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Abstract6

The approximation of a circle with the edges of a fine square grid distorts the perimeter by a7

factor about 4
π . We prove that this factor is the same on average (in the ergodic sense) for8

approximations of any rectifiable curve by the edges of any non-exotic Delaunay mosaic (known9

as Voronoi path), and extend the results to all dimensions, generalizing Voronoi paths to Voronoi10

scapes.11
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1 Introduction16

Given a locally finite set A ⊆ Rd and a line segment, the Voronoi path of the line segment17

is the dual of the Voronoi tessellation of A intersected with the segment. In other words,18

it consists of all Delaunay edges dual to Voronoi cells of dimension d − 1 crossed by the19

line segment. We generalize it to the Voronoi scape of A and a p-dimensional set Ω ⊆ Rd,20

which is a multiset of the cells in the Delaunay mosaic of A. In the generic case, when Ω21

intersects a Voronoi (d − p)-cell in a finite number of points, µ, the Voronoi scape contains22

the corresponding Delaunay p-cell µ times. We are interested in the distortion, which is the23

ratio of the p-dimensional volume of the Voronoi scape over the p-dimensional volume of Ω.24

Considering the Voronoi tessellation of a stationary Poisson point process and a line25

segment in R2, [2] proves that the expected distortion is 4
π . Extending this work to d > 226

dimensions, [4] proves that the expected distortion is
√

2d/π + O(1/
√

d). We remove the27

ambiguity in this answer by proving that the expected distortion in Rd is d!!/(d − 1)!!, if d28

is odd, and 2
π d!!/(d − 1)!!, if d is even, in which !! is the double factorial. Furthermore, we29

generalize the result from the line segment to rectifiable p-dimensional sets and prove that30

the expected distortion is the binomial coefficient
(

d/2
p/2

)
, in which non-integer parameters are31

understood in the way the Gamma function extends the factorial:32

Dp,d =
(

d/2
p/2

)
=

Γ( d
2 + 1)

Γ( p
2 + 1) Γ( d−p

2 + 1)
=


d!!

p!! (d−p)!!
2
π if d is even and p is odd,

d!!
p!! (d−p)!! otherwise.

(1)33
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2 Average and Expected Distortion

The binomial interpretation also provides the asymptotics for Dp,d; for the values in small34

dimensions see Table 1. More precisely, we prove that (1) is the average distortion for35

sufficiently regular p-dimensional sets and Voronoi tessellations, in which the average is36

taken over all rigid motions of the set. The claim for stationary Poisson point processes37

follows because they are invariant under rotations and translations. The proof is based on a38

decomposition of Rd ×Grp,d related to the mixed complex introduced in [5]. As a byproduct,39

we get an expression for the volumes of the cells in the mixed complex; see Corollary 5.1.

d = 1 2 3 4 5 6 7 8 9 10

p = 1 1 4
π
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5
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32
3π
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8
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15π
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16
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21π

4 1 15
8 3 35

8 6 63
8 10

5 1 32
5π

7
2

256
15π

63
8

512
15π

6 1 35
16 4 105

16 10
7 1 256

35π
9
2

512
21π

8 1 315
128 5

9 1 512
63π

10 1

Table 1: The average, resp. expected distortion in small dimensions. Note that even rows and
columns form the Pascal triangle.

40

Outline. Section 2 prepares the proof of our main result by computing the first and second41

moments of the p-dimensional volume of the projection of a unit p-cube in Rd. Section 342

studies the space of point-direction pairs. Section 4 introduces a mild regularity condition43

for Voronoi tessellations. Section 5 computes the volume of the cells in the mixed complex.44

