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Abstract
We characterize critical points of 1-dimensional maps paired in persistent homology
geometrically and this way get elementary proofs of theorems about the symmetry
of persistence diagrams and the variation of such maps. In particular, we identify
branching points and endpoints of networks as the sole source of asymmetry and
relate the cycle basis in persistent homology with a version of the stable marriage
problem. Our analysis provides the foundations of fast algorithms for maintaining a
collection of sorted lists together with its persistence diagram.

Keywords Geometric networks · 1-Dimensional maps · Extended persistent
homology · Variation · Stable marriage
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1 Introduction

We consider 1-dimensional real-valuedmaps, bywhichwemean continuous functions
on compact 1-dimensional spaces, such as the the unit circle, the unit interval, andmore
general geometric networks. Such maps are ubiquitous and arise in developmental
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biology [e.g. rythmic gene expression (Dequeant et al. 2008)], physiology [e.g. heart-
rate (Graff et al. 2021)], and numerous other fields.

Maps on compact 1-dimensional spaces allow for local conditions that characterize
features identified by persistent homology, as we will explain in the technical sections
of this paper. Indeed, the main contribution of this paper is a local characterization of
the pairing of critical points in persistent homology. Let f : G → R be a generic map
on a compact geometric network, by which we mean that G is a bounded geometric
realization of a graph, and f is continuous with isolated critical points and distinct
critical values. We refer to the critical points as homological minima and homological
maxima, which may beminima or maxima in the interior of intervals, or endpoints and
branching points of the network. The local characterization of persistent homology
is formulated in terms of windows, each the product of a connected subset of G and
the range of f restricted to this subset. Such a product is defined by a pair of critical
points, a, b, and provided it satisfies the conditions detailed in Definitions 3.1, 4.1,
4.3, and 5.3, we refer to it as a window denoted W (a, b). We distinguish between
windows with simple wave (see Fig. 2), with short wave (Fig. 3), with branching wave
(Fig. 4), and windows of component and of cycle (Fig. 5). To state the main theorem,
we recall that the extended persistence diagram of f , denoted Dgm( f ), consists of
three subdiagrams, denoted Ord( f ), Rel( f ), and Ess( f ); see Cohen-Steiner et al.
(2009) for details. Whenever necessary, we restrict the diagrams to a given dimension,
which we list as a subscript.

Main Theorem Let f : G → R be a generic map on a compact geometric network, let
a be a homological minimum, with f (a) = A, and let b be a homological maximum,
with f (b) = B. Then

(i) (A, B) ∈ Ord0( f ) iff W (a, b) is a window with wave of f ,
(ii) (B, A) ∈ Rel1( f ) iff W (b, a) is a window with wave of − f ,
(iii) (A, B) ∈ Ess0( f ) iff W (a, b) is a window of component of f ,
(iv) (B, A) ∈ Ess1( f ) iff W (a, b) is a window of cycle of f .

Compact geometric networks contain the unit circle as a special case. A direct impli-
cation of the Main Theorem is that the extended persistent diagram of a function
defined on the unit circle is symmetric. This is not the case for more general geomet-
ric networks. Indeed, we will see that endpoints and branching points complicate the
structure of the windows with wave, causing the persistent pairs of f to be different
from the ones of − f .

Another implication of the Main Theorem is a relation between the variation and
the total persistence. The variation of a real-valued map quantifies the total amount
of local change in the map. According to the Koksma–Hlawka inequality, the error of
a numerical integration is bounded from above by the variation of the map times the
discrepancy of the points at which the map is evaluated (Hlawka 1961; Koksma 1942).
For a 1-dimensional, compact, and piecewise differentiable map, the variation is the
integral of the absolute derivative. It is also the total persistence of the map, as we will
prove in this paper. The variation is thus a numerical summary of the more detailed
information expressed in the persistence diagram. Not unlike the Fourier transform,
this diagram decomposes the variation into different scales.
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Main Corollary For a generic map, f : G → R, on a compact geometric network, the
variation equals the total persistence: Var( f ) = ‖Dgm( f )‖1.
This relation has been known in the special case of a map on the unit circle; see
e.g. Dequeant et al. (2008). Beyond this case, the relation is new. The main techni-
cal insights needed to prove these results are nesting properties of the windows that
characterize persistence pairs. Indeed, the projections of any two windows onto the
geometric network are either nested or disjoint and thus form the basis of a topology
of the network.

