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Abstract1

The reconstruction of shape from a point sample is inherently sensitive to the interplay between local2

point configurations and ambient metric. Applying this viewpoint, we generalize popular Euclidean3

shape reconstruction methods to Bregman divergences and beyond. We focus on the Alpha and4

Wrap complexes in the context of the relative entropy and the Fisher metric.5

The interest of this work is twofold. First, we use the generalized reconstruction methods, along6

with persistent homology, to experimentally compare these geometries. Second, the techniques and7

software we developed are of independent interest. One highlight is that the existing implementations8

for the Euclidean metric can be reused–although indirectly–in this generalized context. This removes9

a major roadblock for the development of topological data analysis tools working in non-Euclidean10

spaces.11
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1 Introduction12

The motivation for the work reported in this paper is the deeper understanding of the role13

of the ambient metric in the reconstruction of shape. Specifically, we further generalize14

geometric and topological data analysis methods from Euclidean geometry to Bregman15

geometries in which dissimilarity is measured with divergences. By necessity, these methods16

are sensitive to the dissimilarity defining the ambient geometry, and we exploit this sensitivity17

to quantify the difference between geometries.18

As example geometries, we emphasize those related to information theoretic concepts,19

such as the Shannon geometry and the Fisher geometry, in which dissimilarities are defined20

as the relative entropy (Kullback–Leibler divergence) and the Fisher distance, respectively.21

These are examples of what we like to call information spaces[11].22

These geometries are commonly used in data analysis, and we hope this work sheds23

some light on the differences and commonalities between them. Some particularly pertinent24

questions are these: Is the Fisher geometry a good approximation of the Shannon geometry?25

Can we see a significant difference between the Euclidean geometry and the non-Euclidean26

ones, as predicted by the discrepancy in their practical performances?27

We are also interested in the algorithms that underpin the data analysis methods,28

especially the topological ones. While the Fisher geometry can be handled with Euclidean29

tools [11], the Shannon geometry used to require customized tools [12]. We show that the30
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Shannon geometry can also benefit from existing, robust tools, although in this case the31

application is less direct. We also hope that this development opens new alleys for topological32

data analysis in information spaces.33

Prior work and results. The research reported in this paper is based on two related lines34

of work, namely the study of Bregman divergences from the computational geometry point35

of view initiated in [5] and the extension of topological data analysis to Bregman and Fisher36

geometries started in [12], and [11] respectively.37

An important concept in our investigations is the Bregman–Delaunay mosaic, which we38

formally define as the straight-line dual of the not necessarily straight-line Bregman–Voronoi39

tessellation obtained by measuring distance with the Bregman divergence from a data point.40

This mosaic was already defined in [5], and we explain how it can be computed as a weighted41

Euclidean Delaunay mosaic using standard geometric software. In Euclidean space, the Alpha42

shapes can be defined as the sublevel sets of the radius function on the Delaunay mosaic,43

which is a generalized discrete Morse function in the sense of Forman [13] and Freij [14]. As44

described in [3], the lower sets of the critical simplices of this radius function constitute the45

Wrap complex, which was introduced as a shape reconstruction tool in [8]. We extend this46

framework by introducing the rise function on a Bregman–Delaunay mosaic, which provides47

a convenient measure of the size of a Bregman ball. With these notions, we construct the48

shape of data in different geometries, and we use them to quantify the difference between49

the geometries.50

We have implemented all the algorithms and use the software to run experiments,51

comparing Euclidean, Shannon, and Fisher geometries for synthetic data. We find that the52

Delaunay mosaics and their Alpha and Wrap complexes in these geometries show some but53

occasionally subtle differences, which we quantify.54

Outline. Section 2 provides the necessary background from discrete geometry and combin-55

atorial topology. Section 3 gives the details needed to compute Delaunay mosaics and their56

Alpha and Wrap complexes in Bregman and Fisher geometries using software for weighted57

Delaunay mosaics in Euclidean geometry. Section 4 presents computational experiments,58

and Section 5 discusses the quantification of the difference between Bregman and other59

geometries. Section 6 concludes this paper.60

2 Background61

We need background on Bregman divergences, Delaunay mosaics, and discrete Morse functions.62

Indeed, this paper combines these concepts to get new insights into Bregman–Delaunay63

mosaics and their scale-dependent subcomplexes.64

Bregman divergence. Given a suitable convex function on a convex domain, the best affine65

approximation at a point defines a dissimilarity measure on the domain; see [6]. We follow66

[4] in the details of this construction, requiring a technical third condition that guarantees a67

conjugate function of the same kind. Let Ω ⊆ Rd be an open and convex domain. A function68

F : Ω→ R is of Legendre type if69

(i) F is differentiable,70

(ii) F is strictly convex,71

(iii) ∇F diverges whenever we approach the boundary of Ω.72

If the boundary of the domain is empty, which is the case for Ω = Rd, then Condition (iii) is73

void. In other words, ‖∇F (x)‖ does not necessarily diverge when ‖x‖ → ∞. Given points74

x, y ∈ Ω, the Bregman divergence from x to y associated with F is the difference between F75
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and the best affine approximation of F at y, both evaluated at x:76

DF (x‖y) = F (x)− [F (y) + 〈∇F (y), x− y〉] . (1)77

Note that DF (x‖y) ≥ 0, with equality iff x = y. However, the other two axioms of a metric do78

not hold. the divergence is not necessarily symmetric, and it violates the triangle inequality79

in all non-trivial cases. In spite of these short-comings, Bregman divergences are useful as80

measures of dissimilarity. For a given h ≥ 0, the primal ball with center x contains all points81

y such that the divergence from x to y is at most h, and the dual ball contains all points y82

such that the divergence from y to x is at most h:83

BF (x, h) = {y ∈ Ω | DF (x‖y) ≤ h}, (2)84

B∗F (x, h) = {y ∈ Ω | DF (y‖x) ≤ h}. (3)85

The geometric intuition for (2) is to cast light onto the graph of F from a point vertically86

above x ∈ Rd in Rd+1 and at distance h below the graph of F : the primal ball is the vertical87

projection of the lit up part of the graph onto Rd. This ball is not necessarily convex. The88

geometric intuition for (3) is to intersect the graph of F with the tangent hyperplane at x89

shifted vertically upward by a distance h: the dual ball is the vertical projection of the part90

of the graph on or below this shifted hyperplane. This ball is necessarily convex.91

The conjugate of F can be constructed with elementary geometric means. Specifically,92

we use the polarity transform that maps a point A = (a, ad+1) ∈ Rd × R to the affine map93

A∗ : Rd → R defined by A∗(x) = 〈a, x〉 − ad+1. Similarly, it maps A∗ to A = (A∗)∗. The94

graph of F can be described as a set of points or a set of affine maps that touch the graph.95

The conjugate function, F ∗ : Ω∗ → R, is defined such that polarity maps the points of the96

graph of F to the tangent affine maps of the graph of F ∗, and it maps the tangent affine97

maps of the graph of F to the points of the graph of F ∗. Since A and A∗ switch position98

with gradient, so do F and F ∗. More specifically, Ω∗ = φ(Ω) and F ∗ : Ω∗ → R are given by99