Section 6 proves that Dp,d is the average distortion for p-dimensional shapes in Rd, and the45

expected distortion if the tessellation is of a stationary Poisson point process. Section 746

concludes the paper.47

2 Random Projections48

We need some preliminary computations. Let Grp,d be the (linear) Grassmannian manifold,49

whose points are the p-planes that pass through the origin in Rd. Given a p-dimensional50

unit cube, E ⊆ Rd, and a p-plane, L ∈ Grp,d, we write E|L for the projection of the cube51

onto the plane, and ∥E|L∥p for its p-dimensional volume. The j-th projection moment is the52

average j-th power of the volume of the projection. We express this moment as an integral53

over the Grassmannian equipped with the uniform probability measure in (2) and convert54

it to two equivalent expressions involving the angle to a fixed plane in (3) and (4):55

m(j)
p,d =

∫
L∈Grp,d

∥E|L∥j
p dL, (2)56

=
∫

L∈Grp,d

cosj φ(L, L0) dL (3)57

=
∫

F ∈Stp,d

∥F |L0∥j
p dF. (4)58
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To explain (3) and (4), we fix the plane L0 ∈ Grp,d containing E. The angle between two59

p-planes, φ(L, L0) ∈ [0, π
2 ], is defined as the arc-cosine of the ratio of ∥B|L∥p over ∥B∥p60

for any compact set with non-empty interior, B ⊆ L0. The angle is symmetric, so we can61

instead consider the integrand in (3) as the projection of a unit p-cube in a random p-plane62

onto L0. Formally, we write Stp,d for the Stiefel manifold of orthonormal p-frames in Rd, we63

identify a frame with the unit p-cube it spans, and we integrate using the uniform probability64

measure of Stp,d to arrive at (4).65

By construction, the 0-th projection moment is equal to 1, independent of p and d.66

We compute the 1-st and 2-nd projection moments, which curiously both have intuitive67

geometric interpretations.68

▶ Lemma 2.1 (Projection Moments). Let d ≥ 0 and 0 ≤ p ≤ d. Then69

m(1)
p,d =

Γ( p+1
2 ) Γ( d−p+1

2 )
Γ( 1

2 ) Γ( d+1
2 )

, (5)70

m(2)
p,d = 1/

(
d

p

)
= p! (d − p)!

d! . (6)71

Proof. The 1-st projection moment appears in the classic Crofton formula of integral geo-72

metry, which says that the volume of a convex body is proportional to the average volume73

of its orthogonal projections. The constant of proportionality given in (5) can be found in74

[8, Formula (5.8)]. We use (4) together with a generalization of the Pythagorean theorem to75

compute the 2-nd moment. By Pythagoras, the squared length of a line segment is the sum76

of squared lengths of its projections onto the coordinate axes. The Cauchy–Binet formula [3,77

§4.6] can be used to generalize this to the squared volume of a p-dimensional parallelepiped78

in Rd. Let P be such a parallelepiped, and write Pi for its projection onto the i-th coordinate79

p-plane (in which the numbering is arbitrary). There are
(

d
p

)
coordinate p-planes, and the80

Cauchy–Binet formula asserts81

∥P∥2
p =

∑(d
p)

i=1
∥Pi∥2

p. (7)82

Letting P = F ∈ Stp,d be the uniformly random unit p-cube, we can take the expectation83

on both sides of (7). We get 1 on the left-hand side and the sum of
(

d
p

)
identical terms on84

the right-hand side. Hence, the average squared p-dimensional volume of the projection is85

1/
(

d
p

)
, as claimed. ■86

We set Dp,d = m(1)
p,d/m(2)

p,d and leave it to the reader to verify that this agrees with (1),87

where Dp,d is given in terms of Gamma functions as well as double factorials.88

3 Tiling the Space of Point-Directions89

We use the Delaunay mosaic to tile the space of point-direction pairs, Rd × Grp,d. Given a90

Delaunay mosaic of a set A ⊆ Rd, denoted Del(A), consider a p-dimensional cell, γ ∈ Del(A),91

and its dual (d−p)-dimensional Voronoi cell, γ∗ ∈ Vor(A). We define the p-tile of γ to consist92

of all pairs (x, L) ∈ Rd × Grp,d such that L + x has a non-empty intersection with γ∗, and93

x lies in the projection of γ onto L + x:94

J(γ, γ∗) = {(x, L) ∈ Rd × Grp,d | x ∈ γ|L+x and (L + x) ∩ γ∗ ̸= ∅}. (8)95

The tiles decompose the space Rd ×Grp,d in the sense that they cover the space while their96

interiors are pairwise disjoint. Since the detailed analysis of the boundaries is irrelevant for97

the current work, we only prove a weaker statement.98
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▶ Lemma 3.1 (Uniqueness of Tile). Let A ⊆ Rd be locally finite with convA = Rd, and let99

