grows as we increase
the radius of the balls, and its topology changes; see Figure 2
for an example with k = 3. The computed persistence diagram,
Dgm( f3), of the point set X is shown in Figure 3, showing the
birth and death times of various topological features in the 3-fold
cover. In general, we denote the k-cover persistence diagram of a
point set as Dgm( fk).

3 Characterisation of FCC and HCP pat-
terns

In order to understand the persistence diagrams of our experi-
mental datasets, we first have to analyze how geometric struc-
tures in FCC and HCP packings yield points in Dgm( f4). In par-
ticular we need to understand tetrahedral and octahedral cavities
and their adjacency relations. The first and last rows of Figure
5 show schematic sketches of the FCC and HCP packings respec-
tively. In our analysis, we will focus on Dgm0( f4), the persistence
diagram restricted to 0-dimensional topological features (i.e. con-
nected components), as they are easier to interpret geometrically
than the higher-dimensional features.

Assuming spheres of diameter 1, a component of the 4-fold
cover emerges at the center of a tetrahedral cavity at radius

√
6/4.

Within an octahedron, the 4-fold cover emerges at radius
√

2/2
at its center. (Both of these radii correspond to the circumradii of
the tetrahedra and octahedra.) The radius for when these compo-
nents merge with other components depends on a slightly larger
neighbourhood. If two tetrahedra are face-adjacent, a configura-
tion only present in HCP, the components merge earlier than if
they are only edge-adjacent (as present in both FCC and HCP, but
with different multiplicities). A more detailed geometric analysis
is provided in the supplemental material.

Figure 2 can provide some intuition if equilateral triangles are
used as an intuitive proxy for tetrahedra, and the square as proxy
for an octahedron.

Table 1 summarizes the features we see in Dgm0( f4) of the FCC
and HCP packings. While zero-persistence features are usually
not considered as features, we include the one stemming from
octahedra for completeness as they will become non-zero persis-
tence features once these octahedra get deformed, e.g. in Figures
5, 6 and 8.

Table 1 Summary of features in Dgm0( f4) for FCC and HCP packings.
Note that face-adjacent tetrahedra are only present in HCP packings, but
not in FCC packings

Point in Dgm0( f4) Decimal Feature
(
√

6/4,
√

6/3) (0.61, 0.82) A two face-adjacent tetrahedra
(
√

6/4,
√

3/2) (0.61, 0.87) B two edge-adjacent tetrahedra
(
√

2/2,
√

3/2) (0.71, 0.87) C octahedron-tetrahedron adjacency
(
√

2/2,
√

2/2) (0.71, 0.71) D octahedron (zero-persistence)

Deformations. We furthermore investigate the changes in
Dgm0( f4) as an FCC packing is deformed into an HCP packing
by moving a layer of spheres over a saddle point, see Figure 5 for
the resulting Dgm0( f4). Note that when a packing is continuously
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(a) Nowhere do three or more balls overlap yet,
thus the 3-fold cover is empty.

H GF

(b) Three connected components (F, G and H)
of the 3-fold cover have emerged at the centers
of the equilateral triangles.

H GI F

(c) Another component I has emerged in the
center of the square.

HI F

J

J ′

(d) The component G has merged into com-
ponent F, while two new components have ap-
peared.

H F

J

J ′

K

(e) Component I has merged into component H,
in the process creating a small hollow space, the
topological loop K, between them.

F

(f) All components have merged back into com-
ponent F, making the topology of the 3-fold cover
trivial.

Fig. 2 Development of the 3-fold cover for increasing radii, with the birth and death of topological features (components, loops). For each point, the
ball of radius r is drawn in semi-transparent pink. The 3-fold cover is where at least three of these balls overlap, and is drawn in solid red.
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0.87
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Fig. 3 3-cover persistence diagram of the example point set from Fig-
ure 2, representing the topological changes over time. Each point is
annotated with the label of the topological feature present in Figure 2.
Features J and J’ have the same times of birth and death, and are repre-
sented by point J which thus has multiplicity 2. Feature F is not present
as its time of death is at infinity.

deformed, the persistence diagram changes continuously as well
due to its stability property, and thus we see continuous curves in
Dgm0( f4).