φ(x) = ∇F (x), (4)100

F ∗(φ(x)) = 〈∇F (x), x〉 − F (x), (5)101

∇F ∗(φ(x)) = x. (6)102

The convexity of Ω and Conditions (i), (ii), (iii) imply that Ω∗ is convex and F ∗ satisfies103

(i), (ii), (iii). In other words, the conjugate of a Legendre type function is again a Legendre104

type function. Importantly, the Bregman divergences associated with F and with F ∗ are105

symmetric: DF (x‖y) = DF∗(φ(y)‖φ(x)). Hence, φ maps primal balls to dual balls and it106

maps dual balls to primal balls:107

B∗F∗(φ(x), h) = φ(BF (x, h)), (7)108

BF∗(φ(x), h) = φ(B∗F (x, h)). (8)109

Since all dual balls are convex, all primal balls are diffeomorphic images of convex sets.110

This implies that the common intersection of a collection of primal balls is either empty or111

contractible, so the Nerve Theorem applies [12].112

Examples. An important example of a Legendre type function is $ : Rd → R defined113

by mapping x to half the square of its Euclidean norm: $(x) = 1
2‖x‖

2. It is the only114

Legendre type function that is its own conjugate: $ = $∗. The symmetry between the115

divergences of a Legendre type function and its conjugate thus imply D$(x‖y) = D$(y‖x)116

and B$(x, h) = B∗$(x, h). Indeed, it is easy to see that the divergence is half the squared117
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Euclidean distance, D$(x‖y) = 1
2‖x− y‖

2, which is of course symmetric. This particular118

Legendre type function provides an anchor point for comparison.119

The example that justifies the title of this paper is the (negative) Shannon entropy,120

E : Rd+ → R, defined by E(x) =
∑d
i=1[xi ln xi − xi]. It is of Legendre type and fundamental121

to information theory. Its divergence,122

DE(x‖y) =
d∑
i=1

[xi ln xi − xi ln yi − xi + yi], (9)123

is generally referred to as the relative entropy or the Kullback–Leibler divergence from x to124

y. The gradient of the Shannon entropy at x is the vector ∇E(x) with components ln xi125

for 1 ≤ i ≤ d. According to (5), the conjugate of E maps this vector to
∑d
i=1 xi. Hence126

E∗ : Rd → R is defined by mapping y ∈ Rd to E∗(y) =
∑d
i=1 e

yi .127

A case of special interest is the restriction of the Shannon entropy to the standard128

simplex, which is a subset of the positive orthant. Writing x = (x1, x2, . . . , xd) for a point129

of Rd+, the standard (d − 1)-simplex, denoted ∆d−1, consists of all points x that satisfy130

x1 + x2 + . . . + xd = 1. We use ∆d−1 as the domain of a Legendre type function, which131

is the reason we introduce ∆d−1 as an open set. Finally, write E∆ : ∆d−1 → R for the132

restriction of the Shannon entropy to the standard simplex. This setting is important133

because each x ∈ ∆d−1 can be interpreted as a probability distribution on d disjoint events.134

Correspondingly, −E∆(x) = −E(x) is the expected efficiency to optimally encode a sample135

from this distribution. Finally, the relative entropy from x to y is the expected loss in coding136

efficiency if we use the code optimized for y to encode a sample from x. Projecting the137

gradient of the unrestricted Shannon entropy into the hyperplane of the simplex passing138

through origin, we get the gradient of the restriction:139

∇E∆(x) =


ln x1
ln x2
...

ln xd

− 1
d

d∑
i=1

ln xi


1
1
...
1

 . (10)140

Using (4) and (5), we compute the conjugate of E∆, which we state in terms of the barycentric141

coordinates parametrizing Rd−1. Specifically, we get φ∆(x) = ∇E∆(x) and142

E∗∆(φ∆(x)) = 〈∇E∆(x), x〉 − E∆(x) (11)143

= 1− 1
d

∑d

i=1
ln xi (12)144

= 1 + ln
∑d

i=1
eyi , (13)145

in which the yi = ln xi − 1
d

∑d
i=1 ln xi are the coordinates in conjugate space. Indeed, it is146

not difficult to verify (13) using ln
∑d
i=1 xi = 0 for points in the standard simplex.147

Antonelli isometry. A Bregman divergence gives rise to a path metric in which length148

is measured by integrating the square root of the divergence. As explained in [11], any149

divergence that decomposes into a term per coordinate implies an isometry between this150

path metric and the Euclidean metric. By (9), the relative entropy is an example of such a151

divergence, and the corresponding path metric is known as the Fisher metric, which plays152

an important role in statistics and information geometry [1]. Instead of formalizing the153

recipe for constructing the Fisher metric from the relative entropy, we present the isometry154
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with Euclidean space, which was first observed by Antonelli et al. [2]. This is the mapping155

 : Rd+ → Rd+ defined by156

(x) = (
√

2x1,
√

2x2, . . . ,
√

2xd). (14)157

By virtue of being an isometry, the distance between points x, y ∈ Rd+ under the Fisher metric158

satisfies ‖x− y‖Fsh = ‖(x)− (y)‖. The path of this length from x to y is the preimage of159

the line segment from (x) to (y), which is generally not straight.160

Of special interest is the Fisher metric restricted to the standard simplex. The mentioned161

isometry maps ∆d−1 to (∆d−1), which is the positive orthant of the sphere with radius
√

2162

and center at the origin in Rd. The shortest path between x, y ∈ ∆d−1 is thus the preimage163

of the great-circle arc that connects (x) and (y) on the sphere. Since this arc is generally164

longer than the straight line segment connecting (x) and (y) in Rd+, the distance between x165

and y under the Fisher metric restricted to ∆d−1 is generally larger than in the unrestricted166

case.167

Alpha shapes and Wrap complexes. Two popular shape reconstruction methods based168

on Delaunay mosaics are the Alpha shapes introduced in [10] and the Wrap complexes169

first published in [8]. Both extend to generalized discrete Morse functions and therefore to170

Bregman–Delaunay mosaics and Bregman–Wrap complexes.171

Despite working with Bregman divergences, we only require Euclidean weighted Deluanay172

mosaics. For brevity, standard definitions and properties are available in Appendix A.173

Letting D be a simplicial complex and f : D → R a generalized discrete Morse function,174

the Alpha complex for h is the sublevel set,175

Alphah(f) = f−1(−∞, h], (15)176

and the Alpha shape is the underlying space of the Alpha complex. In contrast to the Alpha177

shape, the assumption that f be a generalized discrete Morse function is essential in the178

definition of the Wrap complex. Recall that every step of a generalized discrete Morse179

function is an interval of simplices in the Hasse diagram. We form the step graph, G = Gf ,180

whose nodes are the steps and whose arcs connect step ϕ to step ψ if there are simplices181