0 ≤ p ≤ d. Then for almost every point-direction pair, (x, L) ∈ Rd × Grp,d, there exists a100

unique p-tile, J(γ, γ∗), that contains (x, L).101

Proof. Take any point-direction pair, (x, L). Assume without loss of generality that x = 0102

is the origin and L = Rp is a coordinate p-plane in Rd. Map each point a ∈ A to the point103

a′ = a|L ∈ Rp, and let a′′ = −∥a − a′∥2 ∈ R be its weight. The weighted points define a104

weighted Voronoi tessellation and the corresponding weighted Delaunay mosaic; see e.g. [1].105

The mosaic is generically a simplicial complex and generally a polyhedral complex, which106

is geometrically realized in Rp by drawing each cell, γ, as the convex hull of the points that107

generate the p-dimensional Voronoi cells sharing γ∗. Consider the cells in Vor(A) that have108

a non-empty intersection with L, write VL(A) for the collection of dual cells in Del(A), and109

observe that VL(A) is the Voronoi scape of L.110

As proved in [9], the weighted Voronoi tessellation is the intersection of L with Vor(A)111

and, by duality, the weighted Delaunay mosaic is the orthogonal projection of VL(A) to L.112

If L and Del(A) are in general position, then all Delaunay cells in VL(A) project injectively113

to L, and the cells of dimension less than p form a set of zero measure. If Del(A) covers Rd,114

then the weighted Delaunay mosaic covers Rp. Hence, for almost all point-direction pairs,115

(x, L), there is a unique Delaunay p-cell γ, such that (x, L) ∈ J(γ, γ∗), as claimed. ■116

The proof of the lemma gives some insight into the motivation for choosing this particular117

tiling of the space of point-direction pairs. We now compute the measure of a tile.118

▶ Lemma 3.2 (Volume of Tile). The measure of J = J(γ, γ∗) is ∥J∥ = ∥γ∥p ∥γ∗∥d−p/
(

d
p

)
.119

Proof. The measure of the tile is the integral of 1 over its pairs. Setting x = y + z, in which120

y ∈ L and z ∈ L⊥, the integral is121

∥J∥ =
∫

L∈Grp,d

∫
y∈L

1y∈γ|L

∫
z∈L⊥

1(L+z)∩γ∗ ̸=∅ dz dy dL (9)122

= ∥γ∥p ∥γ∗∥d−p

∫
L∈Grp,d

cos2 φ(L, γ) dL, (10)123

where we get (10) by noticing that the innermost integral in (9) is the (d − p)-dimensional124

volume of the projection of γ∗ to L⊥, which is ∥γ∗∥d−p cos φ(L⊥, γ∗) = ∥γ∗∥d−p cos φ(L, γ),125

and the middle integral is the p-dimensional volume of the projection of γ to L, which is126

∥γ∥p cos φ(L, γ). Using (3), we see that the integral in (10) is m(2)
p,d, and using (6), we get127

the claimed equation. ■128

We take a closer look at the projection of a tile to Rd. Let (x, L) be a point-direction pair129

in J = J(γ, γ∗) with dim γ = p. There are points u ∈ γ and v ∈ γ∗ such that x = u|L+x and130

v = (L + x) ∩ γ∗. Because of the right angle between the direction and the projection, we131

have ∥x − u∥2 + ∥x − v∥2 = ∥u − v∥2, so x lies on the smallest sphere that passes through132

u and v. Indeed, u and v define a (d − 1)-dimensional set of point-direction pairs, and the133

points of these pairs all lie on the mentioned sphere.134

Let z1 = aff γ ∩aff γ∗ and observe that the sphere defined by u and v also passes through135

z1. Let R0 be the maximum distance between a point of γ and a point of γ∗, and note136

that R0 is the radius of every largest sphere that passes through the vertices of γ and does137

not enclose any of the points in A; see Figure 1. A sphere with the latter property is138

commonly called an empty sphere of A. Since the diameter of the sphere spanned by u and139

v is ∥u − v∥ ≤ R0, it follows that the ball with center z1 and radius R0 contains this sphere140
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and thus the projection of J = J(γ, γ∗) to Rd; see again Figure 1. Hence, the volume of141

the projection of J is at most R2
0 times the volume of the unit ball in Rd. Since we assume142

the uniform probability measure on Grp,d, the same upper bound holds for the measure of143

J itself.

