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Abstract1

The Voronoi tessellation in Rd is defined by locally minimizing the power distance to given weighted2

points. Symmetrically, the Delaunay mosaic can be defined by locally maximizing the negative3

power distance to other such points. We prove that the average of the two piecewise quadratic4

functions is piecewise linear, and that all three functions have the same critical points and values.5

Discretizing the two piecewise quadratic functions, we get the alpha shapes as sublevel sets of6

the discrete function on the Delaunay mosaic, and analog shapes as superlevel sets of the discrete7

function on the Voronoi tessellation. For the same non-critical value, the corresponding shapes are8

disjoint, separated by a narrow channel that contains no critical points but the entire level set of the9

piecewise linear function.10
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1 Introduction11

The starting point for the work reported in this paper is the role of the general position12

assumption in the construction of Delaunay mosaics, and more specifically of their radius13

functions. Without general position assumption, the mosaics are not simplicial and the14

radius functions are not discrete Morse. How do we relax the theory to allow for non-generic15

data? Related to this question is the symmetry between Voronoi tessellations and Delaunay16

mosaics that appears when we introduce weights, and non-generic data is essential to realize17

this symmetry. In this paper, we weave the two strands of inquiry together by studying18

the continuous and discrete radius functions that define Voronoi tessellations and Delaunay19

mosaics for weighted points not necessarily in general position. We prove new results on20

these tessellations and mosaics by exploiting the structural properties of these functions.21
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The Voronoi tessellation and the dual Delaunay mosaic are classic topics in discrete22

geometry and go back at least to the seminal papers by Voronoi [19] and by Delaunay [3].23

The radius function on the Delaunay mosaic was first introduced in [6], along with its sublevel24

sets, which are the alpha shapes of the given points. Three-dimensional alpha shapes have25

found ample applications in shape modeling [8, 11, 14] and in the analysis of biomolecules26

[7]. The connection to discrete Morse theory, as introduced by Forman [9] and generalized27

by Freij [10], was exploited for the purpose of surface reconstruction in [5]; see also [18]. We28

formulate the extension of discrete Morse theory needed to encompass radius functions on29

non-generic Delaunay mosaics and thus facilitate their application when non-generic position30

is essential, such as in crystallography.31

Non-general position of points with weights is also essential when we interpret a Voronoi32

tessellation as a Delaunay mosaic and vice versa. By this we do not mean to take the33

tessellation to its dual mosaic but rather to construct a different set of weighted points34

whose Delaunay mosaic is essentially identical to the Voronoi tessellation of the first set.35

Viewing the tessellation and the mosaic as projections of the boundary complexes of convex36

polytopes, this construction follows by observing that the polar of a convex polyhedron is37

still a convex polyhedron. Notwithstanding, we get new insights into a much studied subject38

by looking into the details of this symmetry. We mention four such results, the first of which39

is combinatorial.40

Let µ 6= ν be cells of a Voronoi tessellation, and write µ∗, ν∗ for the corresponding cells41

in the dual Delaunay mosaic. Then intµ ∩ ν∗ 6= ∅ implies int ν ∩ µ∗ = ∅.42

The second result is about the piecewise quadratic functions, vor , del : Rd → R, whose pieces43

define the Voronoi tessellation and the dual Delaunay mosaic, respectively. Choosing opposite44

signs, the average defined by sd(x) = 1
2 [vor(x) + del(x)] is piecewise linear. We use the above45

combinatorial insight to prove the following result.46

Extending concepts from smooth Morse theory to piecewise quadratic and piecewise47

linear functions, we show that vor , del, sd : Rd → R have the same critical points and the48

same critical values.49

Discretizing the two piecewise quadratic functions, we get radius functions on the Voronoi50

tessellation and Delaunay mosaic, vor : Vor(X) → R and del : Del(X) → R. For generic51

collections of weighted points, they are discrete Morse but not so for non-generic collections.52

Extending concepts from discrete Morse theory, we describe the structure of the steps of53

the radius functions on the Voronoi tessellation and Delaunay mosaic for weighted points54

in non-general position.55

The fourth result sheds light on the relation between the sub- and superlevel sets of these56

discrete functions.57

We show that the underlying spaces of del−1(−∞, t] and vor−1[t,∞) are disjoint for all58

non-critical values t.59

In particular, the channel between the two underlying spaces is free of critical points, the60

level set of the piecewise linear function, sd−1(t), splits it into two halves, and each half61

deformation retracts to the respective underlying space. Keeping track of the homology of62

the complementing subcomplexes, we get the basic relation of Alexander duality.63

Outline. Section 2 presents background in discrete geometry. Section 3 studies the64

piecewise quadratic functions that define the Voronoi tessellation and Delaunay mosaic as65

well as their average, which is piecewise linear. Section 4 considers the corresponding discrete66
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functions and introduces a framework to relate their properties to the standard axioms of67

discrete Morse theory. Section 5 relates the sublevel sets of one with the superlevel sets of68

the other. Section 6 concludes the paper.69

2 Background70

We review Voronoi tessellations and the dual Delaunay mosaics, which we introduce for71

points with real weights in Euclidean space. In addition, we describe the standard polarity72

transform and its relation to the tessellation and the mosaic. Finally, we explain how to view73

tessellations and mosaics as projections of convex polytopes.74

2.1 Voronoi Tessellations and Delaunay Mosaics75

We refer to a = (pa, wa) ∈ Rd × R as a weighted point, with location pa ∈ Rd and weight76

wa ∈ R. Let B ⊆ Rd × R be a set of weighted points whose projection to Rd is injective and77

locally finite. In other words, for every location there is an open neighborhood that separates78

it from the other locations. It is common to interpret a = (pa, wa) as a sphere, with center79

pa and squared radius wa, but for this we have to allow for spheres with non-positive squared80

radii. The power distance of a point x ∈ Rd from a = (pa, wa) is πa(x) = ‖x− pa‖2 − wa. It81

is positive outside the sphere, zero on the sphere, and negative inside the sphere. Of course,82

for a sphere with negative squared radius, all points are outside. For a subset A ⊆ B, consider83

all points x ∈ Rd with equal power distance from the weighted points in A and strictly larger84

power distance from the other weighted points, and call its closure the (Voronoi) cell of85

A, denoted cell(A). Each non-empty cell is a convex polyhedron in Rd, and its dimension86

depends on A. The (weighted) Voronoi tessellation of B, denoted Vor(B), is the collection of87

non-empty cells. It is a polyhedral complex in the sense that every cell is a convex polyhedron,88

every face of a cell is again a cell, and any two cells are either disjoint or intersect in a89

common face, which is therefore also a cell in the tessellation. A cell of dimension p has90

faces of dimension from 0 to p, and we call the faces of dimension p− 1 its facets. Define the91

dual cell of A as the convex hull of the locations in A, denoted cell∗(A), which is again a92

convex polyhedron. The dimension of a cell and its dual cell are necessarily complementary:93

if p = dim cell(A) and q = dim cell∗(A), then p + q = d. The (weighted) Delaunay mosaic94

of B, denoted Del(B), is the collection of dual cells. Figure 1 illustrates the concepts by95

drawing a Voronoi tessellation and the corresponding Delaunay mosaic on top of each other.96

In Rd, we call a Voronoi tessellation simple if every p-dimensional cell is face of exactly97

q + 1 = d− p+ 1 top-dimensional cells, and we call a Delaunay mosaic simplicial if every98

q-dimensional dual cell is the convex hull of q + 1 points. Clearly, a Voronoi tessellation is99

simple iff the corresponding Delaunay mosaic is simplicial. We stress that this paper does100

not assume that Vor(B) be simple and Del(B) be simplicial, and we introduce these notions101

primarily to clarify the difference between the generic and the non-generic situation.102

Besides Vor(B) and Del(B), we will be interested in subcomplexes and subsets of these103

complexes. To stress the difference, we note that a subcomplex is closed under taking faces,104

while a subset does not necessarily enjoy this property. We call a subset open if it is closed105

under taking cofaces. As an example consider a subset K ⊆ Vor(B) and let K∗ ⊆ Del(B)106

contain cell∗(A) iff cell(A) ∈ K. Clearly, K is a subcomplex of the Voronoi tessellation iff K∗107

is an open subset of Del(B), and vice versa. While the cells in a complex may intersect, their108

(relative) interiors are disjoint. Indeed, for every x ∈ Rd there is a unique cell τ ∈ Vor(B)109

whose interior contains x. The same is true for the Delaunay mosaic if we restrict ourselves110

to points x in the convex hull of the locations. As suggested in Figure 1, we will extend the111
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Figure 1: The overlay of a Voronoi tessellation and its dual Delaunay mosaic. The former is
not simple because it contains one vertex incident to four edges, and the latter is not simplicial
because it contains one region with four edges. We add half-lines to the mosaic to decompose the
complement of the convex hull into convex cells.