P ∈ ϕ and Q ∈ ψ with an arc from P to Q in the Hasse diagram. By construction, f is182

strictly increasing along directed paths in the step graph, which implies that the graph is183

acyclic.184

The lower set of a node ν in G, denoted ↓ ν, is the set of nodes ϕ for which there are directed185

paths from ϕ to ν. Similarly, we write ↓N =
⋃
ν∈N ↓ ν for the lower set of a collection of186

nodes, and
⋃
↓N for the corresponding collection of simplices. We are particularly interested187

in the set of singular intervals, and we recall that each such interval contains a critical simplex188

of f . We write Sgf for the set of singular intervals, and Sgf (h) ⊆ Sgf for the subset whose189

simplices satisfy f(Q) ≤ h. The Wrap complex for h is the union of steps in the lower sets of190

the singular intervals with value at most h:191

Wraph(f) =
⋃
↓ Sgf (h). (16)192

There are alternative constructions of the Wrap complex. Starting with the Alpha complex193

for h, we get the Wrap complex for the same value by collapsing all non-singular intervals194

that can be collapsed. The order of the collapses is not important as all orders produce the195

same result, namely Wraph(f). Symmetrically, we may start with the critical simplices of196

value at most h and add the minimal collection of non-singular intervals needed to get a197

simplicial complex. The minimal collection is unique and so is the result, Wraph(f). A proof198

of the equivalence of these three definitions of the Wrap complex is given in Appendix B.199
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3 Mosaics and Algorithms200

In this section, we review Bregman–Delaunay and Fisher–Delaunay mosaics as well as their201

scale-dependent subcomplexes. All mosaics are constructed using software for weighted202

Delaunay mosaics in Euclidean geometry, and all subcomplexes are computed by convex203

optimization. We begin with the mosaics in Bregman geometry.204

Bregman–Delaunay mosaics. Let Ω ⊆ Rd be open and convex, consider a Legendre205

type function F : Ω → R, and let U ⊆ Ω be locally finite. Following [5, 12], we define the206

Bregman–Voronoi domain of u ∈ U , denoted domF (u,Ω), as the points a ∈ Ω that satisfies207

DF (u‖a) ≤ DF (v‖a) for all v ∈ U . The Bregman–Voronoi tessellation is the collection of208

such domains, and the Bregman–Delaunay mosaic mosaic records all non-empty common209

intersections:210

VorF (U,Ω) = {domF (u,Ω) | u ∈ U}, (17)211

DelF (U,Ω) = {Q ⊆ U |
⋂
u∈Q

domF (u,Ω) 6= ∅}, (18)212

and we note that the mosaic is isomorphic to the nerve of the tessellation. To develop213

geometric intuition, we observe that VorF (U,Ω) can be obtained by growing primal Bregman214

balls with centers at the points u ∈ U . When two such balls meet, they freeze where215

they touch but keep growing everywhere else. Eventually, each ball covers exactly the216

corresponding domain. Since the primal balls are not necessarily convex, it is not surprising217

that the faces shared by the domains are not necessarily straight. Nevertheless, the Delaunay218

mosaic has a natural straight-line embedding as all its cells are vertical projections of lower219

faces of the convex hull of the points (u, F (u)) ∈ Rd+1. To see this, we note that each cell of220

the mosaic corresponds to a dual Bregman ball whose boundary passes through the vertices221

of the cell, and this ball is the vertical projection of the part of the graph of F on or below222

the graph of an affine function.223

Construction. To construct the mosaic, we assume that U ⊆ Ω is in general position, by224

which we mean that Conditions I and II are satisfied after transforming U ⊆ Ω to X ⊆ Rd×R225

such that DelF (U,Ω) is a subcomplex of the weighted Delaunay mosaic of X. Lifting the226

points from Rd to Rd+1 and projecting the lower boundary of the convex hull back to Rd, we227

get the mosaic. We remind the reader that relevant background information can be found in228

Appendix A, and define $(a) = 1
2‖a‖

2.229

We formalize this method while stating all steps in terms of weighted points in d230

dimensions:231

Step 1: Let X ⊆ Rd × R be the set of weighted points x(u) = (u, 2$(u) − 2F (u)), with232

u ∈ U .233

Step 2: Compute the weighted Delaunay mosaic of X in Euclidean geometry, denoted234

Del(X).235

Step 3: Select DelF (U,Ω) as the collection of simplices in Del(X) whose corresponding236

weighted Voronoi cells have a non-empty intersection with Ω∗.237

Indeed, the weighted Delaunay mosaic computed in Step 2 may contain simplices that do not238

belong to the Delaunay–Bregman mosaic of F . To implement Step 3, we note that DelF (U,Ω)239

is dual to VorF (U,Ω), which is isomorphic to VorF∗(φ(U),Ω∗), and this Bregman–Voronoi240

tessellation is the weighted Voronoi tessellation of X restricted to Ω∗. This tessellation has241

convex polyhedral cells and is readily available as the dual of Del(X). Writing Y (Q) ⊆ X for242

the points x(u) with u ∈ Q ⊆ U and dom(Y ) for the weighted Voronoi cell that corresponds243
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to Y ∈ Del(X), we have244

DelF (U,Ω) = {Q ⊆ U | dom(Y (Q)) ∩ Ω∗ 6= ∅}. (19)245

Instead of computing all these intersections, we can collapse Del(X) to the desired subcomplex246

and thus save time by looking only at a subset of the mosaic. We explain how the simplices247

can be organized to facilitate such a collapse. Recalling that Ω∗ ⊆ Rd is open and convex,248

we introduce the signed distance function, θ : Rd → R, which maps every a ∈ Rd to plus249

or minus r = r(a) such that the sphere with center a and radius r touches ∂Ω∗ but does250

not cross the boundary. Finally, θ(a) = r(a) if a 6∈ Ω∗ and θ(a) = −r(a) if a ∈ Ω∗. Note251

that Ω∗ = θ−1[−∞, 0) and that Ω∗t = θ−1[−∞, t) is open and convex for every t. Now252

construct ϑ : Del(X) → R by mapping Y ∈ Del(X) to the maximum t ∈ R for which253

dom(Y ) ∩ Ω∗t = ∅. By (19), we get DelF (U,Ω) by removing all simplices Y with ϑ(Y ) ≥ 0.254

The crucial observation is that for X in general position, ϑ is a generalized discrete Morse255

function with a single critical vertex. To see this, we observe that Vor(X) decomposes Ω∗t256

into convex domains for every value t, which by the Nerve Theorem implies that ϑ−1(−∞, t]257

is contractible. Removing the simplices in sequence of decreasing values of ϑ thus translates258

into a sequence of collapses that preserve the homotopy type of the mosaic.259

Rise functions. To introduce scale into the construction of Bregman–Delaunay mosaics,260

we generalize the radius function from Euclidean geometry to Bregman geometries, changing261

the name because size is more conveniently measured by height difference in the (d+ 1)-st262

coordinate direction as opposed to the radius in Rd. Let u̇ = (u, F (u)) and ū : Rd → R be263

the point and affine map that correspond to u ∈ Ω, and let υ : Rd → R be the upper envelope264

of the ū, u ∈ U . We introduce the rise function, %F : DelF (U,Ω) → R, which maps each265

simplex, Q, to the minimum difference between F ∗ and υ at points in the conjugate Voronoi266

cell:267

%F (Q) = inf
a∈φ(dom(Q,Ω))