γ∗

z1

z1

z2

γγ

z2
γ∗

Figure 1: On the left, the (pink) projection of the tile defined by a Delaunay edge, γ, and its dual
Voronoi edge, γ∗, has the topology of a disk, while on the right, its projection has the topology of a
pinched annulus. In both cases, it is contained in the disk with radius R0 centered at z1, and this disk
and therefore also the projection of the tile is contained in the disk with radius 2R0 centered at z2.

144

A weaker bound on this measure implied by a different ball will be more convenient.145

Consider therefore the largest empty sphere that passes through the vertices of γ. Its radius146

is R0 and its center, z2, lies on γ∗. Hence ∥z2 − z1∥ ≤ R0, which implies that the ball with147

center z2 and radius 2R0 contains the ball with center z1 and radius R0 and therefore also148

the projection of J to Rd; see again Figure 1. We state the result for later reference.149

▶ Lemma 3.3 (Projection of Tile). Let z2 and R0 be the center and radius of the largest150

empty sphere that passes through the vertices of γ ∈ Del(A). Then the ball with center z2151

and radius 2R0 contains the projection of J = J(γ, γ∗) to Rd.152

4 Mixed Regularity153

Taking the union of progressively more tiles, we eventually cover all of Rd ×Grp,d. However,154

at each step during this construction, some of the points miss some of the directions, and155

which directions are covered depends on the mosaic. In what follows, we require a mild156

regularity condition for this tiling. For a set Ω ⊆ Rd, we call a tile a boundary tile of Ω if157

its projection to Rd contains at least one point inside and at least one point outside Ω.158

▶ Definition 4.1 (Mixed Regularity). Let A ⊆ Rd be locally finite. We say that A has the159

property of mixed regularity if, for any p, the total measure of the boundary p-tiles of a160

d-ball of radius R centered at the origin is o(Rd).161

Note that convA = Rd is necessary for A to have the mixed regularity property. Indeed,162

if convA does not cover Rd, then there exists an unbounded Voronoi cell and thus a tile with163

infinite measure. Motivated by the analysis in Section 3, we give some sufficient conditions164

for a set A ⊆ Rd to have the mixed regularity property:165

▶ Lemma 4.2 (Sufficient Conditions). A locally finite set A ⊆ Rd has the mixed regularity166

property if one of the following holds:167

1. the radii of all circumspheres of top-dimensional Delaunay cells are bounded;168

2. each ball in Rd of radius greater than some finite R0 contains a point of A;169
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3. there is a function g(R) = o(R) such that every ball of radius g(R) that intersects the170

d-ball of radius R centered at the origin contains at least one point of A.171

Conditions 1 and 2 are equivalent, while Condition 3 is weaker. We finish this section172

with an application to Poisson point processes:173

▶ Lemma 4.3 (Mixed Regularity in Expectation). A stationary Poisson point process, A ⊆ Rd,174

has the mixed regularity property in expectation; that is: the total expected measure of the175

boundary tiles of a d-ball with radius R centered at the origin is o(Rd).176

Proof. Let B(R) be the ball with radius R centered at the origin, and let J = J(γ, γ∗)177

be a boundary tile. Its Delaunay cell, γ, is almost surely a simplex. Consider the top-178

dimensional cell that contains γ as a face and whose circumsphere is the largest empty179

sphere that passes through the vertices of γ. Letting z2 and R0 be the center and radius of180

this sphere, Lemma 3.3 implies that the concentric ball with twice the radius, 2R0, contains181

the projection of J to Rd and thus intersects the boundary of B(R). [6, Appendix A] studies182

the total number of such balls (albeit without doubling the radius), and it is straightforward183

to modify the proof to take the volume and doubling of the radius into account. With that,184

we get that the expected total volume of such balls containing the boundary tiles is o(Rd).185

This implies the same upper bound for the expected total measure of the boundary tiles. ■186

5 Mixed Cells187

Call ∥γ∥p ∥γ∗∥d−p the mixed cell volume of a p-cell γ ∈ Del(A) and its dual (d − p)-cell188