Delaunay mosaic artificially so that this restriction can be removed. We define the underlying112

space of a subset K of a polyhedral complex as the union of interiors of its cells:113

|K| = {x ∈ Rd | x ∈ int τ for some τ ∈ K}. (1)114

If K is a complex, then this is just the union of cells, but if K is not a complex, then the115

union of interiors is a strict subset of the union of cells.116

2.2 Polarity117

We introduce the paraboloid map, $ : Rd → R, defined by $(x) = 1
2‖x‖

2 and we are interested118

in the most elementary version of polarity with respect to this paraboloid, which relates a119

point u = (u1, u2, . . . , ud+1) in Rd+1 with the hyperplane of points x ∈ Rd+1 that satisfy120

xd+1 = u1x1 + . . . + udxd − ud+1. We denote this hyperplane by u∗, we call u∗ the polar121

hyperplane of u (with respect to $), and we call u = (u∗)∗ the polar point of u∗ (with respect122

to $). Importantly, the transform preserves incidences, that is: u ∈ v∗ iff v ∈ u∗ for any two123

points u, v ∈ Rd+1. The transform also preserves sidedness, which we introduce by saying that124

u lies below, on, above v∗ if ud+1 is less than, equal to, greater than v1u1 + . . .+ vdud − vd+1.125

Specifically, u is above v∗ iff v is above u∗, and together with the preservation of incidences,126

this implies u is below v∗ iff v is below u∗.127

To express the relation between the Voronoi tessellation and the Delaunay mosaic in128

terms of the polarity transform, we map every weighted point in Rd × R to a lifted point129

and its polar hyperplane in Rd+1. For every weighted point a = (pa, wa), we represent the130

two by a constant map and an affine map, fa, ga : Rd → R:131

fa(x) = 1
2‖pa‖

2 − 1
2wa, (2)132

ga(x) = 〈pa, x〉 − fa(x), (3)133

so that (pa, fa(pa)) is the lifted point and img ga = ga(Rd) is its polar hyperplane (with134

respect to $). It is not difficult to verify that the average of the two maps on pa gives us the135

value of $ on pa:136

1
2 [fa(pa) + ga(pa)] = 1

2‖pa‖
2 = $(pa). (4)137
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Returning to the connection with the weighted points, the zero-set of ga −$ consists of the138

points x ∈ Rd for which139

ga(x)−$(x) = − 1
2‖x− pa‖

2 + 1
2wa = − 1

2πa(x) (5)140

vanishes. In words, the zero-set of ga −$ is also the zero-set of πa, namely the sphere with141

center pa and squared radius wa. We call two weighted points a = (pa, wa) and b = (pb, wb)142

orthogonal if ‖pa − pb‖2 = wa + wb. It is a straightforward exercise to show that this is143

equivalent to ga(pb) = fb(pb) or, in words, that the lifted point of b lies on the hyperplane of144

a. If both weights are positive, Pythagoras’ theorem implies that the zero-sets of πa and πb145

— which are spheres with squared radii wa and wb — intersect orthogonally.146

Next, we generalize the relations between points and hyperplanes to collections A ⊆ Rd×R147

whose projection to Rd is injective and locally finite. Write flat(A) for the affine hull of148

the locations: flat(A) = aff {pa|a ∈ A}, and sol(A) for the set of points x ∈ Rd that satisfy149

ga(x) = gb(x) for all a, b ∈ A. For example, if A = {a = (pa, wa)}, then flat(A) = pa and150

sol(A) = Rd. Assuming the locations of the points in A are affinely independent, we write151

q + 1 = #A and p = d− q, and observe that152

dim flat(A) = q and dim sol(A) = p,153

flat(A) and sol(A) are orthogonal affine subspaces of Rd, and we write y = y(A) for the154

intersection point.155

Indeed, if all weights are zero, then sol(A) is the set of centers of spheres that pass through all156

points of A. This set is a p-dimensional affine subspace of Rd orthogonal to the q-dimensional157

affine hull of A. When we adjust the weight of a ∈ A, this affine subspace does not change158

other than by moving parallel to its initial position. So flat(A) and sol(A) retain the two159

properties stated above.160

In addition to the two affine subspaces, we introduce two affine functions, fA : Rd → R161

and gA : Rd → R, that generalize fa and ga as defined in (2) and (3). Specifically, fA agrees162

with fa at pa for every a = (pa, wa) ∈ A and its restriction to sol(A) is constant. Similarly,163

gA agrees with ga within sol(A) for every a ∈ A and its restriction to flat(A) is constant.164

Recall that y(A) = sol(A) ∩ flat(A).165

I Lemma 2.1 (Common Maximum). Let A ⊆ Rd × R be a set of weighted points whose166

locations are affinely independent. Then y = y(A) is the common maximum of167

(i) the restriction of fA −$ to flat(A),168

(ii) the restriction of gA −$ to sol(A),169

(iii) the average, 1
2 [fA + gA]−$, and in this case the value of the maximum vanishes.170

Proof. We begin by mapping every location x ∈ flat(A) to a weighted point u ∈ Rd × R171

with pu = x and wu = 2$(x)− 2fA(x), noting that fu(x) = fA(x). Similarly, we map every172

location x ∈ sol(A) to v ∈ Rd × R with pv = x and wv = 2$(x) − 2gA(x), noting that173

fv(x) = gA(x). By construction, gu : Rd → R agrees with gA on sol(A) and, symmetrically,174

gv : Rd → R agrees with fA on flat(A). Hence, ‖pu − pv‖2 = wu + wv, which for positive175

weights is equivalent to the zero-sets of πu and πv intersecting orthogonally. Observe that176

this is true for all pairs (pu, pv) ∈ flat(A) × sol(A), so we have what for two lines in R2 is177

sometimes called a coaxal system [17].178

If we now fix v with pv ∈ sol(A), we get u with minimum weight by minimizing ‖pv − pu‖2.179

This minimum is attained for pu = y, and since wu = 2$(pu)− 2fA(pu), this implies that y180

maximizes fA −$, as claimed in (i). The proof of (ii) is symmetric.181



XX:6 Continuous and Discrete Radius Functions on Tessellations and Mosaics

While we considered only the restrictions of fA and gA to affine subspaces, they are182

defined on the entire Rd. Hence, the map f : Rd → R sending x to f(x) = 1
2 [fA(x) + gA(x)]183

is well defined. It is affine since fA and gA are affine. Letting x′ and x′′ be the orthogonal184

projections of x ∈ Rd onto flat(A) and sol(A), respectively, we have f(x) = 1
2 [fA(x′)+gA(x′′)].185

At the intersection of the two affine subspaces, we have f(y)−$(y) = 0 by (4). At every186

other point x ∈ Rd, f(x)−$(x) < 0, simply because fA(x′)−$(x′) ≤ fA(y)−$(y) and187

gA(x′′)−$(x′′) ≤ gA(y)−$(y), with strict inequality at least once. This implies (iii).188

We note that (iii) implies that the graph of 1
2 [fA + gA] is the unique hyperplane in Rd+1

189

that touches the graph of $ in the point (y,$(y)).190

2.3 Projection of Envelopes191

Since the Voronoi tessellation is defined in terms of minimum power distance, it can equally192

well be defined in terms of maximum affine function values. Specifically, let env : Rd → R be193

the upper envelope of the affine maps: env(x) = maxa∈B ga(x), and call the linear pieces194

of this envelope the faces of env. It is not difficult to see that there is a bijection between195

the faces of env and the cells of Vor(B) such that every cell is the vertical projection of the196

corresponding face to Rd. This property was known already to Voronoi [19].197

A similar construction exists for Delaunay mosaics, which is usually phrased in terms of198

the convex hull of the points (pa, fa(pa)) in Rd+1. We call a face of this convex polytope199

lower if there is a non-vertical hyperplane in Rd+1 such that the face lies in the hyperplane200

and the rest of the polytope lies above it. It is not difficult to see that there is a bijection201

between the lower faces of this polytope and the cells of Del(B) such that every cell is the202

vertical projection of the corresponding lower face to Rd. In this paper, it is convenient to203

add arbitrarily steep “ramps” around the polytope whose vertical projections decompose the204

rest of Rd into convex cells. In other words, we introduce end : Rd → R as the upper envelope205

of all affine maps gc : Rd → R that satisfy gc(x) ≤ y for every point (x, y) ∈ Rd × R of the206

polytope. Most of these maps are redundant, except those whose graphs support facets, and207

the ramps that support (d− 1)-dimensional faces on the silhouette of the polytope. Then208

there is a set of weighted points, C ⊆ Rd × R, possibly including a point at infinity, whose209

projection to Rd is locally finite such that end(x) = maxc∈C gc(x). Now we have complete210

symmetry and can write Del(B) = Vor(C) as well as Vor(B) = Del(C). We call C the polar211

set of B and, symmetrically, B the polar set of C.212

3 Continuous Functions213

In this section, we consider two piecewise quadratic functions, whose pieces define the Voronoi214

tessellation and its dual Delaunay mosaic. The main result is that these two functions and215

their piecewise linear average have the same critical points.216

3.1 Piecewise Quadratic and Piecewise Linear Functions217

Recall that env, end : Rd → R are piecewise linear convex functions. Comparing them with218