Different densities. Figure 6 shows Dgm0( f4) for experimental
packings of various packing densities. Note that due to the high
total number of spheres and thus persistence points, the diagram
is visualized as a heatmap, each pixel representing the number of
persistence points in its value range. In these experimental pack-
ings, we see points in the locations from Table 1 characteristic
of FCC and HCP structures, indicating the presence of these geo-
metric configuration in our packings. We furthermore see points
along the deformation curves from Figure 5, suggesting that these
deformed configurations are present at various stages.
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(b) HCP

Fig. 4 4-cover persistence diagrams of FCC and HCP packings. 0-
dimensional topological features (components) are shown in blue, 1-
dimensional features (loops) in yellow, 2-dimensional ones (voids) in red.
Each persistence point is annotated above with a relative multiplicity, in-
dicating how many topological features with the given birth and death co-
ordinate exist per sphere. Furthermore each 0-dimensional persistence
point is annotated (in brackets) with the feature from Table 1 it corre-
sponds to.

As the packing density increases, we see persistence points typ-
ical for FCC and HCP appearing in higher frequencies, indicating
that crystalline domains appear in the packing. Exploiting these
characteristic signatures in the persistence diagram, we can esti-
mate the ratio of FCC and HCP present in a given packing.

Frequency measures. Recall from Figure 4 that the persis-
tence points (0.61,0.82), (0.61,0.87) and (0.71,0.87) appear in ra-
tio 1:1:1 per sphere in HCP packings, while they appear in ratio
0:2:1 in FCC packings. We can “count” the number of persistence
points close to these characteristic points, to be explained in more
detail later. Introducing two variables fHCP and fFCC to denote a
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Fig. 5 Deformation of an FCC packing (first row) into an HCP packing (last row) with 3 intermediate configurations, see Supplemental Information for
an animated 3D video. For each row, the first column shows a schematic sketch of the configuration with the corresponding shifting angle; the second
column shows a projection from above; the third column shows the corresponding Dgm0( f4) (blue) with red curves indicating the continuous change in
Dgm0( f4) when the configuration is continuously deformed into the next row’s configuration.
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(a) 59.7 %. (b) 65.4 %

(c) 66.1 % (d) 68.1 %

(e) 70.1 % (f) 72.1 %

Fig. 6 The 4-cover persistence diagram for dimension 0, Dgm0( f4), for
experimental sphere packings of various packing densities, each consist-
ing of between 4100 and 4600 spheres.

frequency measure of HCP and FCC respectively, we find the least-
squares solution to an over-defined linear system of 3 equations
to estimate these frequencies of HCP and FCC and thus the ratio
between HCP and FCC. The equation system is as follows:

fHCP = mface-tetra
fHCP +2 fFCC = medge-tetra
fHCP + fFCC = mocta-tetra

where mface-tetra, medge-tetra and mocta-tetra denotes the num-
ber of persistence points “close” to (0.61,0.82), (0.61,0.87) and
(0.71,0.87) respectively. Instead of directly counting how many
persistence points are within a certain radius of each of these fea-
tures, we rather weigh the contributions such that closer points
contribute more to the count. Specifically, for each point we com-
pute the distance between the point and the feature, and weigh
it according to a Gaussian probability density function gσ (x) that
is normalized such that gσ (0) = 1, so that points that coincide
exactly with the feature contribute 1. As standard deviation for
the Gaussian we choose σ = 0.005, so that points within distance
0.005 still contribute approximately 0.6 to the count, while points
at distance greater than 0.015 contribute less than 0.01. In partic-
ular, with this choice we ensure not to capture points belonging to

other features, as the two closest features have a distance of ap-
proximately 0.05. For the distance, we use L∞-distance which is
the standard distance used in persistence diagrams. This choice
of counting points ensures that the stability property of persis-
tence diagrams translates to stability of our measure, meaning
that small changes in the sphere packings imply small changes in
estimated HCP and FCC frequency.

Figure 7 shows the values of our measure for HCP and FCC fre-
quency as well as their ratio for different packing densities. Each
data point is for an experimental packing of approximately 4000
spheres. We see similar results as observed using previous mea-
sures11, in particular that FCC occurs more frequently in more
crystalline packings than HCP.