γ∗ ∈ Vor(A). This concept relates to a particular decomposition of Rd, as we now explain.189

Given A ⊆ Rd, the d-dimensional cells of the mixed complex defined in [5] are translates of190

the products 1
2 γ × 1

2 γ∗. We refer to 1
2 γ × 1

2 γ∗ as a mixed cell and note that its volume is191

∥ 1
2 γ × 1

2 γ∗∥
d

= ∥γ∥p ∥γ∗∥d−p/2d. As proved in [5], the mixed cells have pairwise disjoint192

interiors and they cover Rd. Assuming the mixed regularity property, this implies that, up193

to a lower order term, the cells for p = 0 cover a fraction of 1/2d of B(R). By symmetry,194

this is also true for p = d. We continue with a generalization of these bounds to dimension195

p between 0 and d.196

▶ Corollary 5.1 (Mixed Cell Volumes). Let A ⊆ Rd have the mixed regularity property. For197

any 0 ≤ p ≤ d, the sum of the mixed cell volumes, over all p-cells of Del(A) contained in a198

ball of radius R, is
(

d
p

)
Rdνd + o(Rd), in which νd is the volume of the unit ball in Rd.199

Proof. Recall that B(R) is the ball with radius R centered at the origin. Set Bp(R) =200

B(R) × Grp,d, let Mp(R) be the smallest union of p-tiles that contains Bp(R), and let201

∂Mp(R) be the union of boundary tiles of B(R). Clearly,202

Mp(R) \ ∂Mp(R) ⊆ Bp(R) ⊆ Mp(R). (11)203

If a tile, J = J(γ, γ∗), contains a point inside the ball, then either γ is inside the ball, or204

J is a boundary tile. Indeed, for every point x ∈ γ \ B(R), there is a direction L, such205

that L + x intersects γ∗, hence (x, L) ∈ J(γ, γ∗). In other words, if γ is not contained206

in B(R), then neither is the projection of J to Rd. By Lemma 3.2, the measure of this207

tile is ∥γ∥p∥γ∗∥d−p/
(

d
p

)
and, by the mixed regularity property, the measures of the tiles208

corresponding to Delaunay cells inside the ball sum up to ∥B(R)∥d(1 + o(1)). Multiplying209

by
(

d
p

)
completes the proof. ■210
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6 Average and Expected Distortion211

For a locally finite A ⊆ R, a generically placed p-dimensional set Ω ⊆ Rd intersects only212

(d − p)-dimensional Voronoi cells of A, and any such intersection has a finite multiplicity.213

In this case, the Voronoi scape of Ω and A, denoted VΩ(A), is the multiset of Delaunay214

p-cells, in which every γ ∈ Del(A) appears as many times, as Ω intersects its dual γ∗. For215

completeness we mention that for a non-generically placed A, the multiplicity can be defined216

as the (potentially infinite) Euler characteristic of the intersection, and the Voronoi scape can217

contain Delaunay cells of dimensions different from p. For our analysis these zero-measure218

set of placements are however irrelevant. We are ready to prove the main result of the paper.219

▶ Theorem 6.1 (Average Volume). Let A ⊆ Rd have the mixed regularity property, and220

let Ω be a p-dimensional rectifiable set in Rd. The average p-dimensional volume of VΩ(A),221

averaged over all congruent copies of Ω inside the d-ball with radius R centered at the origin,222

is ∥Ω∥p(Dp,d + o(1)) as R goes to infinity.223

Proof. We start with the Crofton formula [8, Formula (5.7)], which states that the p-224

dimensional volume of Ω is a constant times the integral of crossings between Ω and a225

(d − p)-plane, and this constant is the 1-st projection moment:226 ∫
Q∈Grd−p,d

∫
y∈Q⊥

χ((Q + y) ∩ Ω) dy dQ = m(1)
p,d∥Ω∥p. (12)227

Here χ((Q + y) ∩ Ω) is the multiplicity of the intersection between Q + y and Ω, which is228

almost always finite; see [7, 3.16] for the general statement that applies to rectifiable sets.229

Next consider a bounded convex polyhedron, P , whose dimension is d − p. Applying a rigid230

motion (a rotation composed with a translation), we get a congruent copy, P ′ ∼= P . We231

represent P ′ as a polyhedron P ′′ in Q ∈ Grd−p,d and a shift y ∈ Q⊥. For any fixed p-plane232