$, we get two piecewise quadratic functions, vor , del : Rd → R, and one piecewise linear219
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function, sd : Rd → R, defined by220

vor(x) = $(x)− env(x), (6)221

del(x) = end(x)−$(x). (7)222

sd(x) = 1
2 [end(x)− env(x)] = 1

2 [del(x) + vor(x)]. (8)223

As illustrated in Figure 2, del dominates vor , which implies that their average, sd, is224

sandwiched between them. To prove this formally, we introduce the common subdivision of

delB

end

vorB

sdB

$
env

Figure 2: The paraboloid function, the two envelope functions, and their piecewise quadratic and
piecewise linear differences.

225

the tessellation and the mosaic, denoted Sd(B), which consists of all cells γ = τ ∩ σ∗ with226

τ ∈ Vor(B) and σ∗ ∈ Del(B). Since τ and σ∗ are convex, so is γ. The restrictions of del and227

of vor to γ are quadratic, while the restriction of sd to γ is linear.228

I Lemma 3.1 (Sandwich). Let B ⊆ Rd × R have an injective and locally finite projection to229

Rd. Then del(x) ≥ sd(x) ≥ vor(x) for every x ∈ Rd.230

Proof. Let a ∈ Rd × R such that fa(pa) = env(pa). Hence, fa(pa) ≥ gb(pa) for all b ∈ B,231

with equality at least once. Since the polarity transform preserve sidedness, we have232

fb(pb) ≥ ga(pb), for all b ∈ B, and therefore end(y) ≥ ga(y) for all y ∈ Rd, which includes233

y = pa. Writing x = pa, this implies234

del(x)− vor(x) = end(x) + env(x)− 2$(x) ≥ ga(x) + fa(x)− 2$(x), (9)235

in which the right-hand side vanishes because of (4). This implies the claimed inequalities.236

237

The inequalities in Lemma 3.1 imply that the sublevel sets and the superlevel sets of the238

three functions are nested:239

del−1(−∞, t] ⊆ sd−1(−∞, t] ⊆ vor−1(−∞, t], (10)240

del−1[t,∞) ⊇ sd−1[t,∞) ⊇ vor−1[t,∞). (11)241

The sublevel set of del and the superlevel set of vor , for a common value t, are illustrated242

in Figure 3 together with the channel between these two sets. We will see shortly that the243

three functions share the critical points, at which they all agree.244
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Figure 3: The black level set of sd splits the white channel into two. The corresponding superlevel
set of vor is orange and the sublevel set of del is blue.

3.2 Two Auxiliary Lemmas245

We need three auxiliary results to prove that the functions defined in (6), (7), (8) share the246

critical points and values, two of which will be presented in this subsection. The first result247

is a new combinatorial statement about Voronoi tessellations and Delaunay mosaics.248

I Lemma 3.2 (Excluded Crossing). Let B ⊆ Rd × R have an injective and locally finite249

projection to Rd, let µ 6= ν be cells in Vor(B) and recall that µ∗, ν∗ are their dual cells in250

Del(B). If intµ ∩ ν∗ 6= ∅, then int ν ∩ µ∗ = ∅.251

Proof. To reach a contradiction, assume that both intersections are non-empty, so we can252

choose points x ∈ intµ ∩ ν∗ and y ∈ int ν ∩ µ∗. Since the interiors of µ and ν are disjoint,253

we have x 6= y. Let M,N ⊆ B be such that µ = cell(M) and ν = cell(N). By definition of254

a cell, x has the same power distance from all a ∈M , and a strictly larger power distance255

from all b ∈ B \M . Write RM = πa(x) with a ∈ M , and write RN = πc(y) with c ∈ N .256

Assume without loss of generality that RN ≥ RM . Then every weighted point a ∈M satisfies257

πa(y) ≥ RN ≥ RM = πa(x), so ‖y − pa‖ ≥ ‖x− pa‖. Drawing the perpendicular bisector258

of x and y, this implies that all pa with a ∈ M lie in the closed half-space that contains259

x. Since y lies outside this half-space, it is not contained in the convex hull of the pa with260

a ∈M , but this contradicts y ∈ µ∗.261

We remark that we take the interiors of µ and ν so that the two hypothesized intersection262

points are different. This detail is a crucial aspect of the proof. Indeed, it is possible to have263

µ ∩ ν∗ 6= ∅ and ν ∩ µ∗ 6= ∅: let ν∗ be a right-angled triangle in R2 and µ∗ its longest edge.264

Then ν is the circumcenter of the triangle, which lies on µ∗, and µ has ν as an endpoint.265

Write Sd−1 for the unit sphere in Rd. The second result is a geometric statement about266

the common intersection of hemispheres, which are closed subsets of Sd−1 that are bounded267

by great-spheres of dimension d− 2. Note that a unit vector, e ∈ Sd−1, defines both a point268

as well as a hemisphere, namely the one whose points y ∈ Sd−1 satisfy 〈e, y〉 ≤ 0.269

I Lemma 3.3 (Hemispheres). The common intersection of a collection of hemispheres of270

Sd−1 is either contractible or a (p− 1)-dimensional great-sphere with 0 ≤ p ≤ d.271

Proof. Let E ⊆ Sd−1 be the set of vectors defining the hemispheres in the given collection.272

If E 6= ∅ and there is a point x ∈ Sd−1 with 〈e, x〉 < 0 for all e ∈ E, then the hemispheres273
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have a non-empty and contractible common intersection. Otherwise, let x ∈ Sd−1 such274

that 〈e, x〉 ≤ 0, for all e ∈ E, with equality for a minimum number of vectors. If x does275

not exist, then the intersection of hemispheres is empty, which is the case p = 0 in the276

claimed statement. When x exists, it may not be unique, but the vectors e for which the277

scalar product vanishes are unique. Similarly, the linear span of these vectors is unique,278

and letting 0 ≤ d− p ≤ d be its dimension, the common intersection of the hemispheres is279

a (p− 1)-dimensional great-sphere. The case p = d corresponds to an empty collection of280

hemispheres so that the common intersection is the entire Sd−1.281

3.3 In- and Out-Links282

The third result is a topological statement about vector fields defined by two convex polytopes,283

P,Q ⊆ Rd, whose dimensions are complementary, p = dimP and q = dimQ with p+ q = d,284

and whose affine hulls intersect in a single point. The product, P ×Q, is a convex polytope285

of dimension d. Its boundary is a topological (d− 1)-sphere that decomposes into a thickened286

(p− 1)-sphere and a thickened (q− 1)-sphere: ∂(P ×Q) = (∂P ×Q)∪ (P × ∂Q). Indeed, for287

every s ∈ ∂(P ×Q), there are unique points y ∈ P and z ∈ Q such that s = y+z, and at least288

one of y and z belongs to the respective boundary. We are interested in ψ : ∂(P ×Q)→ Sd−1
289

defined by mapping s = y + z to ψ(s) = 1
2 (y − z); see Figure 4 for an illustration. To study

Q 0

0Q

P P

Figure 4: The map ψ : ∂(P ×Q)→ S1 illustrated for two intersecting line segments on the left
and for two disjoint line segments on the right. For better visualization, we anchor the vectors at
the boundary points of 1

2 (P ×Q), and we highlight the in-links in green.
290

ψ, we introduce the in-link and out-link of P and Q:291

inLk(P,Q) = {s ∈ ∂(P ×Q) | 〈ψ(s),n(s)〉 ≤ 0}, (12)292

outLk(P,Q) = {s ∈ ∂(P ×Q) | 〈ψ(s),n(s)〉 ≥ 0}, (13)293

in which n(s) is the unit outward directed normal at s. This normal is unique for every facet,294

which we recall is a face of dimension d−1, but it is not unique for faces of dimension d−2 or295

less. We remedy this difficulty by writing n(s) for the collection of normals that interpolate296

between the normals of the incident facets, and by including s in the in- or out-link if the297

respective inequality is satisfied for at least one vector in n(s). In the left panel of Figure298