[F ∗(a)− υ(a)]. (20)268

It is the infimum amount we have to lower the graph of F ∗ until it intersects the graph269

of υ at a point vertically above the Voronoi cell in conjugate space. Without going to the270

conjugate, we can interpret %F (Q) in terms of (primal) Voronoi domains and cones of light271

cast from the u̇ onto the graph, which we raise until the cones clipped to within their Voronoi272

domains have a point in common. This interpretation motivates the name of the function.273

Comparing (20) with (32), we see that the two agree when F = $ and Ω = Rd. Indeed, we274

get F ∗ = $ and υ = ξ. Furthermore, φ(dom(Q,Ω)) = dom(Q,Ω), and taking the infimum275

is the same as taking the minimum.276

For every h ∈ R, we have a sublevel set, DelF,h(U,Ω) = %F
−1(−∞, h], which we refer to277

as the Bregman–Alpha complex of U and F for size h. For h < 0, this complex is empty, for278

h = 0, it is a set of vertices namely the points in U , and for sufficiently large positive h, this279

complex is DelF (U,Ω).280

Computation. We compute the rise function following the intuition based on primal281

Voronoi domains explained below (20). Equivalently, %F (Q) is the minimum amount we have282

to raise the graph of F so it has a supporting hyperplane that passes through all points u̇,283

with u ∈ Q, while all other point u̇, with u ∈ U , lie on or above the hyperplane.284

To turn this intuition into an algorithm, we consider the affine hull of Q and write285

v̄ : aff Q→ R for the affine function that satisfies v̄(u) = F (u) for all u ∈ Q. Let H : aff Q ∩286

Ω→ R measure the difference: H(a) = F (a)− v̄(a). Since F is of Legendre type, so is H.287

We are interested in the infimum of H, which either occurs at a point in aff Q ∩ Ω or at the288
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limit of a divergent sequence. We therefore introduce a numerical routine that returns both,289

the infimum and the point where it occurs:290

1 InfSize (function F, simplex Q):
2 (aQ, hQ) = (arginf H, inf H);
3 return (aQ, hQ).

Note that the dual Bregman ball centered at aQ ∈ aff Q ∩ Ω and size hQ contains Q in its291

boundary, and it may or may not contain points of U \Q in its interior. If it does not, then292

%F (Q) = hQ, otherwise, %F (Q) is the minimum function value of the proper cofaces of Q. To293

express this more formally, we write coFacets(Q) for the collection of simplices R ∈ Del(X)294

with Q ⊆ R and #R = #Q+ 1. Since Q gets its value either directly or from a coface, it is295

opportune to compute the rise function in the order of decreasing dimension:296

1 for p = d downto 0 do
2 forall p-simplices Q ∈ DelF (U,Ω) do
3 (aQ, hQ) = InfSize(F,Q);
4 if B∗F (aQ, hQ) ∩ [U \Q] = ∅
5 then %F (Q) = hQ
6 else %F (Q) = min

R∈coFacets(Q)
%F (R).

Note that this algorithm assigns a value to every simplex in DelF (U,Ω). Indeed, the simplices297

in Del(X) that are not in DelF (U,Ω) have been culled in Step 3, as explained above.298

Fisher metric. In addition to the Bregman divergences, we consider Delaunay mosaics299

under the Fisher metric. To construct them, we recall that the mapping  : Rd+ → Rd+300

defined by (x) = (
√

2x1,
√

2x2, . . . ,
√

2xd) is an isometry between the Fisher metric and the301

Euclidean metric. This suggests the following algorithm.302

Step 1: Compute the Delaunay mosaic of (U) in Euclidean space.303

Step 2: Remove the simplices from Del((U)) whose dual Voronoi cells have an empty304

intersection with Rd+.305

Step 3: Draw the resulting complex by mapping each point (u) to the original point306

u ∈ U ⊆ Rd+.307

The rise function in Euclidean geometry maps every simplex (Q) ∈ Del((U)) to the squared308

radius of the smallest empty circumsphere of (Q). By isometry, the preimage of this309

Euclidean sphere is the smallest empty circumsphere of Q under the Fisher metric, and the310

squared radius is the same. We thus get the rise function on the Fisher–Delaunay mosaic by311

copying the values of the rise function on the Delaunay mosaic in Euclidean geometry.312

The construction of the mosaic for the Fisher metric restricted to the standard simplex,313

∆d−1, is only slightly more complicated. As mentioned in Section 2, the isometry maps314

∆d−1 to
√

2Sd−1
+ , which is our notation for the positive orthant of the sphere with radius315 √

2 centered at the origin in Rd. The distance between points u, v ∈ ∆d−1 under the Fisher316

metric thus equals the Euclidean length of the great-circle arc connecting (u), (v) ∈
√

2Sd−1
+ .317

The Delaunay mosaic of (U) under the geodesic distance can be obtained by constructing318

the convex hull of (U) ∪ {0} in Rd and centrally projecting all faces not incident to 0 onto319

the sphere. As before, we cull simplices whose dual Voronoi cells have an empty intersection320

with the positive orthant of the sphere, and we draw the mosaic in ∆d−1 by mapping the321

vertices back to the original points. Furthermore, the rise functions of the mosaics in
√

2Sd−1
+322

and in ∆d−1 are the same. Note however, that the geodesic radius is the arc-sine of and323

therefore slightly larger than the straight Euclidean radius in Rd.324
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4 Computational Experiments325

We illustrate the Bregman–Alpha and Bregman–Wrap complexes while comparing them to326

the conjugate, the Fisher, and the Euclidean constructions.327

Example in positive quadrant. Let X be a set of 1000 points uniformly distributed328

according to the Fisher metric in (0, 2]2 ⊆ R2
+. To sample X, we use the isometry,  : R2

+ →329

R2
+, between the Fisher and the Euclidean metric mentioned in Section 2. Specifically, we330

sample 1000 points uniformly at random according to the Euclidean metric in (0, 2]2, and we331

map each point with coordinates x1, x2 to −1(x1, x2) = 1
2 (x2

1, x
2
2), which is again a point in332

(0, 2]2. To compute the Delaunay mosaic in Fisher geometry, we construct the (Euclidean)333

Delaunay mosaic of (X) and draw this mosaic with the vertices at the points in X. Recall334

however that the domain is Ω = Rd+ and not Rd. A simplex whose corresponding Voronoi335

cell has an empty intersection with the positive orthant thus does not belong to the mosaic,336

which is restricted to Ω. We identify these simplices and remove them from the Delaunay337

mosaic as described in Section 3.338

Figure 1 displays the Bregman–Alpha complex in Shannon geometry for threshold 0.004.339

Infinitesimally, the relative entropy agrees with the squared Fisher metric, so the uniform340

distribution of the points translates into a fairly uniform arrangement of random holes in the341

complex. The closer we get to the left or the lower side of the square, the denser the points342

get and the more anisotropically aligned with the sides the edges and triangles get.343

For comparison, Figure 2 shows the Bregman–Alpha complex in conjugate Shannon344

geometry, in Fisher geometry, in Euclidean geometry, and in weighted Euclidean geometry.345

The primal and the dual balls behave similarly, which explains the similarity of the complexes346

in Figure 1 and in Figure 2(a). It should however be mentioned that the underlying347

triangulation in 2(a) occasionally folds, which is caused by moving the vertices from the348

conjugate points (for which we have a straight-line embedding) to the original points. Not349

surprisingly, there is also a striking similarity to the reconstruction in Fisher geometry 2(b).350