Outline. Sect. 2 introduces basic terminology and properties of maps, homology, and
persistent homology. Section3 studies maps on the unit circle. Section4 considers
maps on the unit interval and on geometric trees. Section5 extends the results to maps
on geometric networks. Section6 concludes the paper.

2 Background

This paper deals exclusively with continuous real-valued maps on 1-dimensional
compact spaces. We therefore need only a few mathematical prerequisites and we
recommend (Edelsbrunner and Harer 2010) for a more comprehensive introduction
to persistent homology. Throughout this section, we first introduce the relevant termi-
nology for the circle case and then mention how it extends to compact 1-dimensional
spaces.

2.1 Maps and spaces

Let f : S1 → R be a continuous map on the unit circle; see Fig. 1. We call f generic
if there is no non-empty open interval along which f is constant, so all critical points
are isolated, and the values of these critical points are distinct. A minimum of such a
map is a point a ∈ S

1 for which there exists a neighborhood, N (a) ⊆ S
1, such that

f (a) < f (x) for all x ∈ N (a). Symmetrically, amaximum is a point a ∈ S
1 such that

f (a) > f (x) for all x ∈ N (a). The minima and maxima alternate in a trip around the
circle, which implies that there are equally many of them. There is exactly one global
minimum, a0, and one global maximum, b0, which satisfy f (a0) ≤ f (x) ≤ f (b0) for
all x ∈ S

1. We note that the stability of the persistence diagram (Cohen-Steiner et al.
2007) makes the assumption of distinct critical values unnecessary, but we include it
in the definition of genericity to simplify arguments at many places.

By a geometric network we mean the realization of an abstract graph in some
Euclidean space: each vertex is mapped to a point, and each edge to a curve connecting
the images of its vertices. We are not concerned with the details of the embedding,
except that different vertices map to different points, and curves do not intersect except
possibly at shared endpoints. For convenience, we restrict ourselves to finite graphs in
which every vertex has degree 1 or 3. The constraint on the vertex degrees is not really
a limitation since we can replace a degree-k vertex by a tree with k − 2 vertices, all of
degree 3, and if the edges in the tree approach zero length, we can recover the original
topology in the limit. Similar substitutions can be used to model multi-edges and
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Fig. 1 Left: the graph of a generic function on the circle with the global maximum at 0 = 2π . The six
minima alternate with the six maxima. Right: the persistence diagram of the map. The two points that
correspond to the global min-max pair are marked by crosses, while all other points are marked by small
circles

cycles. If a geometric network is connected and without cycle, we call it a geometric
tree.

Besidesminima andmaxima, geometric networks contain two other types of critical
points that play a central role in our analysis: the endpoints (degree-1 vertices) and
branching points (degree-3 vertices). An endpoint has ↘-type or ↗-type if its value
is larger or smaller than the values of the points in a sufficiently small neighborhood,
respectively. Similarly, we allow for two types of degree-3 vertices: y-type (one ↘-
and two ↗-type vertices glued to each other) and λ-type (one ↗- and two ↘-type
vertices glued to each other). We call the function f : G → R generic if all critical
points are isolated and their values are distinct. A critical value of f is the value of a
critical point; all other values are non-critical.

Call f : G → R piecewise differentiable if there is a decomposition of G into a
finite number of curves such that the restriction of f to the interior of each curve is
differentiable. For example, ifG is a straight-line embedding of a finite graph, and f is
the linear extension of its values at the vertices, then f is piecewise linear and therefore
also piecewise differentiable.We define the variation of a piecewise differentialmap as
the integral, over all interior points of the curves in the decomposition, of the absolute
value of the derivative at these points.

2.2 Homology withZ/2Z coefficients

To keep the algebraic discussion of homology as elementary as possible, we use
modulo-2 arithmetic; that is: we construct homology groups with Z/2Z coefficients.
For compact 1-dimensional spaces, such groups are straightforward objects, so we can
side-step the formal introduction of homology. For a more comprehensive treatment,
we recommend standard texts in algebraic topology, for example Hatcher (Hatcher
2002).