4, the in-link consists of the left edge and the right edge of the product, while the out-link299

consists of the remaining two edges. Both have the homotopy type of the 0-sphere. In the300

right panel, the in-link consists of three edges, with the out-link containing the remaining,301

top edge. Both links are contractible. The important difference is that P and Q intersect in302

the left panel while they are disjoint in the right panel.303
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I Lemma 3.4 (In- and Out-Link). Let P,Q ⊆ Rd be convex polytopes with orthogonal affine304

hulls of complementary dimensions: p = dimP , q = dimQ, and p+ q = d. Then305

intP ∩ intQ 6= ∅ =⇒ inLk(P,Q) ' Sq−1, outLk(P,Q) ' Sp−1, (14)306

P ∩Q = ∅ =⇒ inLk(P,Q) and outLk(P,Q) contractible, (15)307

intP ∩ intQ = ∅ and P ∩Q 6= ∅ =⇒ inLk(P,Q) or outLk(P,Q) contractible. (16)308

Proof. Assume that the affine hulls of P and Q intersect at 0 ∈ Rd. Every facet E of309

R = P ×Q is either of the form F ×Q or P ×G, in which F and G are facets of P and Q,310

respectively. Whether or not E belongs to the in-link or the out-link depends on the relative311

position of E and 0, and the rule is opposite for the two forms. To explain, we call E visible312

(from 0) if 〈n(s), s〉 ≤ 0 for every s ∈ E and invisible (from 0) if 〈n(s), s〉 ≥ 0 for every s ∈ E.313

We observe that inLk(P,Q) contains all visible facets E of the form E = F × Q and all314

invisible facets of the form E = P ×G, while outLk(P,Q) contains all invisible facets of the315

first type and all visible facets of the second type.316

In the first case, when intP ∩ intQ 6= ∅, 0 belongs to the interior of R. Hence all facets317

of R are invisible, which implies that the in-link is P × ∂Q, which has the homotopy type of318

a (q− 1)-sphere. Symmetrically, the out-link is ∂P ×Q, which has the homotopy type of the319

(p− 1)-sphere. This proves (14).320

To prepare the second case, consider a q-dimensional convex polytope Q in Rq, and let321

0 ∈ Rq be outside Q and not contained in the affine hull of any of its facets. This partitions322

the facets into the visible and invisible ones from 0. Letting H be a hyperplane that separates323

0 from Q, we can apply a projective transformation that maps H to infinity, 0 to another324

point 0′, and Q to another convex polytope Q′, all in Rq. We may imagine this transform325

moves H to infinity, pushing 0 in front of it to disappear to infinity and then return from326

the other side. Importantly, a facet of Q is visible from 0 iff the corresponding facet of Q′ is327

invisible from 0′. We will make use of this construction shortly.328

In the second case, when P ∩ Q = ∅, not all facets of R are invisible. Since 0 6∈ R, it329

is outside at least one of P and Q, and we assume without loss of generality 0 6∈ Q. To330

distinguish the two types of facets of R, we consider P and Q within their respective affine331

hulls. Specifically, there is a bijection between the visible facets of R on the one side, and the332

visible facets of P inside aff P and of Q inside aff Q on the other side. For the in-link, we need333

the visible facets of P and the invisible facets of Q, so we apply a projective transformation334

that maps Q to Q′ and 0 to 0′ — all still in aff Q — such that a facet of Q is invisible from335

0 iff the corresponding facet of Q′ is visible from 0′. This transformation does not affect P .336

We get a new product, R′ = P ×Q′ and we are interested in the part of the boundary that is337

visible from 0′. Since R′ is convex and 0′ 6∈ R′, this part of ∂R′ is contractible, which implies338

that the corresponding part of ∂R, which is inLk(P,Q), is also contractible. Symmetrically,339

the invisible part of ∂R′ is contractible, which implies that outLk(P,Q) is also contractible.340

This proves (15).341

In the third case, when intP ∩ intQ = ∅ and P ∩Q 6= ∅, 0 belongs to ∂R. The facets342

that contain 0 are both visible and invisible (from 0). Assume 0 ∈ ∂Q. Then we can move343

0 to 0′, still within aff Q but slightly outside Q, in such a way that a facet of Q is visible344

from 0 iff it is visible from 0′. Now we are in the second case as far as the visible facets of345

Q are concerned, which implies that the out-link of P and Q is contractible. This proves346

(16). Note that this construction is not symmetric, as moving 0 to 0′′ inside Q preserves the347

invisible facets of Q but does not imply a contractible in-link. However, we need only one348

contractible link, which completes the proof.349
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3.4 Up- and Down-Links350

Since the continuous functions we study are not smooth, it is necessary to define what we351

mean by a critical point. We need a definition that is general enough to apply to piecewise352

linear and to piecewise quadratic functions. Letting f : Rd → R be such a function and353

x ∈ Rd, we write Sr = Sr(x) for the (d− 1)-sphere with radius r > 0 and center x. Letting354

S−r contain all y ∈ Sr with f(y) ≤ 0, we note that its homotopy type is the same for all355

sufficiently small radii. Fixing a sufficiently small ε > 0, we call S−ε the down-link of x and356

f , denoted dnLk(x, f). Symmetrically, S+
r contains all points y ∈ Sr with f(y) ≥ 0, and we357

call S+
ε the up-link of x and f , denoted upLk(x, f). We call x a non-critical point of f if at358

least one of the two links is contractible. All points with topologically more complicated up-359

and down-links are critical points of f , where we note that the empty link is not contractible.360

See Figure 5 for the local pictures that arise for a 2-dimensional piecewise linear function. In361

the generic case, the down-link is contractible iff the up-link is contractible. The “at least362

one” rule is used to classify borderline cases as non-critical. An example is the southern363

hemisphere as the down-link and the northern hemisphere together with the south-pole as364

the up-link.365

To study the critical points of f = vor , we fix x ∈ Rd and let A ⊆ B be the subset of366

weighted points such that x ∈ int cell(A). Setting h2 = vor(x), x lies on the boundary of367

vor−1(−∞, h2], which is a union of closed balls, namely the balls with centers pa and squared368

radii wa + h2, for a ∈ B. Specifically, x lies on the boundary of such a ball if a ∈ A, and369

it lies outside the ball if a ∈ B \A. We get the two links by intersecting the union and its370

closed complement with a sphere of sufficiently small radius ε:371

dnLk(x, vor) = Sε(x) ∩ vor−1(−∞, h2], (17)372

upLk(x, vor) = Sε(x) ∩ vor−1[h2,∞). (18)373

Scaling the small sphere back to unit size, we get a closed cap that approximates the374

complement of a hemisphere arbitrarily closely for each a ∈ A, and the down-link as the375

union of these caps. By Lemma 3.3, there are only d+ 2 possible shapes for dnLk(x, vor),376

namely either contractible or a thickened (q − 1)-dimensional great sphere for 0 ≤ q ≤ d.377

Symmetrically, there are only d+2 possible shapes for upLk(x, vor), namely either contractible378

or a thickened (p− 1)-dimensional great sphere with p = d− q. If at least one of the two379

links is contractible, then x is a non-critical point of vor , and otherwise, it is a critical point380

with index q. The symmetric argument applies to del, so x can be either a non-critical point381

of del or a critical point with the same index, q.382

Figure 5: From left to right: typical patterns of level sets in the neighborhood of a non-critical
point, a minimum (index 0), a saddle (index 1), and a maximum (index 2) in two dimensions. The
corresponding down-link is a single contractible arc, empty, two disjoint contractible arcs, and the
full circle, respectively. The patterns are cut out of the larger context in Figure 9(d), where the
middle level set is shown using thin black lines.
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3.5 Coincidental Critical Points383

Recall that del(x) ≥ sd(x) ≥ vor(x) by Lemma 3.1. We strengthen this result by proving384

further connections between the three functions. Specifically, we prove that every point385

x ∈ Rd is of the same type for vor and for del, as well as for their average. Recall that the386

restriction of the latter to a d-dimensional cell γ = τ ∩ σ∗ satisfies387

sd(x) = 1
2 [del(x) + vor(x)] = 1

2 [− 1
2πc(x) + 1

2πb(x)] = 1
2 〈x, pc − pb〉+ const, (19)388

in which b ∈ B and c ∈ C such that τ = cell(b) and σ∗ = cell(c). Hence, pc − pb is twice the389

gradient of sd at every point in int γ. We use this insight to prove the main result of this390

section.391

I Theorem 3.5 (Coincidental Critical Points). Let B ⊆ Rd × R have an injective and392

locally finite projection to Rd. Then x ∈ Rd is a critical point of vor : Rd → R iff it is393

a critical point of del : Rd → R iff it is a critical point of sd : Rd → R, and in this case394

del(x) = sd(x) = vor(x) and the index of x is the same for all three functions.395