The Bregman–Alpha complex in Euclidean geometry 2(c) is just the usual Alpha complex of351

the points. It clearly shows that the density decreases along the diagonal. The complex in352

2(d) mixes aspects of Shannon and Euclidean geometry. In particular, it reuses the mosaic353

in Figure 1 and assigns weights to the points such that this triangulation is the weighted354

Delaunay mosaic of the weighted points in Euclidean geometry. The corresponding rise355

function reflects the difference between the Shannon entropy and the squared Euclidean norm.356

Indeed, the rise function increases along the diagonal, which explains why the reconstructed357

complex is almost the entire mosaic, with cells along the left and bottom sides of the square358

domain missing.359

We see very similar reconstructions in Figures 3 and 4, which show the Bregman–Wrap360

complexes for the same set of points and the same threshold. By construction, each Wrap361

complex is a homotopy equivalent subcomplex of the corresponding Alpha complex. The362

biggest difference occurs in weighted Euclidean geometry, in which we reuse the mosaic in363

Shannon geometry but filter with the rise function obtained from the squared Euclidean364

norm. The corresponding Bregman–Wrap complex consists of a single vertex near the upper365

right corner of the square domain; see Figure 4(d). This reconstruction reflects the simple366

relation between the Shannon entropy and the halved squared Euclidean norm: $(x)−E(x)367

is monotonically increasing from left to right and from bottom to top. This translates into a368

discrete gradient that introduces a flow with a single critical cell, namely the vertex near the369

upper right corner.370

Example in standard triangle. Motivated by our interest in information-theoretic ap-371
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plications, we repeat the above experiment within the standard triangle, ∆2, which consists372

of all points (x1, x2, x3) ∈ R3
+ that satisfy x1 + x2 + x3 = 1. Every point in ∆2 can be373

interpreted as a probability distribution on three disjoint events, which is indeed the most374

relevant scenario for the application of the relative entropy. To sample a set Y of 1000 points375

uniformly at random according to the Fisher metric in ∆2, we use again , now restricted to376

∆2, whose image is the positive orthant of the sphere with radius
√

2 centered at the origin377

of R3. Sampling 1000 points uniformly at random according to the geodesic distance on the378

sphere, we take the convex hull of (Y ) ∪ {0} and get the mosaic by mapping the vertices to379

the points in Y = −1((Y )). Before drawing the faces in ∆2, we remove 0 and all incident380

faces, as well as all faces whose corresponding Voronoi cells have an empty intersection381

with R2
+.382

Recall that the squared Fisher metric matches the relative entropy in the infinitesimal383

regime, which explains the random appearance of the reconstruction in Figure 5 for which we384

set the threshold to 0.0025. As in the above example, the reconstruction in Shannon geometry385

is similar to those in conjugate Shannon geometry in Figure 6(a) and in Fisher geometry in386

Figure 6(b). To interpret the reconstruction in 6(d), we observe that the difference between387

the Shannon entropy and the squared Euclidean norm has a minimum at the center and no388

other critical points in the interior of the triangular domain. Accordingly, the reconstruction389

removes simplices near the corners and the three sides first. More drastically, the Bregman–390

Wrap complex for the same data removes all simplices except for a single critical edge near391

the center; see Figure 8(d).392

5 Quantification of Difference401

We take a data-centric approach to quantifying the differences between the geometries. Given402

a common domain, Ω, and a finite set of points, U ⊆ Ω, we compare the corresponding403

mosaics and rise functions.404

Mosaics. The Delaunay mosaics of U depend on the local shape of the balls defined by the405

metric or the divergence. Letting D and E be two Delaunay mosaics with vertex sets U , we406

compare them by counting the common cells:407

J(D,E) = 1− #(D ∩ E)
#D + #E −#(D ∩ E) , (21)408

which is sometimes referred to as the Jaccard distance between the two sets. It is normalized421

so that J = 0 iff D = E and J = 1 iff D and E share no cells at all. In our application,422

the two mosaics share all vertices, so J is necessarily strictly smaller than 1. To apply this423

measure to the constructions in Section 4, we write D0, D1, D2, D3, D4 for the mosaics in424

Figures 9 and 10, and we write E0, E1, E2, E3, E4 for the mosaics in Figures 13 and 14. All425

mosaics are different, except for D0 = D4 and E0 = E4. The Jaccard distances are given in426

Table 1. We see that the mosaics in conjugate Shannon geometry and in Fisher geometry427

are most similar to each other and less similar to the mosaic in Shannon geometry. The428

mosaic in Euclidean geometry is most dissimilar to the others. See Figures 9, 10 and 13, 14429

for visual confirmation.430

Rise functions. Different rise functions on the same mosaic can be compared by counting431

the inversions, which are the pairs of cells whose orderings are different under the two432

functions. Recall that D0 = D4 and E0 = E4, let d0 : D0 → R and e0 : E0 → R be the rise433

functions in Shannon geometry, and let d4 : D4 → R and e4 : E4 → R be the rise functions in434
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Figure 1: The Bregman–Alpha complex in Shannon geometry of a set X of 1000 points uniformly
distributed according to the Fisher metric in (0, 2]2 and a threshold h = 0.004.

(a) Conjugate Shannon.393 (b) Fisher.393

(c) Euclidean.394 (d) Weighted Euclidean.394

Figure 2: The reconstructions in four different geometries for the same points and the same
threshold as in Figure 1.
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Figure 3: The Bregman–Wrap complex in Shannon geometry of the same points and the same
threshold as in Figure 1.

(a) Conjugate Shannon.395 (b) Fisher.395

(c) Euclidean.396 (d) Weighted Euclidean.396

Figure 4: The reconstructions in four different geometries for the same points and the same
threshold as in Figure 3.
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Figure 5: The Bregman–Alpha complex in Shannon geometry of a set Y of 1000 random points
in ∆2 with threshold h = 0.0025.

(a) Conjugate Shannon.397 (b) Fisher.397

(c) Euclidean.398 (d) Weighted Euclidean.398

Figure 6: The reconstructions in four different geometries for the same points and threshold as
in Figure 5.



XX:14 Shape Reconstruction in Information Space

Figure 7: The Bregman–Wrap complex in Shannon geometry of the same points and threshold
as in Figure 5.

(a) Conjugate Shannon.399 (b) Fisher.399

(c) Euclidean.400 (d) Weighted Euclidean.400

Figure 8: The reconstructions in four different geometries for the same points and threshold as
in Figure 7.