Given a map, f : S1 → R, the sublevel set at t ∈ R is ft = f −1(−∞, t], and
the superlevel set is f t = f −1[t,∞). Let A0 and B0 be the values of the global
minimum and the global maximum, respectively. For a non-critical value, t , we have
the following three cases:
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– t < A0: ft = ∅ and f t = S
1;

– A0 < t < B0: ft consists of a positive number of connected components, each
a closed arc with non-empty interior, and f t consists of the same number of
connected components of the same type;

– t > B0: ft = S
1 and f t = ∅.

We use homology to formally distinguish between these cases. In particular, the rank
of H0( ft ) is the number of connected components of the sublevel set, and the rank
of H1( ft ) is the number of cycles. Note that we have no cycle for t < B0 and one
cycle for t > B0. Compare this with the homology of S1 relative to f t , denoted
Hi (S

1, f t ), where we have rank H0(S
1, f t ) = rank H1(tt ) = 0 for t < B0 and

rank H0(S
1, f t ) = rank H1( ft ) = 1 for t > B0. More interesting is the case i = 1,

for which the relative homology group counts the open arcs in S
1\ f t . By Lefschetz

duality, the (absolute) homology groups and the relative homology groups are iso-
morphic: Hi ( ft ) � H1−i (S

1, f t ), for i = 0, 1 and for all non-critical values, t of f .
This is an elementary insight for the circle and is also true for higher-dimensional
manifolds. It does not hold for more general spaces, not even for the unit interval.
On the other hand, both homology and relative homology generalize and can be used
to count connected components and cycles in geometric networks and the sub- and
superlevel sets of maps on them.

2.3 Persistent homology

Persistent homology arises when we keep track of sub- and superlevel sets while t
changes continuously. We again take advantage of the relative simplicity provided by
the restriction to compact 1-dimensional spaces and avoid the introduction of the con-
cept in full generality. For more comprehensive background, we refer to Edelsbrunner
and Harer (2010). Specifically, we use the framework that is referred to as extended
persistent homology, which is constructed in two phases, first growing the sublevel
set until it exhausts the space, and second doing the same with the superlevel set. We
explain this for a generic map on the unit circle.

In Phase One, we increase t from −∞ to ∞ and use H0( ft ) and H1( ft ) to do the
book-keeping. A connected component is bornwhen t passes the value of a minimum,
and the component diesmerging into another, older componentwhen t passes the value
of a maximum. There is one exception: when t passes B0, then no component dies and
instead a cycle is born. We pair up the minimum, a, and the maximum, b, responsible
for the birth and death of a component and represent the two events by the point
( f (a), f (b)) in the plane.

In Phase Two, we decrease t from ∞ to −∞ and use H0(S
1, f t ) and H1(S

1, f t )
to do the book-keeping. We enter Phase Two with a component born at A0 = f (a0)
and a cycle born at B0 = f (b0), both of which did not yet die. The component dies
in relative homology right at the beginning of Phase Two, when t passes B0 (from
the top going down), while the cycle lasts until the end, and dies when t passes A0.
This gives two pairs represented by the points (A0, B0) and (B0, A0). During Phase
Two, a (relative 1-dimensional) cycle is born when t passes the value of a (non-global)
maximum, and this cycle dies when t passes the value of a (non-global) minimum.
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Like in Phase One, we pair up the maximum, b, with the minimum, a, responsible for
the birth and death of the cycle and represent the two events by the point ( f (b), f (a))

in the plane.