Proof. We prove that x ∈ Rd is a critical point (of vor , del, and sd) iff x = int ν ∩ int ν∗ for396

a cell ν ∈ Vor(B) and its dual cell ν∗ ∈ Del(B), and that the index of such a critical point is397

q = dim ν∗. Furthermore, del(x) = sd(x) = vor(x) in this case by (4).398

We begin with f = vor , which maps every x ∈ Rd to half the smallest power distance399

to a weighted point in B. The restriction of vor to a cell ν is also the restriction of a400

quadratic function on aff ν to ν. This quadratic function has a unique minimum, namely401

at y = aff ν ∩ aff ν∗. The only possibility for a point x ∈ int ν to be a critical point of402

vor is therefore x = y. This implies that int ν ∩ aff ν∗ 6= ∅ is necessary for x to be critical.403

Symmetrically, aff ν∩ int ν∗ 6= ∅ is necessary, which implies that int ν∩ int ν∗ 6= ∅ is necessary.404

It is easy to see that the latter condition is also sufficient because vor increases along all405

directions within aff ν and it decreases in all directions within aff ν∗. The index is the406

dimension of the affine subspace within which x is a maximum of f , which is q = dim ν∗, as407

claimed. The argument for f = del is symmetric and therefore omitted. The index is still q,408

and not p as suggested by symmetry, because del maps every x ∈ Rd to the negative of the409

smallest power distance to a weighted point in C.410

The argument for f = sd is more involved. Since this function is piecewise linear, the411

only possible critical points are the vertices of Sd(B). To simplify the argument, we assume412

that cells ν and µ∗ with complementary dimensions have interiors that are either disjoint or413

intersect in a single point, which is therefore a vertex of Sd(B). Writing u = int ν ∩ intµ∗,414

we let Sε(u) be a sufficiently small sphere centered at u. It intersects a cell of Sd(B) iff that415

cell is incident to u. The intersections of these cells with Sε(u) define a cell complex on the416

sphere. By construction, µ is dual to the collection of cells incident to µ∗, and ν∗ is dual to417

the collection of cells incident to ν. Setting P = µ and Q = ν, this implies that P ×Q is418

dual to the collection of cells incident to u, and the boundary complex of P ×Q is dual to419

the complex on Sε(u). Every point v ∈ Sd−1 is a direction, and we write sdv(u) for the right420

derivative of sd at u in the direction v. The goal is to prove that the down- and up-links of421

u and sd are closely related to the in- and out-links of P and Q, namely422

dnLk(u, sd) ' inLk(P,Q) and upLk(u, sd) ' outLk(P,Q). (20)423

By Lemma 3.4, the in- and out-links of P and Q either have the homotopy types of Sq−1 and424

Sp−1, if intP ∩ intQ 6= ∅, or at least one link is contractible, if intP ∩ intQ = ∅. Assuming425

(20), this implies that the down- and up-links of u and sd have the homotopy types of Sq−1
426
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and Sp−1, if ν = µ, and at least one is contractible, if ν 6= µ. Indeed, ν 6= µ together with427

int ν ∩ intµ∗ 6= ∅ implies intP ∩ intQ = ∅ by Lemma 3.2.428

We finally prove (20). Recall that every vertex of P ×Q corresponds to a d-cell of Sd(B)429

incident to u, and every facet corresponds to an edge incident to u. Recall also that the map430

ψ : ∂(P × Q) → Sd−1 introduced in Section 3.3 sends every vertex s = y + z of P × Q to431

ψ(s) = 1
2 (y − z). In the notation of equation (19), y = pc and z = pb, so ψ(s) is the gradient432

of sd restricted to the d-cell in Sd(B) that corresponds to s. To continue, we assume u is433

the origin of Rd, we consider a facet E of P ×Q, and we let e be the corresponding edge of434

Sd(B) emanating from u. Observe that the gradient of the restriction of sd to the edge e is435

a constant multiple of the unit outer normal of P ×Q at E, const · nE .436

If a linear function g : Rd → R agrees with sd along e, then the projection of ∇g onto the437

line spanned by nE is the gradient of the restriction. It follows that 〈∇g,nE〉 = const, and438

this holds in particular for the linear functions that correspond to the vertices of E. The439

gradient of any affine combination is the affine combination of the gradients. Hence, there is a440

unique affine combination of the functions corresponding to the vertices of E whose gradient441

is shortest, denoted gE , and this gradient is of course const · nE . It follows that nE belongs442

to dnLk(u, sd) iff E belongs to inLk(P,Q). By the nerve theorem, the full subcomplex of443

the decomposition of Sε(u) defined by the vertices with non-positive 〈∇gE ,nE〉 has the same444

homotopy type as inLk(P,Q). The rest of the down-link deformation retracts to this full445

subcomplex, which implies the left homotopy equivalence in (20). The symmetric argument446

relating the up-link of u and sd with the out-link of P and Q implies the right homotopy447

equivalence in (20). This completes the proof.448

4 Discrete Functions449

Parallel to the continuous functions studied in Section 3, we introduce discrete functions on450

the Voronoi tessellation, the Delaunay mosaics, and their common subdivision. We then451

study the structure of their steps, which we classify depending on their effect on the homology452

of the sublevel set.453

4.1 Discrete Morse Theory454

Letting K be a polyhedral complex in Rd, we call f : K → R a discrete function. It is455

monotonic if f(ν) ≤ f(µ) whenever ν is a face of µ in K, and it is anti-monotonic if −f456

is monotonic. For every t ∈ R, we call f−1(t) a level set, f−1(−∞, t] a sublevel set, and457

f−1[t,∞) a superlevel set of f . For completeness, we start by introducing the terminology of458

discrete Morse theory, which we adapt to polyhedral complexes.459

The Hasse diagram of K is the directed graph whose nodes are the cells of K, with an460

arc from ν to µ if ν ⊆ µ and dim ν = dimµ− 1. We note that f : K → R is monotonic iff461

the values along every directed path of the Hasse diagram are non-decreasing. A step of f is462

a connected component of the Hasse diagram restricted to a level set of f , and we write ∇f463

for the collection of steps, which partitions K. We construct the step graph by taking the464

steps in ∇f as nodes and drawing an arc from I to J if there are cells ν ∈ I and µ ∈ J such465

that the Hasse diagram has an arc from ν to µ. In other words, the step graph is obtained466

from the Hasse diagram by contracting every arc whose end-cells share the function value. It467

follows that the values along every directed path of the step graph are strictly increasing.468

A monotonic f : K → R is a discrete Morse function if every step is either a pair or a469

singleton; see [9] but note that we inessentially simplified the setting by requiring that the470
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cells in a pair share the same value. The singletons contain the critical cells and the pairs471

contain the non-critical cells of f . Following the convention in smooth Morse theory [15],472

where the index of a critical point is indicative of the effect of advancing the sublevel set473

beyond its value, we call the dimension of a critical cell its index. Indeed, adding a critical474

p-cell gives either birth to a p-cycle or death to a (p− 1)-cycle, which affects the homology475

of the complex accordingly. In contrast, removing the two cells of a pair {ν, µ} — which is476

allowed only if the result is still closed — has no effect on the homotopy type and therefore477

on the homology of the complex [9].478

To generalize the concept, we call a subset J ⊆ K an interval if there are cells α, ω ∈ K479

such that J = {ν ∈ K | α ⊆ ν ⊆ ω}. In words, the interval has a unique lower bound, α, and480

a unique upper bound, ω, and consists of all faces of ω that have α as a face. A monotonic481

f : K → R is a generalized discrete Morse function if every step is an interval; see [10]. The482

intervals of size one contain the critical cells and all other intervals contain the non-critical483

cells of f . Removing the cells of an interval of size larger than one from K is referred to as a484

collapse, which is allowed only if the result is still closed.485

In the simplicial case, the Hasse diagram restricted to an interval is isomorphic to the486

1-skeleton of a cube of the appropriate dimension. Choosing a direction, we get a collection487

of parallel edges of the cube, which corresponds to a partition of the interval into pairs. In488

the polyhedral case, such a partition is not quite as obvious but it exists. In other words,489

every collapse can be decomposed into a sequence of elementary collapses. The proof of this490

claim reduces to the fact that every convex polytope allows for a discrete Morse function491

with a single critical cell, which is a vertex [2]. This implies that if L can be obtained from K492

by a sequence of possibly non-elementary collapses, K and L have the same homotopy type.493