H. Edelsbrunner and K. Ölsböck and H. Wagner XX:15

409 J D0 D1 D2 D3 D4

410 D0 0.00 0.06 0.04 0.48 0.00
411 D1 0.00 0.02 0.47 0.06
412 D2 0.00 0.47 0.04
413 D3 0.00 0.48
414 D4 0.00
415 E0 E1 E2 E3 E4

416 E0 0.00 0.10 0.06 0.52 0.00
417 E1 0.00 0.04 0.51 0.10
418 E2 0.00 0.51 0.06
419 E3 0.00 0.52
420 E4 0.00

Table 1: The Jaccard distances between the Delaunay mosaics in Shannon, conjugate Shannon,
Fisher, Euclidean, and weighted Euclidean geometries for points in the positive quadrant on the top
and in the standard triangle on the bottom.

weighted Euclidean geometry. The normalized number of inversions are435

I(d0, d4) = 0.476, (22)436

I(e0, e4) = 0.467. (23)437

In words, slightly fewer than half the pairs are inversions, both for d0, d4 and for e0, e4. This438

is plausible because d4 orders the cells along the diagonal while d0 preserves the random439

character of the point sample; see Figures 11 and 12(d). Similarly, e4 orders the cells radially,440

from the center of the standard triangle to its periphery, while e0 preserves again the random441

character of the sample; see Figures 15 and 16(d).442

We can compare the rise functions also visually, by color-coding the 2-dimensional cells,443

and this works even if the mosaics are different. Specifically, we shade the triangles by444

mapping small to large rise function values to dark to light color. In Figures 11, 12(a), and445

12(b), this leads to randomly mixed dark and light triangles, while in Figures 12(c) and 12(d)446

there are clear but opposing gradients parallel to the diagonal. Similarly, in 16(c) we see447

the rise function decrease from the center to the boundary of the standard triangle, and in448

16(d) we see it increasing from the center to the boundary. In addition, we compare general449

rise functions by computing their persistence diagrams; see [9]. Writing Dgm(d) for the450

persistence diagram of function d, we quantify the difference with the bottleneck between451

the diagrams:452

B(d, e) = W∞(Dgm(d),Dgm(e)). (24)453

As explained in [9], the bottleneck distance is 1-Lipschitz, that is: B(d, e) ≤ ‖d− e‖∞,466

but d 6= e does not necessary imply B(d, e) 6= 0. The bottleneck distances between the467

di : Di → R and the ei : Ei → R are given in Table 2. In part this comparison agrees with the468

Jaccard distances between the mosaics given in Table 1. The most obvious disagreements are469

for d0, d4 and for e0, e4, in which quite different functions are defined on identical mosaics.470

6 Discussion479

We formulate two popular Euclidean shape reconstruction methods within the framework of480

discrete Morse functions and show how this generalizes the methods to data in Bregman481

and Fisher geometries without the need to develop customized software. Turning the table,482

we use these generalized shape reconstruction methods to compare different geometries483
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Figure 9: The Bregman–Delaunay mosaic in Shannon geometry for the same set of points as
used in Figures 1 to 4.

(a) Conjugate Shannon.471 (b) Fisher.471

(c) Euclidean.472 (d) Weighted Euclidean.472

Figure 10: Four Delaunay mosaics whose triangles and edges are colored depending on whether
or not they belong to the Shannon–Delaunay mosaic in Figure 9.
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Figure 11: A color-coded Bregman–Delaunay mosaic in Shannon geometry. The set of points is
the same as in Figure 9.

(a) Conjugate Shannon.473 (b) Fisher.473

(c) Euclidean.474 (d) Weighted Euclidean.474

Figure 12: The color-coded Delaunay mosaics for the same set X as in Figure 11.
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Figure 13: The Bregman–Delaunay mosaic in Shannon geometry for the same set of points as
used in Figures 5 to 8.

(a) Conjugate Shannon.475 (b) Fisher.475

(c) Euclidean.476 (d) Weighted Euclidean.476

Figure 14: Four Delaunay mosaics whose triangles and edges are colored depending on whether
or not they belong to the Shannon–Delaunay mosaic in Figure 13.
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Figure 15: The color-coded Bregman–Delaunay mosaic in Shannon geometry of the same set of
points as in Figure 13.

(a) Conjugate Shannon.477 (b) Fisher.477

(c) Euclidean.478 (d) Weighted Euclidean.478

Figure 16: The color-coded Delaunay mosaics for the same set as in Figure 15.
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454 B d0 d1 d2 d3 d4

455 d0 0.0000 0.0028 0.0004 0.0126 0.0048
456 d1 0.0000 0.0028 0.0126 0.0048
457 d2 0.0000 0.0126 0.0048
458 d3 0.0000 0.0126
459 d4 0.0000
460 e0 e1 e2 e3 e4

461 e0 0.0000 0.0006 0.0003 0.0031 0.0035
462 e1 0.0000 0.0003 0.0030 0.0034
463 e2 0.0000 0.0030 0.0034
464 e3 0.0000 0.0023
465 e4 0.0000

Table 2: The bottleneck distances between the persistence diagrams of the rise functions on
the Delaunay mosaics in Shannon, conjugate Shannon, Fisher, Euclidean, and weighted Euclidean
geometries for points in the positive orthant on the top and points in the standard triangle on the
bottom.

experimentally. Our experimental approach to study geometries is a first step in this484

direction. It is prudent to ask how it can be improved and whether there are more effect485

experimental approaches to understand metric spaces.486

Can the sensitivity of Delaunay mosaics to the dissimilarity be quantified probabilistically,487

as the expected Jaccard distance for random point processes?488

Are homotopies between filtrations better measures of the dissimilarity between filtrations489

than the normalized number of inversions?490

Persistence has been used before to compare metric spaces [7], and it would be interesting491

to know whether there are deeper connections to our work.492

On a practical note, our comparison suggests that the Shannon and Fisher geometries are493

quite similar, at least in low dimensions. Is this true in higher dimensions? How does this494

generalize to other Bregman divergences and the corresponding generalized Fisher metrics?495

To what extent can the Fisher space replace the Shannon space in various applications?496

Finally, we mention a concrete question concerning the Delaunay mosaics in Fisher497

geometry: is the drawing we get by mapping the vertices to the corresponding points498

and connecting these point with straight edges, flat triangles, etc. necessarily a geometric499

realization of the mosaic?500
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A Standard background on Delaunay mosaics and related topics.536

We recall standard definitions related to Delaunay mosaics, the corresponding liftings and537

projections, as well as discrete Morse theory.538

Delaunay mosaics. In this paper, the ability to assign real weights to points is essential, so539

we go straight to the weighted generalizations of the Voronoi tessellation and the Delaunay540

mosaic. A weighted point is a pair x = (pt(x),wt(x)) ∈ Rd ×R, in which pt(x) is its location541

and wt(x) is its weight. The power distance of a ∈ Rd from x is πx(a) = ‖pt(x)− a‖2−wt(x).542

It is common to think of the weighted point as a ball with center pt(x) and squared radius543

wt(x). With this interpretation, πx(a) is negative inside, zero on the boundary, and positive544

outside the ball. Given a locally finite set of weighted points, X ⊆ Rd × R, the (weighted)545

Voronoi domain of x ∈ X consists of all points a for which x minimizes the power distance,546

and the (weighted) Voronoi tessellation of X is the collection of such domains:547

dom(x) = {a ∈ Rd | πx(a) ≤ πy(a),∀y ∈ X}, (25)548

Vor(X) = {dom(x) | x ∈ X}. (26)549

A (weighted) Voronoi cell is the common intersection of Voronoi domains, and we write550

dom(Q) =
⋂
x∈Q dom(x). Note that the affine hull of dom(Q) contains a unique point,551

denoted aQ, that minimizes the power distance to the weighted points in Q. Indeed, aQ is at552

the intersection of the affine hull of dom(Q) and the affine hull of the locations pt(x), x ∈ Q.553

Let #Q be the cardinality of Q. We are primarily interested in the generic case, when every554

non-empty Voronoi cell, dom(Q), satisfies the following two general position conditions:555

I. the dimension of dom(Q) is d+ 1−#Q,556

II. aQ does not belong to the boundary of dom(Q).557

By Condition I, dom(Q) = ∅ whenever #Q > d + 1. Condition I also implies that every558

non-empty Voronoi cell is the intersection of a unique collection of Voronoi domains. The

Figure 17: The Voronoi tessellation restricted to the open rectangular region and its dual
restricted Delaunay mosaic.