(a) Frequency of FCC and HCP. (b) Relative ratio of FCC and HCP.

Fig. 7 Frequency measure of HCP- and FCC-like structures as well as
ratio of the two in experimental packings of different densities, according
to our measure.

Notice that our method will also distinguish more complex
Barlow stackings, as long as the ratios between FCC-type layer
groups (i.e. 3 consecutive distinct layers, ABC) and HCP-type
layer groups (i.e. 3 consecutive layers with the first and third
coinciding, ABA) in the stackings are different. For exam-
ple, Sm or Mo2S3 with ABABCBCAC stacking12,13, Ti4S5 with
ABABCBABAC stacking and Fe3S4 with ABCBCABABCAC stack-
ing13,14 have ratios between FCC-type and HCP-type layer groups
of 2:1, 3:2 and 1:1 respectively, and thus they exhibit differ-
ent Dgm0( f4) and our measure would indicate these different
FCC/HCP ratios. For Barlow stackings with the same ratios, we
expect Dgm0( fk) for sufficiently large k to differ.

4 Stability of FCC and HCP
As seen in Figure 7, HCP structures appear less commonly in
experimental packings than FCC structures. We investigate this
phenomenon using a shearing simulation in which perfectly crys-
talline FCC and HCP layers of frictional grains are sheared until
the packing becomes disordered; see Supplemental Information
for details on the simulation. This molecular dynamics simu-
lation allows us to dynamically track the “melting” of a granu-
lar crystal from FCC/HCP to disorder. Using the 4-cover persis-
tence diagrams, we analyse the stability of HCP and FCC patterns
from a topological perspective as these motifs progress from or-
der towards disorder. Figure 8 show the temporal evolution of
Dgm0( f4) of the FCC and HCP packings as they become more and
more disordered. The signature of this quasi-static transition in
the topological space is highly similar to the one measured in par-
tially crystallized packings at mechanical equilibrium.
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Figure 8 compares the melting of FCC and HCP at correspond-
ing time steps. While both structures exhibit deformation patterns
similar to the ones shown in Figure 5, they are much more pro-
nounced in the HCP melting. While the FCC packing stays stable
in its (slightly perturbed) crystalline pattern, the HCP packing de-
teriorates into a disordered packing looking similar to Figure 6a.
The birth and death coordinates of the FCC/HCP typical features
are lower than they theoretically should be as shown in Figure 4,
and they slightly decrease over time in the simulation. However
this phenomenon is just a side effect of the simulation allowing
slight overlap of spheres under strong forces.

5 Conclusions
Structures consisting of close-packed layers of hexagonally ar-
ranged spheres form the highest packing density in mono-sized
sphere packing15. These layers can be stacked in various pe-
riodic or random fashions commonly known as “Barlow stack-
ing”. In the simplest periodic structures, the layers are arranged
as ABAB..., which corresponds to the hexagonally close-packed
(HCP) structure and ABCABC... for face-centered cubic (FCC)
structure16,17. More complex examples can be found in lattice
structure of metal compounds where the anions are arranged in
a Barlow stacking, with the cations occupying the holes of HCP
packing.13,14.

Due to the abundance and importance of such motifs in physi-
cal systems, many techniques have been invented for their quan-
tification, each with strengths and shortcomings. For instance
the Bond Orientational Order14,18, which is widely used in con-
densed matter physics to characterise local crystalline structures
is a Short Range Order parameter and dependant on the choice
of neighbours and it suffers from ambiguous neighbourhood def-
inition19 and discontinuity of neighbourhood shells20 .

This paper presents an efficient way based on k-fold cover to
unambiguously distinguish between FCC, HCP and various Bar-
low stacking by analysing dimension 0 of the 4-cover persistence
diagram. Our approach addresses the shortcoming of4 and unlike
the Bond Orientational Orders, it is built on a continuous distance
function.

Numerous studies have shown that in hard-sphere pack-
ing17,21,22 and strongly charged colloids23, FCC is the preferred
structure despite the fact that both the FCC and HCP structures
have an identical packing density of ≈ 74%. By tracking the 4-
cover topological signatures of both FCC and HCP during the
melting process, we were able to show that the FCC has a more
stable structure compared with HCP.