4.2 Min and Max Functions494

Taking the minimum or maximum over all points of a cell, we turn the continuous func-495

tions of Section 3 into discrete functions. In particular, we introduce vor : Vor(B) → R,496

del : Del(B)→ R, and sdn, sdx : Sd(B)→ R defined by497

vor(τ) = max
x∈τ∗

del(x), (21)498

del(σ∗) = min
x∈σ

vor(x), (22)499

sdn(γ) = min
x∈γ

sd(x), (23)500

sdx(γ) = max
x∈γ

sd(x). (24)501

We note that vor is defined in terms of del and del in terms of vor . This is not a502

mistake but motivated by our desire to remain consistent with the standard literature on503

alpha shapes, where del is the (squared) radius function; see [6, 8]. It is also possible to504

define vor in terms of vor and del in terms of del, which gives slightly different discrete505

functions with essentially the same properties. It will often be convenient to apply the506

discrete Voronoi and Delaunay functions to the common subdivision. Technically, these are507

different functions, sdv, sdd : Sd(B)→ R, defined by sdv(γ) = vor(τ) and sdd(γ) = del(σ∗),508

whenever γ = τ ∩ σ∗.509

4.3 Classification with Homology510

As introduced in Section 4.1, the step graph of a monotonic function defines a partial order511

on the steps. We can construct the complex by adding the steps one at a time according512
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to a linear extension of this partial order. To determine the effect of adding a step to a513

subcomplex, we compute its relative homology, as we now explain.514

Let J0, J1, . . . , Jm be a linear extension of the partial order defined by the step graph of515

f : K → R. This order may or may not be consistent with the sublevel sets of f , in the sense516

that the corresponding values listed in the same order may or may not be sorted. Write517

Kj =
⋃

0≤i≤j Ji, note that Kj is closed, and get Kj+1 = Kj t Jj+1 by adding the next518

step. To describe how the addition of J = Jj+1 affects the homology of the complex, we519

consider the pair (J̄ , J̇), in which J̄ = cl J is the closure and J̇ = J̄ \ J . Since Kj t J is a520

complex, we have J̇ = Kj ∩ J̄ , which is the intersection of two complexes and therefore a521

complex itself. We are interested in the relative homology of (J̄ , J̇), since it will allow us522

to deduce the homology of Kj+1 from that of Kj . Fixing a field to compute homology, we523

classify the steps according to the ranks of the relative homology groups, which we denote as524

βp = rank Hp(J̄ , J̇) for all dimensions p.525

I Definition 4.1 (Critical Step). We call J a non-critical step of f if βp = 0 for all p ≥ 0.526

Otherwise, J is a critical step. It is a simple critical step of index p if all ranks vanish527

except in a single dimension, p, in which βp = 1.528

We now explain how to deduce the homology of a complex from the homology of its predecessor529

and the relative homology of the step. We get the homology of Kj+1 = Kj t J using the530

long exact sequence of a pair:531

· · · → Hp(Kj)→ Hp(Kj+1)→ Hp(Kj+1,Kj)→ Hp−1(Kj)→ . . . . (25)532

Note that Hp(Kj+1,Kj) is isomorphic to Hp(J̄ , J̇) for every dimension p by excision. Assuming533

the ranks of the homology groups of Kj and of (J̄ , J̇) are given, there are very few options534

for the ranks of Kj+1 that make the sequence exact. For example, if J is a non-critical535

step, then rank Hp(Kj+1) = rank Hp(Kj) for every p. If J is a simple critical step with index536

p, then either rank Hp(Kj+1) = rank Hp(Kj) + 1 or rank Hp−1(Kj+1) = rank Hp−1(Kj)− 1,537

with equal ranks in all other dimensions.538

4.4 Critical and Non-critical Steps539

Note that for a discrete or generalized discrete Morse function, every critical step is simple540

and indeed consists of only a single cell. In contrast, the discrete version of a generic piecewise541

linear map can have non-simple critical steps, such as monkey saddles, etc. However, these542

steps are still special since each has a unique lower bound, which is a vertex.543

Similarly, the discrete functions in this paper are special cases within the general framework544

introduced in the previous subsection. In particular, each step of the Delaunay function,545

del : Del(B)→ R, has a unique upper bound, as we will prove shortly. To include the discrete546

Voronoi function in this discussion, we note that vor : Vor(B) → R is anti-monotonic, so547

−vor is monotonic, the above discussion applies, and every step of vor has a unique upper548

bound as well. Furthermore, the critical steps of del and vor contain a single cell each and549

are therefore simple, as we now prove.550

I Theorem 4.2 (Step Shape). Every step of vor and of del has a unique upper bound, and551

if it is critical, then it consists of a single cell whose dimension is equal to the index of the552

step.553
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Proof. We first prove that every step of del has a unique upper bound, and we omit the554

proof for vor, which is symmetric. By definition,555

del(σ∗) = min
x∈σ

[$(x)− env(x)], (26)556

in which env = $ − vor is piecewise linear and convex. Because $ is strictly convex, the557

minimum on the right-hand side of (26) is attained at a unique point, which we denote558

y = y(σ). The step J of del that contains σ∗ also contains every τ∗ ∈ Del(B) with y(τ) = y.559

It contains no other cell, else there would be a cell with two points minimizing a strictly560

convex function. Without loss of generality, assume that σ∗ is the unique cell in J such561

that σ contains y in its interior. It follows that σ ⊆ τ for all τ∗ ∈ J , which is equivalent to562

τ∗ ⊆ σ∗ for all τ∗ ∈ J . Hence, σ∗ is the unique upper bound of J .563

We second prove that every step that contains two or more cells is non-critical. Such564

a step, J , has a unique upper bound, σ∗. Write q = dim σ∗, and let A ⊆ B contain the565

weighted points such that σ∗ is the convex hull of their locations. Let Sr(x) be the smallest566

sphere such that πa(x) = r2 for every a ∈ A, and recall that this sphere is unique. Because567

σ∗ is an upper bound, we have πb(x) > r2 for all b ∈ B \ A. All cells τ∗ ∈ J \ {σ∗} are568

faces of σ∗ that are visible from x. By this we mean that the line segment connecting x and569

a point z ∈ int τ∗ is disjoint from intσ∗, while the line that passes through x and z has a570

non-empty intersection with intσ∗. This implies that the union of interiors of the cells in571

J \ {σ∗} is an open (q − 1)-ball. As before, we define J̄ = cl J and J̇ = J̄ \ J . Since J̄ is572

a closed q-ball and J̇ is a closed (q − 1)-ball in its boundary, the rank of Hp(J̄ , J̇) = 0 for573

every dimension p. Hence, J is non-critical, which implies that every critical step consists of574

a single cell, as claimed. Adding a cell of dimension q to the appropriate sublevel set affects575

either the q-th or the (q − 1)-st homology group, which implies that the index of a critical576

step is the dimension of its cell, again as claimed.577

We observe that our definition of a critical step is consistent with that of a critical point.578

An interesting detail are the borderline non-critical points, which we recall have a contractible579

down-link and a non-contractible up-link, or the other way round. Correspondingly in580

the discrete setting, we call τ ∈ Vor(B) a borderline non-critical cell if τ ∩ τ∗ 6= ∅ but581

int τ ∩ int τ∗ = ∅. A borderline critical cell is not critical, but there are arbitrarily small582

perturbations of the weighted points in B that render such a cell critical. Note that τ is a583

borderline non-critical cell of vor iff τ∗ is a borderline non-critical cell of del. To bring such584

cases in focus, we introduce a condition that avoids them.585

I Definition 4.3 (General Position). A set B ⊆ Rd × R with injective and locally finite586

projection to Rd is in general position if vor has no borderline non-critical cell or, equivalently,587

if del has no borderline non-critical cell.588

Note that this notion of general position is independent of the condition that guarantees589

simple Voronoi tessellations and simplicial Delaunay mosaics.590

5 Complementing Subcomplexes591

The main new concept in this section, is the channel between complementing subcomplexes592

of the tessellation and the mosaic. This channel acts like a buffer between the complexes,593

not unlike the buffer created from the second barycentric subdivision in the standard proof594

of Alexander duality [16].595
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5.1 Sub- and Superlevel Sets596

Observe that for del and sdx, the value of a cell is larger than or equal to the values of its597

faces, and for vor and sdn, it is less than or equal to the values of its faces. It follows that598

the following sub- and superlevel sets are complexes:599

Vort(B) = vor−1[t,∞), (27)600

Delt(B) = del−1(−∞, t], (28)601

Sdt(B) = sdn−1[t,∞), (29)602

Sdt(B) = sdx−1(−∞, t]. (30)603

We extend (10) and (11) from the continuous to the discrete setting.604

I Lemma 5.1 (Nested Spaces). Let B ⊆ Rd×R have an injective and locally finite projection605

to Rd. Then |Delt(B)| ⊆ |Sdt(B)| and |Vort(B)| ⊆ |Sdt(B)|.606

Proof. Recall the functions sdv, sdd : Sd(B)→ R introduced at the end of Section 4.2. By607

construction, the underlying spaces of their sub- and superlevel sets agree with those of608

vor and del. In particular, |sdd−1(−∞, t]| = |Delt(B)| and |sdv−1[t,∞)| = |Vort(B)|. By609

Lemma 3.1, we have610

sdd(γ) ≥ sdx(γ) ≥ sdn(γ) ≥ sdv(γ), (31)611

for every γ ∈ Sd(B). As illustrated in Figure 6, this implies sdd−1(−∞, t] ⊆ sdx−1(−∞, t]612

and sdv−1[t,∞) ⊆ sdn−1[t,∞). The sequence of inequalities in (31) thus imply the two613

claimed containment relations.