559

(weighted) Delaunay mosaic is the collection of polytopes spanned by subsets of X that define560

non-empty Voronoi cells. It is convenient to identify such a subset, Q, with the polytope it561
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spans, which is the convex hull of the locations of the weighted points in Q. In the assumed562

generic case, all polytopes are simplices and the Delaunay mosaic is a simplicial complex563

geometrically realized in Rd, which we denote as Del(X). Most of the time, we restrict564

our attention to an open convex region, Ω ⊆ Rd, we assume X ⊆ Ω × R, and we write565

dom(Q,Ω) = dom(Q) ∩ Ω. Correspondingly, the restricted Voronoi tessellation and the566

restricted Delaunay mosaic are567

Vor(X,Ω) = {dom(x,Ω) | x ∈ X}, (27)568

Del(X,Ω) = {Q ⊆ X | dom(Q,Ω) 6= ∅}; (28)569

see Figure 17.570

Lifting and projecting. The Voronoi tessellation and the Delaunay mosaic can both571

be constructed as the projection of the boundary complexes of convex polyhedra in Rd+1.572

To explain this, recall that $(a) = 1
2‖a‖

2 and map every weighted point, x, to the point573

ẋ ∈ Rd+1 and to the affine map x̄ : Rd → R defined by574

ẋ = (pt(x), $(pt(x))− 1
2wt(x)), (29)575

x̄(a) = $(pt(x)) + 〈pt(x), a− pt(x)〉+ 1
2wt(x) (30)576

= 〈pt(x), a〉 − 1
2‖pt(x)‖2 + 1

2wt(x). (31)577

The map is chosen so that the solution to $(a)− x̄(a) = 0 is the sphere with center pt(x)578

and squared radius wt(x). The point is chosen so that a point on the graph of $ lies on or579

below the graph of x̄ iff this point is visible from ẋ, by which we mean that the entire line580

segment connecting ẋ with this point lies below the graph of $.581

Let ξ : Rd → R be the pointwise maximum of the affine maps, ξ(a) = maxx∈X x̄(a), and582

note that it is piecewise linear and convex. As observed already by Georges Voronoi [15],583

the vertical projection of its linear pieces gives the Voronoi tessellation of X in Rd. To get a584

similar construction of the Delaunay mosaic, we take the convex hull of the points ẋ ∈ Rd+1.585

We call a hyperplane that touches the polytope without intersecting its interior a support586

plane, and the intersection of the polytope with a support plane a face of the polytope. For587

points in general position, all faces are simplices. A lower face is the intersection of the588

polytope with a non-vertical support plane such that the polytope lies above the hyperplane.589

In analogy to the relation observed by Voronoi, the vertical projection of the lower faces of590

the convex hull gives the Delaunay mosaic of X in Rd.591

The interpretations of the Voronoi tessellation and the Delaunay mosaic as projections592

of boundary complexes of convex polyhedra provide geometrically intuitive interpretations593

of a function that plays a crucial role in this paper. Recall that each simplex, Q ∈ Del(X),594

corresponds to a Voronoi cell, dom(Q). The radius function, or more precisely the half595

squared radius, % : Del(X) → R, maps Q to the minimum difference between $ and ξ at596

points in the Voronoi cell:597

%(Q) = min
a∈dom(Q)

[$(a)− ξ(a)]. (32)598

In words, %(Q) is the amount we have to lower the graph of $ until it intersects the graph599

of ξ at a point vertically above dom(Q). The function value is also the minimax difference600

between $ and any affine map that satisfies ȳ(pt(x)) ≤ $(pt(x))− 1
2wt(x) for all x ∈ X and601

with equality for all x ∈ Q. Specifically, we minimize the maximum ȳ(a)−$(a), in which602

the maximization is over all a ∈ Rd, and the minimization is over all affine maps, ȳ : Rd → R,603

that satisfy the conditions stated above.604
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Discrete Morse theory. Assuming general position, the radius function on the Delaunay605

mosaic enjoys structural properties, which we now formalize. Let K be a simplicial complex606

and P,Q ∈ K two simplices. For a monotonic function, f : K → R, P ⊆ Q implies607

f(P ) ≤ f(Q). The Hasse diagram of K is the directed graph whose nodes are the simplices608

and whose arcs are the codimension 1 face relations: every arc ends at a p-simplex and starts609

at a (p − 1)-dimensional face of this simplex. By construction, the values of a monotonic610

function are non-decreasing along directed paths in the Hasse diagram. A level set of611

f is a maximal collection of simplices with shared function value, f−1(r) ⊆ K, and we612

call a maximal connected subset of a level set a step. For simplices P ⊆ R in K, call613

ψ = {Q ∈ K | P ⊆ Q ⊆ R} an interval, P = lb(ψ) its lower bound, R = ub(ψ) its upper614

bound, and note that #ψ = 2#R−#P . According to an inessential modification of the original615

formulation by Forman [13], f is a discrete Morse function if every step is an interval of616

size 1 or 2. A slightly weaker condition was introduced by Freij [14], calling f a generalized617

discrete Morse function if every step is an interval. The corresponding partition of K into618

intervals is called the generalized discrete gradient of f .619

The singleton intervals are special, which is expressed by calling the simplices they contain620

and the corresponding values critical. To motivate this terminology, consider two contiguous621

values, r < s, and the corresponding sublevel sets, Kr = f−1(−∞, r] and Ks = f−1(−∞, s].622

By assumption, no simplex maps to a value strictly between r and s, which implies that the623

difference between the two complexes is the level set at s. This level set is a disjoint union of624

steps, and because f is generalized discrete Morse, a disjoint union of mutually separated625

intervals. When we add the simplices of such an interval to Kr, then the homotopy type626

changes if the interval consists of a single, critical simplex, and it remains unchanged if the627

interval consists of two or more simplices. The operation of removing a non-singular interval628

is called a collapse. If all intervals in f−1(s) are non-singular, then we write Ks ↘ Kr to629

express that Kr can be obtained from Ks by collapsing all intervals in the difference. More630

generally, if (r, t] contains no critical value of f , then Kt ↘ Kr; see Forman [13].631

B Equivalence of Definitions632

This appendix proves that the three definitions of the Wrap complex offered in Section 2 are633

indeed equivalent. Given a generalized discrete Morse function f : D → R, we recall that634