2.4 Persistence diagrams

The events during the two phases are recorded in the persistence diagram of f ,
denoted Dgm( f ), which is a multi-set of points, each marking the birth and death
of a component or cycle; see Fig. 1. We distinguish between three disjoint subdia-
grams, Dgm( f ) = Ord( f ) � Rel( f ) � Ess( f ), in which the ordinary subdiagram
records the pairs in Phase One, the relative subdiagram records the pairs in Phase
Two, and the essential subdiagram records the pairs that straddle the two phases.
Whenever convenient, we list the dimension as a subscript, writing Dgmi ( f ) for the
points that represent i-dimensional homology classes, and similarly for the subdia-
grams. For a 1-dimensional map, we haveOrd( f ) = Ord0( f ), Rel( f ) = Rel1( f ), but
Ess( f ) = Ess0( f ) � Ess1( f ). Recall that for a map on the unit circle, Lefschetz dual-
ity implies that the pairs in Phase One are the same as in Phase Two, only reversed.
Similarly, for every pair straddling the two phases, there is also the reversed pair
straddling the two phases. This implies that Dgm( f ) is symmetric across the main
diagonal, with the caveat that a point ( f (a), f (b)) ∈ Dgmi ( f ) maps to the point
( f (b), f (a)) ∈ Dgm1−i ( f ); see Fig. 1 and Cohen-Steiner et al. (2009) for details.
This property no longer holds for maps on non-manifold spaces, such as the unit
interval, geometric trees, and general geometric networks. Nevertheless, the persis-
tence diagram and its subdiagrams are useful book-keeping tools for the homology
of the sub- and superlevel sets of maps on such more general spaces. Specifically, the
ordinary subdiagram records the components of the sublevel set that are born and die
during Phase One. The essential subdiagram records the homology of the geometric
network, since its classes are born but do not die during Phase One. Finally, the relative
subdiagram records the relative cycles in the network modulo the superlevel set.

For a point (A, B) ∈ Dgm( f ), we think of |B− A| as the life-time or persistence of
the corresponding component or cycle. Taking the sum, over all points in the multi-set,
we get what we call the total persistence of f :

‖Dgm( f )‖1 =
∑

(A,B)∈Dgm( f )
|B − A|. (1)

For a map on the unit circle, the global minimum and the global maximum contribute
2|B0 − A0| to this measure. Everything beyond that is due to wrinkles in the map and
may be regarded as a measure of how interesting or noisy the map is.

An important property of persistence diagrams is their stability, which was first
proved in Cohen-Steiner et al. (2007). Assuming f and g are generic maps on the
same compact geometric network, this theorem asserts that the bottleneck distance
between Dgm( f ) and Dgm(g) is bounded from above by ‖ f − g‖∞. It follows that
every continuous map has a generic perturbation whose total persistence is arbitrarily
close to that of the original map. It also implies that the restriction to maps whose
critical points have distinct values is unnecessary while convenient.
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Fig. 2 The triple-panel window with simple wave spanned by a and b. There are two children in the in-
panel, spanned by r , s and u, v, there is one child in mid-panel, spanned by q, p, and there is no child in the
out-panel. The triple-panel windows spanned by r , s and u, v overlap, while the corresponding double-panel
windows are disjoint

3 The circle case

We treat the circle separately and before consideringmore general geometric networks
because it is the only connected 1-manifold among them.

3.1 Maps on the circle

We consider generic maps on the unit circle and introduce the notion of a window to
characterize the critical points paired by persistent homology. After establishing this
connection, we get elementary proofs of fundamental properties of maps on the circle.

Let a be a minimum and b a maximum of a generic map, f : S1 → R, write
A = f (a), B = f (b), and let J = J (a, b) be the connected component of f −1[A, B]
that contains both a and b. It may be a closed interval, the entire circle, or empty if
no such component exists. We call W (a, b) = J × [A, B] the frame with support
J spanned by a and b, and we say W (a, b) covers the points x ∈ J . When J is an
interval, a and b decompose it into three (closed) subintervals, which we read in a
direction so that a precedes b: Jin before a, Jmid between a and b, and Jout after b.
Correspondingly, we call Jin ×[A, B], Jmid ×[A, B], and Jout ×[A, B] the in-, mid-,
and out-panels ofW (a, b). We orient the in- and mid-panels away from the minimum,
while we leave the out-panel without orientation; see Fig. 2.

Definition 3.1 (Windows for Circles) Let a be a (non-global) minimum and b a (non-
global) maximum, and assume that J (a, b) is non-empty. We call W (a, b), a triple-
panel window with simple wave if the values at the endpoints of Jin, Jmid, Jout are
B, A, B, A in this sequence.

We will sometimes consider a double-panel window, which consists of the in-panel
and the mid-panel. It contains the graph of the component in the sublevel set that
grows from the minimum until it merges with another component at the corresponding
maximum.We show that thewindowswithwave characterize the paired critical points,
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while noting that the global min-max pair is special and not subject to the following
claim.

Theorem 3.2 (Characterization forCircles)Let f : S1 → Rbe generic, let a be a (non-
global)minimumwith f (a) = A, and b a (non-global)maximumwith f (b) = B. Then
(A, B) and (B, A) are points in the ordinary and relative subdiagrams of Dgm( f ) iff
the frame spanned by a and b is a triple-panel window with simple wave.