≥

≥

≥

sdd : Sd(B)→ R

sdx : Sd(B)→ R

sdn : Sd(B)→ R

sdv : Sd(B)→ R

Figure 6: The four discrete functions on the common subdivision, which dominate each other
from top to bottom. All indicated sub- and superlevel sets are for the same value, t.

614

Let t ∈ R be a value different from sd(x) for all vertices x of Sd(B). Then Sdt(B) ∩615

Sdt(B) = ∅, and similarly their underlying spaces are disjoint. Combining the two relations616

in Lemma 5.1, we therefore have |Delt(B)| ∩ |Vort(B)| = ∅, which we illustrated in Figure 7.617

On the other hand, if t is the value of a vertex, x, then x belongs to Sdt(B) as well as to618

Sdt(B). If x is furthermore a critical point of sd, then x belongs also to |Delt(B)| and to619

|Vort(B)|.620

5.2 Channel621

Since the sub- and superlevel sets of del and vor considered in Lemma 5.1 have disjoint622

underlying spaces, it makes sense to study the space in between. For each value t ∈ R,623
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Figure 7: Complementing subcomplexes of the Voronoi tessellation, in orange, and the Delaunay
mosaic, in blue. The complexes are constructed for a non-critical value of t, for which their underlying
spaces are disjoint.

this is the underlying space of an open collection of cells in the common subdivision of the624

tessellation and the mosaic. For each cell γ = τ ∩ σ∗ in Sd(B), the relevant values are625

t0(γ) = sdv(γ) = vor(τ), (32)626

t1(γ) = sdd(γ) = del(σ∗). (33)627

Moving from −∞ to ∞ along the real numbers, τ is dropped from Vort(B) at t = t0(γ)628

and σ∗ is added to Delt(B) at t = t1(γ). If τ is a critical cell of vor and σ∗ = τ∗ is the629

corresponding critical cell of del, then γ is a point that belongs to both underlying spaces at630

t = t0(γ) = t1(γ), and to exactly one of these underlying spaces for all other values of t. For631

all other cells γ = τ ∩ σ∗, Lemma 5.1 implies t0(γ) < t1(γ). In all cases, γ belongs to the632

space in between Delt(B) and Vort(B) for all t0(γ) < t < t1(γ). More formally, we define633

the channel of B at t:634

Cht(B) = {γ = τ ∩ σ∗ | τ 6∈ Vort(B), σ∗ 6∈ Delt(B)}; (34)635

see Figure 8. This is the complement of the union of two subcomplexes of Sd(B) or,636

equivalently, the intersection of two open sets:637

Cht(B) = Sd(B)\
[
sdd−1(−∞, t]∪sdv−1[t,∞)

]
(35)638

= sdd−1(t,∞) ∩ sdv−1(−∞, t). (36)639

Recall that sdd(γ) is at least the maximum and sdv(γ) is at most the minimum sd(x) over640

all points x ∈ γ. It follows that sd−1(t) is disjoint of the underlying spaces of sdd−1(−∞, t]641

and sdv−1[t,∞), unless t is a critical value of sd, in which case the corresponding critical642

points belong to all three. Hence, sd−1(t) is contained in the underlying space of the channel,643

unless t is a critical value, in which case the level set passes through the corresponding critical644

points. We state this insight together with a straightforward related property more formally.645

I Theorem 5.2 (Split Channel). Let B ⊆ Rd×R have an injective and locally finite projection646

to Rd, and let t ∈ R be different from all critical values of sd. Then647

sd−1(t) ⊆ |Cht(B)|,648

sd−1(t) is an orientable (d− 1)-manifold.649
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Figure 8: The channel decomposed into cells of the common subdivision of the Voronoi tessellation
and the Delaunay mosaic, with the two complementing subcomplexes forming the white background.
In black, we superimpose the level set of sd for the value of t that splits the channel into two.

On the other hand, if t is a critical value of sd, then both of these properties are violated,650

but only at the corresponding critical points, and at these points both, level set and channel,651

go through topological reorganization.652

5.3 Evolution of Channel653

For every non-critical value t ∈ R, we have a partition of Rd into the underlying space of654

the superlevel set of vor, of the sublevel set of del, and of the channel in between. We are655

interested in the evolution of this partition as t goes from −∞ to ∞. It is convenient to656

study the corresponding partition of the common subdivision,657

Sd(B) = sdd−1(−∞, t] t Cht(B) t sdv−1[t,∞), (37)658

as t goes from −∞ to ∞. At the beginning, the only non-empty set in the partition is the659

superlevel set of sdv, and step by step the cells migrate first to the channel and second to the660

sublevel set of sdd, until, at the end, the latter is the only non-empty subset in the partition.661

Indeed, every change in this process is the migration of a step of sdv to the channel or the662

migration of a step of sdd from the channel. We distinguish between non-critical steps and663

critical steps of index q, with 0 ≤ q ≤ d. By Theorem 4.2, the cells of an index q critical step664

subdivide an open q-cell in Del(B) or in Vor(B).665

Write Ji and ti for the steps of sdv and sdd and their values, for 0 ≤ i ≤ m. We assume
the indexing satisfies ti ≤ ti+1 for 0 ≤ i < m, and in case of a tie, the steps of sdv precede
those of sdd. Write Vi and Di for the two complexes after processing steps J0 through Ji,
and let Ci = Sd(B) \ [Vi tDi] be the third set in the partition. We get the next partition as

Vi+1 = Vi \ Ji+1, Ci+1 = Ci t Ji+1, Di+1 = Di,

Vi+1 = Vi, Ci+1 = Ci \ Ji+1, Di+1 = Di t Ji+1,

in which the first row describes the change if the step belongs to sdv and the second row if666

the step belongs to sdd. To avoid discussing the homology of unbounded spaces, we add a667

point at infinity to compactify Rd to Sd.668

Case Ji+1 is non-critical. Then the p-th homology groups of Vi and Vi+1 are isomorphic,669

and so are the p-th homology groups of Di and Di+1, for every p.670
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Case Ji+1 is an index q critical step of sdv. Then either βq(Vi+1) = βq(Vi) − 1 or671

βq−1(Vi+1) = βq−1(Vi) + 1, with equality for the ranks in all other dimensions.672

Case Ji+1 is an index q critical step of sdd. Then either βq(Di+1) = βq(Di) + 1 or673

βq−1(Di+1) = βq−1(Di)− 1, with equality for the ranks in all other dimensions.674

Recall that the critical steps come in pairs of complementary indices p+ q = d. Assuming675

Ji+1, Ji+2 is such a pair of critical steps, one of sdv and the other of sdd, we get either676

βp(Vi+2) = βp(Vi)− 1 or βp−1(Vi+2) = βp−1(Vi) + 1 for the ranks on one side of the channel,677

and either βq(Di+2) = βq(Di) + 1 or βq−1(Di+2) = βq−1(Di)− 1 for the ranks on the other678

side of the channel. This is consistent with Alexander duality but fails to imply it as we did679

not yet pair up the events on the two sides.680

5.4 Crushing the Channel681

This subsection addresses the missing step in the proof of Alexander duality for Vi and682

Di. To this end, we show that the channel that separates the two complexes can be683

deformation retracted. Let t ∈ R such that Di = Delt(B) and Vi = Vort(B), and recall that684

|Di| ⊆ vor−1(−∞, t] and |Vi| ⊆ del−1[t,∞). Since the situation is symmetric, it suffices to685

talk about Di. By definition, a boundary cell of Di is contained in ∂|Di|, and by construction,686

σ∗ ∈ Di is a boundary cell iff the intersection of the corresponding spheres has a non-empty687

contribution to the boundary of vor−1(−∞, t]. Letting p be the dimension of the dual cell,688