Wraph(f) ⊆ Alphah(f) are the Wrap and the Alpha complexes of f for h, and Sgf (h) is the635

collection of singular steps whose critical simplices have function value at most h.636

I 1 (Wrap Complex Lemma). Let f : D → R be a generalized discrete Morse function on a637

simplicial complex. Then638

(i) Wraph(f) is the smallest complex K ⊆ D that satisfies Alphah(f) ↘ K, in which we639

restrict the collapses to intervals of f .640

(ii) Wraph(f) is the smallest subcomplex of D that contains
⋃

Sgf (h) and is a union of641

intervals of f .642

Proof. Consider two steps, ϕ and ψ, in the step graph G of f . If there is an arc from ϕ to ψ,643

then ϕ contains a proper face of a simplex in ψ. This implies that if M is a collection of644

steps such that K =
⋃
M is a complex, then ψ ∈M implies ϕ ∈M . If both belong to M ,645

then ϕ cannot be collapsed. On the other hand, if ϕ ∈M and no successor of ϕ in G belongs646

to M , then we can collapse ϕ; that is: K \ ϕ is a complex. To prepare the proofs of (i) and647

(ii), we let M be a collection of steps such that648

1. K =
⋃
M contains a critical simplex iff f(Q) ≤ h;649
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2. K is a complex;650

3. there is no step ϕ ∈M such that K ↘ K \ ϕ.651

First we claim that the three properties specify M uniquely. To prove this claim, let ϕ0 ∈M652

be non-singular and let ϕ0, ϕ1, . . . , ϕk be maximal such that ϕi ∈M is a successor of ϕi−1653

in G for 1 ≤ i ≤ k. We note that k ≥ 1 because ϕ0 cannot be collapsed, and ϕk is singular654

because the sequence is maximal. To get a contradiction, we assume that N 6= M is another655

collection of steps that satisfies Properties 1, 2, 3. Suppose first that N contains a step656

µ0 6∈M , and consider a maximal sequence µ0, µ1, . . . , µ` such that µj ∈ N is a successor of657

µj−1 in G for 1 ≤ j ≤ `. Since µ0 6∈M , the step is necessarily non-singular, which implies658

` ≥ 1 and µ` singular. But then there is a first step along this sequence, µj , that belongs659

to M . Since there is an arc from µj−1 to µj and µj−1 6∈ M , this contradicts that M is a660

complex. Suppose second that N contains no such step µ0, but M contains a step ϕ0 6∈ N .661

By the symmetric argument, this implies that N is not a complex, again a contradiction.662

We conclude that the collection M that satisfies Properties 1, 2, 3 is unique.663

Second we claim that the unique complex that satisfies Properties 1, 2, 3 is Wraph(f).664

By definition, the Wrap complex contains all critical simplices that satisfy f(Q) ≤ h. The665

value of Q is the maximum of any step in the lower set of its singular interval, which implies666

that Wraph(f) contains no critical simplex with value larger than h and therefore satisfies667

Property 1. Property 2 is satisfied because all faces of a simplex in a step that are not668

in the step belong to predecessors of the step. Indeed, the directed path from a face to a669

simplex in the Hasse diagram maps to a possibly shorter directed path from the step of the670

face to the step of the simplex in G. To see that Property 3 is satisfied as well, we note671

that every non-singular step ϕ0 ⊆Wraph(f) has a directed path to a singular interval and672

can therefore not be collapsed. We conclude that Wraph(f) is the only union of steps that673

satisfies Properties 1, 2, 3.674

To prove (i), we note that Alphah(f) satisfies Properties 1 and 2, so it cannot satisfy675

Property 3 unless it is equal to Wraph(f). We can therefore collapse non-singular intervals.676

The process must halt, and the only way it can halt is when it reaches the unique union of677

steps that satisfies Properties 1, 2, 3, which is Wraph(f).678

To prove (ii), we observe that Wraph(f) contains
⋃

Sgf (h) and is a union of steps. To see679

that it is the smallest such complex, suppose there is another complex, L =
⋃
N , that has680

this property and there exists a step ϕ ⊆Wraph(f) \ L. As argued above, this contradicts681

that L is a complex, which implies (ii).682
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C Algorithm for Discrete Gradient683

It is easy to see that the rise function defined in Section 3 is monotonic. As proved in [12],684

it also satisfies the more stringent requirements of a generalized discrete Morse function685

provided U ⊆ Ω is in general position. The generalized discrete gradient of this function is686

a partition of the Delaunay mosaic into intervals, and this partition is instrumental in the687

construction of subcomplexes discussed in Section 4.688

The construction of this partition is complicated by the impossibility of computing689

the rise function exactly, at least for general Legendre type functions. Given a numerical690

approximation, g : K → R, our goal is therefore to first recover the generalized discrete Morse691

function that g approximates. Given a tolerance, ε ≥ 0, we give an algorithm that computes692

such a function f : K → R with ‖f − g‖∞ ≤ ε and such that the corresponding partition is693

minimal in a restricted sense. To prepare the algorithm, we define the gap of a subset ϕ ⊆ K694

as the maximum difference of function values:695

gapϕ = max
P,Q∈ϕ, P⊆Q

[g(Q)− g(P )]. (33)696

If g is monotonic, then all gaps are non-negative. Otherwise, let −ε0 be the smallest (largest697

negative) gap between pairs P ⊆ Q, set g(P ) = min{g(P ), g(Q)} whenever P ⊆ Q, and note698

that this makes g monotonic while changing the value of any simplex by at most ε0. We will699

therefore assume that g is monotonic. Letting V be a partition of K into intervals, we call700

an interval ψ 6∈ V compatible with V if701

(i) ψ is the union of intervals in V ;702

(ii) every pair of simplices P ⊆ Q with P ∈ ψ and Q 6∈ ψ implies g(ub(ψ)) ≤ g(Q),703

in which ub(ψ) is the upper bound of the interval. The algorithm constructs the discrete704

gradient of f by adding compatible intervals to an initially trivial partition of K, namely705

the one in which every simplex belongs to its own set in the partition. The function itself is706

computed by spreading the function value of the upper bound to the other simplices in the707

interval. Let ψ1, ψ2, . . . , ψm be the collection of all intervals of K, sorted by gap, let ε ≥ 0708

be a fixed threshold, and initialize i to 1 and V to the trivial partition of K.709

1 while i ≤ m and gapψi ≤ ε do
2 if ψi compatible with V then
3 remove all ϕ ∈ V with ϕ ⊆ ψi from V ;
4 add ψi to V ;
5 forall P ∈ ψi do set f(P ) = g(ub(ψi));
6 i = i+ 1.

Condition (i) guarantees that the computed V is a partition of K into intervals. Condition710

(ii) makes sure that no relation is reversed, which implies that the computed function,711

f : K → R, is monotonic and that V is a refinement of its partition into steps. Finally,712

0 ≤ f(P ) − g(P ) ≤ ε for all simplices P ∈ K, as claimed. Without assuming that g be713

monotonic, the upper bound on the distance between the two functions is ε+ ε0.714

A slight improvement of the algorithm takes into account that an interval can change from715

incompatible to compatible. By keeping track of this property throughout the algorithm, we716

can add an interval to the partition even after it was rejected earlier.717
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