Our results provide an opportunity to improve our understand-
ing of non-equilibrium physics with applications including glass,
granular and colloidal jamming and ordered-disordered transi-
tions, crystal melting and nucleation24–26. Further, the approach
presented here may have practical applications in domains such
as pore description in soil- and geo-sciences27, which are crucial
for understanding natural systems and their mechanical stability,
flow properties etc.28.
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Fig. 8 4-cover Dgm0( f4) for simulated shearing of FCC (left) and HCP
(right) packings at time steps 3, 11, 21, 33 and 49 of the simulation.
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Fig. 9 Molecular Dynamics (MD) simulations of the melting process from
a regular FCC lattice (left) to a disordered system (right) by inducing
shear via moving the top layer grains. See Supplemental Information
for a video of the simulation.
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A Supplemental Information
A.1 Melting of FCC and HCP: order-disorder simulations
Packings of 6,000 mono-disperse spheres are formed according
to face-centred-cubic (FCC) and hexagonal-close-packing (HCP)
motif. The bottom layer of grains is then set into motion at a
constant shear rate. The forces (both normal and frictional) be-
tween the grains and grain displacement are computed at each
time step by a discrete element method that uses Hertz–Mindlin
contact model29. During the crystal “melting”, a characteristic
shear rate is evaluated as γ̇ = vg/(4d), where vg is the velocity of
shearing boundary. The simulated process is quasi-static in the
sense that the characteristic time of decrease of ϕ is more than
10 times larger than the characteristic time associated with the
shear deformation applied. During the melting, the packing re-
mains dense with a packing density that stays larger than ϕ = 0.54
during the transition. Moreover, a high number of mechanical
contacts is maintained throughout the process: the average me-
chanical coordination number Z is initially 12 and remains > 4
during the evolution.

A.2 Geometric features in FCC and HCP
We give geometric explanations for the features in Table 1. With
each tetrahedral cavity, a component of the 4-fold cover emerges
at radius

√
6/4, which is the circumradius of such a tetrahedron.

The radius for which this component merges with other compo-

nents depends on the neighbourhood of this tetrahedron. If it is
face-adjacent, as present in the HCP packing, then it merges with
that tetrahedron’s component at radius

√
6/3, which is the height

of a tetrahedron or equivalently the radius when a ball centered
around one of the tetrahedral vertices touches the opposite face.
This explains the point (

√
6/4,
√

6/3) in the persistence diagram
of the HCP packing. If instead another tetrahedron is adjacent via
an edge at the angle like in FCC and HCP, their components only
merge at radius

√
3/2, which is the distance from a tetrahedral

vertex to any of its opposite edges, equaling the height of a trian-
gular face. This explains the point (

√
6/4,
√

3/2) in the persistence
diagram. In FCC packings this configuration is twice as frequent
as in HCP packings, and thus appears with multiplicity 2 there. Fi-
nally, both configurations contain octahedra that share faces with
tetrahedra. The circumradius of an octahedron is

√
2/2. Thus

within octahedra, the 4-fold cover only emerges at radius
√

2/2
at the circumcenter of the octahedron. It merges with the compo-
nent of a face-adjacent tetrahedron at radius

√
3/2, which is half

the distance between the vertex unique to the tetrahedron (i.e.
not shared with the octahedron) to any of the vertices unique to
the octahedron (i.e. not shared with the tetrahedron). This dis-
tance equals the height of a regular triangle,

√
3/2, as each of the

non-shared tetrahedral faces is co-planar with the incident octa-
hedral face. This explains the persistence point at (

√
2/2,
√

3/2).
As there are 6 rather than merely 4 points at the same distance
from the circumcenter of an octahedron, when the octahedron
is slightly deformed it is possible that multiple components arise
at a radius close to

√
2/2 which merge together very quickly. So

while in a perfect packing these components have 0-persistence,
in experimental packings we will often also see persistence points
close to the diagonal at (

√
2/2,
√

2/2), stemming from this phe-
nomenon. These are present whenever octahedra are present,
and thus appear in both slightly deformed FCC and HCP pack-
ings.
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