Proof “⇐�”. Let a, b spanW (a, b) = [L, R]×[A, B], and assume that a is to the left
of b, as in Fig. 2. Consider the component of ft that contains a as t increases from−∞
to ∞. This component is born at t = A. Since A ≤ f (x) ≤ B for all L ≤ x ≤ b, the
component grows—occasionally by incorporating other, younger components—but
never dies before t reaches B. At t = B, the component meets another component
at b, and since W (a, b) is a triple-panel window with wave, this other component is
older. It follows that a, b are paired.

“�⇒”. We suppose that a, b are paired. In other words, a component of ft is born
at t = A, and a remains the point with minimum value in this component until t = B,
when the component merges with another, older component. Let [L, b] and [b, X ] be
the components right before merging. The graph of f restricted to [L, b] describes
the history of the component born at t = A, which implies that it is contained in
[L, b] × [A, B]. The other component is born earlier, so [b, X ] contains points that
have the same value as a. Let R be the leftmost such point. By construction, the graph
of f restricted to [L, R] is contained in [L, R] × [A, B], which implies that W (a, b)
is a triple-panel window with simple wave. ��

In addition to the points in the ordinary and relative subdiagrams—which are char-
acterized by Theorem 3.2—Dgm( f ) contains two more points, namely (A0, B0) and
(B0, A0) in the essential subdiagram.With A0 < B0 the values of the global minimum
and the global maximum, the first point represents the component and the second the
cycle of the circle. There is no ambiguity which critical points of f are paired in per-
sistent homology. Theorem 3.2 thus implies that for every minimum there is a unique
maximum such that the corresponding frame is a window.

3.2 Nesting of windows

As illustrated in Fig. 2, two windows can be nested (one is a subset of the other), they
can be disjoint, and they can overlap. We will see that any overlap is limited. We call
W (u, v) a child of W (a, b), and W (a, b) a parent of W (u, v), if W (u, v) is nested
inside one of the panels of W (a, b), and there is no other window nested between the
two.

Lemma 3.3 (Nesting in Circle) Let f : S1 → R be generic, and let W (a, b) be a triple-
panel window with simple wave and supports Jin, Jmid, Jout of its panels. If W (u, v)

is another triple-panel window and u ∈ Jin, Jmid, Jout, then W (u, v) is nested inside
the corresponding panel of W (a, b).

Proof We first consider the mid-panel of W (a, b), which we assume is oriented from
left to right, so a < b. Moving from x = a to x = b, we encounter an alternating
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sequence of minima and maxima, starting with a and ending with b. If a and b are the
only critical points in this sequence, then the statement is vacuously true. Otherwise,
let a < p < b be the minimum with the smallest value, f (p). There is at least one
maximum to its left, and we let a < q < p be the maximum with the largest value,
f (q); see Fig. 2. Drawing a horizontal line from (p, f (p)) to the left, we intersect the
graph of f in (P, f (p)), and drawing a horizontal line from (q, f (q)) to the right,
we intersect the graph in (Q, f (q)). By construction, a < P < q < p < Q < b as
well as f (p) ≤ f (x) ≤ f (q) for all P ≤ x ≤ Q. Hence, W (p, q) is a triple-panel
window with simple wave nested inside the mid-panel of W (a, b).

To continue, we subdivide [a, b] at q and p, and apply the same argument in each
of the three sections to get a pairing of all critical points in the interior of [a, b]. Their
frames are therefore triple-panel windows with simple waves nested inside mid-panel
of W (a, b). Repeating the argument for the in-panel and the out-panel, we obtain the
desired claim.

Recall that a double-panel window is obtained by dropping the out-panel. The
double-panel windows can be nested or disjoint, but in contrast to the triple-panel
windows, they cannot overlap. Indeed by Lemma 3.3, non-nested windows do not
cover each other’s critical points. It follows that the overlap is limited to the in-panel
of one and the out-panel of the other window. Since we drop the out-panel, double-
panel windows cannot overlap.