σ ∈ Vor(B), and pa be one of the vertices of σ∗, this contribution is Aσ = σ∩Sr(pa), in which689

the squared radius of the sphere is r2 = wa + t. Hence, Aσ is a subset of a (p− 1)-sphere,690

which may or may not be connected. An important part of the construction is the join of σ∗691

and Aσ, which is the union of line segments connecting the two sets:692

σ∗ ∗Aσ = {(1− λ)y + λz | y ∈ σ∗, z ∈ Aσ, 0 ≤ λ ≤ 1}. (38)693

Writing Ut = vor−1(−∞, t] and following [4], we decompose Ut \ |Di| into such joins. The694

deformation retraction will happen along the fibers of this decomposition, which are the line695

segments in the joins. We therefore need that the fibers cover Ut \ |Di| and that they do696

not intersect except at shared endpoints. But this is clear because the entire decomposition697

can be obtained by projecting pieces of a convex surface in Rd+1 to Rd. This surface is the698

boundary of the convex hull of the graphs of end and $ + t. The pieces that belong to the699

graph of end project to cells in Di, the pieces that bridge the gap between the two graphs700

project to the joins, and the rest belongs to the graph of $, which we do not project.701

We now return to splitting the channel along the middle, by which we mean that we split702

it along sd−1(t). It is important that each fiber intersect this level set in exactly one point.703

I Lemma 5.3 (Fiber Crossing). Let B ⊆ Rd×R have an injective and locally finite projection704

to Rd, let t ∈ R be a non-critical value, and let y, z be endpoints of a fiber in the decomposition705

of Ut \ |Delt(B)|. Then there is a unique 0 ≤ λ ≤ 1 such that sd((1− λ)y + λz) = t.706

Proof. We have sd(y) < t < sd(z) for the fiber with endpoints y ∈ σ∗ and z ∈ Aσ. It follows707

that the fiber intersects sd−1(t) an odd number of times. To show that this number is 1, we708

recall that the sublevel set of vor and the superlevel set of del are both unions of balls:709

vor−1(−∞, t] =
⋃
a∈B

at and del−1[t,∞) =
⋃
c∈C

ct, (39)710

in which at is the ball with center pa and squared radius wa + t, for a ∈ B, and ct is711

the ball with center pc and squared radius wc − t, for c ∈ C. By construction, we have712
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‖pa − pc‖2 ≥ wa + t+ wc − t; that is: at and ct are orthogonal or further than orthogonal713

from each other. Recall that del(x) ≥ sd(x) ≥ vor(x) for every x ∈ Rd, by Lemma 3.1.714

This implies that the two unions of balls cover the entire Rd, and that the level set of sd715

at t is contained in their intersection; see Figure 3 and equations (10) and (11). We first716

consider the special case in which y is a vertex of Delt(B) and z is a point of the sphere717

bounding the corresponding ball: assuming wa + t > 0, we set y = pa and let z be a point718

on the boundary of at. Of course y and z belong to the boundary of their respective sets.719

Assuming ct contains z, there is a unique 0 < λc ≤ 1 such that x = (1− λ)y + λz belongs to720

ct iff λc ≤ λ. Setting λc = ∞ if ct does not contain z, we let λmin = minc∈C λc. Hence, x721

belongs to del−1[t,∞) iff λmin ≤ λ. We prove the claim by first extending this construction722

to general fibers and second arguing about the overlap of the two unions of balls.723

Let y ∈ σ∗ and z ∈ Aσ be the endpoints of a fiber, and consider the ball with center y724

and squared radius ‖z − y‖2. It is not necessarily a ball at with a ∈ B, but it is contained in725

the union of balls at, with pa a vertex of σ∗, and its boundary contains the intersection of the726

boundaries of these balls. It follows that it is orthogonal or further than orthogonal from all727

balls ct, with c ∈ C. By construction, z ∈ del−1[t,∞), so there is a unique 0 < λmin ≤ 1 such728

that a point x = (1− λ)y + λz of the fiber belongs to del−1[t,∞) iff λmin ≤ λ. In summary,729

the points at which the fiber intersects the level set all lie between y′ = (1− λmin)y + λminz730

and z. Write [y′, z] for this portion of the fiber, which we orient from y′ to z. It is not731

difficult to see that the restriction of vor to [y′, z] is a strictly increasing piecewise quadratic732

function. Indeed, if there is a vertex pa of σ∗ such that the Voronoi cell of a contains the733

entire segment from y′ to z, then vor restricted to [y′, z] is quadratic and its extension along734

the line attains its minimum outside [y′, z], namely at pa, which lies before y′. If there is no735

such vertex pa, then we trace the segment from z back to y′, passing through a sequence of736

Voronoi cells. Each time we pass from one cell to another, the slope of the restriction of vor737

increases. It follows that also in this case, we reach y′ before we reach a minimum. Similarly,738

the restriction of del to [y′, z] is a strictly increasing piecewise quadratic function. It follows739

that sd restricted to [y′, z] is a strictly increasing piecewise linear function, which implies740

that it crosses t exactly once. Hence, the fiber intersects sd−1(t) in exactly one point, as741

claimed.742

To construct the deformation retraction, we clip every fiber where it intersects sd−1(t)743

and retract the remaining piece to its endpoint in |Di|. To describe this formally, we write744

z′ = (1 − λ′)y + λ′z, with λ′ the unique solution to sd((1 − λ)y + λz) = t, and we write745

Mt = sd−1(−∞, t] and M t = sd−1[t,∞). To deformation retract Mt to |Di| = |Delt(B)|746

we use D : Mt × [0, 1] → Mt, which is the identity on |Di| and otherwise maps a point747

x = (1 − λ)y + λz′ to D(x, s) = (1 − s)x + sy, for every s ∈ [0, 1]. Symmetrically, we748

deformation retract M t to |Vi| = |Vort(B)|. We formally state the implications.749

I Theorem 5.4 (Crushing). Let B ⊆ Rd × R have an injective and locally finite projection750

to Rd and t ∈ R be non-critical. Then |Delt(B)| 'Mt and |Vort(B)| 'M t.751

In words, the channel can be split into halves, each half can be decomposed into line segments752

called fibers, and by retracting the fibers, we glue the boundaries of |Delt(B)| and |Vort(B)|753

without altering the homotopy type, which is that of Rd or, after compactification, that of Sd.754

Hence, Alexander duality applies, so we get βq−1(Vort(B)) = βp(Delt(B)) for all dimensions755

p+ q = d, except when p = 0 or q = 0 in which case the two ranks differ by 1. Recalling the756

parallel change of the two complexes discussed above, we now conclude that we see the birth757

of a p-dimensional homology class in Vort(B) iff we see the birth of a (q − 1)-dimensional758

homology class in Delt(B) at the same threshold, and similarly for the death of such classes.759
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6 Discussion760

Motivated by challenges caused by data in non-general position, this paper explores the761

continuous and discrete functions that define Voronoi tessellations and Delaunay mosaics.762

Beyond the concrete results formulated as lemmas and theorems, we mention the generaliza-763

tion of key concepts in discrete Morse theory as one of the main contributions of this paper.764

In the process of gaining new insights into an old subject, we encountered questions we have765

not been able to answer:766

The piecewise linear sd : Rd → R can be defined for sets B,C ⊆ Rd × R that do not767

satisfy the polar relationship assumed in this paper. What are its properties, and what768

additional features does it enjoy when B and C are polar, as assumed in this paper?769

In R3, the union of balls is a popular model of a molecule [13], albeit in practice easier to770

compute and easier to display PL surfaces are preferred. These do generally not have the771

homotopy type of the boundary of the union of balls. The level set of sd : R3 → R suggests772

itself as an easy to use yet topologically correct alternative. What are its combinatorial773

and geometric properties, and how fast can they be computed?774

We prove in this paper that the channel deformation retracts to the Voronoi complex775

as well as the complementing Delaunay complex. Can the same result be obtained with776

discrete methods, for example by collapsing the steps of the discrete versions of sd?777

The discrete functions defined in this paper gives rise to a one-parameter family of comple-778

menting complexes. It would be interesting to connect these families to applications, such as779

the study of Raleigh–Bénard convection with its family of bi-partitions of space [12].780
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819

820 (a) Preimages of continuous functions. (b) Preimages of discrete functions.

821

822 (c) Channel split by level set. (d) Levels of piecewise linear function.

Figure 9: Pictures of the same decomposition of the plane into “land” and “water”. All geometric
structures are for the same value of t: (a) sub-, super-, and level sets of three continuous functions;
(b) sub- and superlevel sets of the discrete functions on the Voronoi tessellation and the Delaunay
mosaic; (c) channel divided by level set of piecewise linear function; (d) level sets of piecewise linear
functions, with square boxes marking the neighborhoods of a non-critical point, a minimum, a saddle,
and a maximum.
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