Q + y and any fixed point inside it, the total measure of the congruent copies of P inside233

Q + y that contain this fixed point is ∥P∥d−p. We can thus compute the total measure of234

intersection points over all congruent copies of P as235 ∫
P ′∼=P

χ(P ′ ∩ Ω) dP ′ =
∫

Q∈Grd−p,d

∫
y∈Q⊥

∫
P ∼=P ′′⊆Q

χ((P ′′ + y) ∩ Ω) dP ′′ dy dQ (13)236

=
∫

Q∈Grd−p,d

∫
y∈Q⊥

∥P∥d−pχ((Q + y) ∩ Ω) dy dQ (14)237

= ∥P∥d−p∥Ω∥pm(1)
p,d. (15)238

Taking P = γ∗ and moving Ω instead of the polyhedron, we see that the total measure of239

intersection points of congruent copies of Ω with γ∗ is ∥γ∗∥d−p∥Ω∥pm(1)
p,d.240

A p-cell γ ∈ Del(A) belongs to the Voronoi scape of a congruent copy Ω′ of Ω precisely241

χ(Ω′ ∩ γ∗) times, and we just computed this quantity. The total contribution of γ to242

the p-dimensional volume of the Voronoi scapes of the congruent copies of Ω is therefore243

∥γ∥p∥γ∗∥d−p∥Ω∥pm(1)
p,d. We get the final result by dividing the total contribution of the244

p-cells in Del(A) inside B(R) by the total measure of the congruent copies inside the ball:245 ∑
γ ∥γ∥p∥γ∗∥d−p∥Ω∥pm(1)

p,d

∥B(R)∥d(1 + o(1)) =
(

d
p

)
∥B(R)∥d(1 + o(1))∥Ω∥pm(1)

p,d

∥B(R)∥d(1 + o(1)) (16)246

= ∥Ω∥p(Dp,d + o(1)), (17)247

in which we use Corollary 5.1 to get the right-hand side of (16), and (6) to get (17). ■248
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We finish by stating the answer to the original question that motivated the work reported249

in this paper. We showed in Section 4 that the stationary Poisson point process has the250

mixed regularity property in expectation, which allows us to repeat all results while adding251

the expectation to all quantities. By the isometry invariance of the process, for any set252

Ω, the expected volume of VΩ(A) does not depend on the position of Ω. Exchanging the253

expectation and the average inside the ball of radius R centered at the origin and letting R254

go to infinity, we arrive at probabilistic versions of Theorem 6.1:255

▶ Theorem 6.2 (Expected Volume). Let A ⊆ Rd be a stationary Poisson point process with256

intensity ρ > 0, and let Ω be a compact rectifyable p-manifold in Rd. Then the expected257

p-dimensional volume of the Voronoi scape of Ω and A is Dp,d∥Ω∥p.258

Note that the expected volume of the Voronoi scape does not depend on the intensity of the259

Poisson point process. On the other hand, the variance does, but this is beyond the scope260

of this paper.261

7 Discussion262

The main contribution of this paper is a complete analysis of the average and expected263

distortion of p-dimensional Voronoi scapes in Rd, for 0 ≤ p ≤ d. For p = 1, these scapes264

are known as Voronoi paths, for which the expected distortion has been studied but was265

known only in R2; see [2]. A useful insight from our analysis is that the expected distortion266

for a stationary Poisson point process is the average distortion for a general locally finite267

point set. We make crucial use of this insight in the proof of our results. Can these results268

be extended to other measures, such as notions of curvature, for example? The proof of269

Theorem 6.1 suggests that this extension would require a detailed analysis of the Crofton270

formula. Insights in this direction could be helpful in using the Voronoi scape to measure271

otherwise difficult to measure shapes.272

In our analysis, the properties that make a mosaic a Delaunay mosaic are not used other273

than in the quantification of the mixed regularity property for locally finite sets. Indeed,274

we only need a pair of dual complexes in which dual cells are orthogonal to each other,275

a property that holds also for the generalizations of Voronoi tessellations and Delaunay276

mosaics to points with real weights; see e.g. [1].277
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