3.3 Consequences: symmetry and variation

We use the hierarchies of triple- and double-panel windows to prove two folklore
results about real-valued maps on the circle. The first is a statement of symmetry that
follows from Alexander duality. Given a multiset of points in R

2, such as Dgm( f ),
we write Dgm◦( f ) for the central reflection, which negates coordinates. Similarly, we
write DgmR( f ) for the reflection across the major diagonal, which switches coordi-
nates, and Dgmr ( f ) for the reflection across the minor diagonal, which negates and
switches coordinates.

Corollary 3.4 (Strong Symmetry for Circles) Let f : S1 → R be generic. Then
Dgm( f ) = DgmR( f ) and Dgm(− f ) = Dgmr ( f ).

Proof A window with simple wave of f is also such a window of − f . Hence,
(A, B) ∈ Ord( f ) iff (B, A) ∈ Rel( f ). Recall also that Ess( f ) consists of two points,
(A0, B0) and (B0, A0), in which A0 = minx f (x) and B0 = maxx f (x). This implies
Dgm( f ) = DgmR( f ).

To relate f with − f , note that both have the same critical points, except that
minima switch with maxima. Since W (a, b) = J × [A, B] is a triple-panel window
of f iff W (b, a) = J × [−B,−A] is a triple-panel window of − f , this implies
that we get the diagram of − f by negating and switching the coordinates; that is:
Dgm(− f ) = Dgmr ( f ). ��

To state the second result, we recall that the variation of a 1-dimensional function
is the total amount of climbing up and down. We claim that for f : S1 → R, this
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is the total persistence of f , which we recall is the sum of |B − A| over all points
(A, B) ∈ Dgm( f ).

Corollary 3.5 (Variation for Circles) Let f : S1 → R be generic. Then the variation
equals the total persistence of f : Var( f ) = ‖Dgm( f )‖1.
Proof We use induction, considering the double-panel windows defined by min-max
pairs of f in a sequence in which the children precede their parents. Observe that
f restricted to the support of a double-panel window without children consists of
two monotonic pieces. Its contribution to the variation of f is twice the height of the
window, and so is its contribution to the total persistence. Indeed, the min-max pair
corresponds to a point each in the ordinary and the relative subdiagrams, or it corre-
sponds to two points in the essential subdiagram. After recording these contributions,
we locally flatten f to remove the double-panel window and continue the inductive
argument. ��

The relation between the variation and the total persistence of amap onS1 expressed
in Corollary 3.5 was known before. For example, it is used to measure to what extent
a noisy cyclic map is periodic (Dequeant et al. 2008). Its generalization to maps on
geometric networks stated in Corollary 5.6 is however new.

4 The geometric tree case

In this section, we consider networks without cycles, which if connected are trees. We
begin with a single edge and continue with geometric trees whose interior vertices
have degree 3.

4.1 Maps on the interval

The simplest compact 1-dimensional space that is not a 1-manifold is a line segment,
which we refer to as an interval and parametrize from 0 to 1. Recall that a map
f : [0, 1] → R is generic if the minima, maxima, and endpoints are isolated and their
values are distinct. Theorem 3.2 applies in the interior of the interval, but we need new
kinds of windows that cover the endpoints. Let a be a minimum or ↗-type endpoint
and b a maximum or ↘-type endpoint of f , write A = f (a) and B = f (b), and
recall that J = J (a, b) is the component of f −1[A, B] that contains both a and b,
with J = ∅ if no such component exists.

Definition 4.1 (Windows for Intervals) Let a be a (non-global) minimum or ↗-type
endpoint, and b a (non-global) maximum. We call the non-empty frame, W (a, b) =
J × [A, B], a triple-panel window with short wave if its in-, mid-, out-panels are
delimited by 0 ≤ a < b < x < 1 or by 1 ≥ a > b > x > 0 such that f (x) = A.

Observe that Definition 4.1 allows for the cases a = 0 and a = 1. As illustrated
in Fig. 3, a window with short wave covers exactly one endpoint of the interval, and
this endpoint is either a or a maximum. The case in which the window covers both
endpoints is also possible but different and introduced in Definition 5.3. In contrast to
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Fig. 3 Two triple-panel windows with short wave, oriented from left to right on the left and from right to left
on the right. Both cases may degenerate to zero-width in-panels. The black points correspond to endpoints
of the interval. There are different ways how a frame can fail to be a window, one being that f (x) > f (a)

windows with simple wave, windows with short wave do not come in symmetric pairs;
that is: if W (a, b) is a window with short wave of f , then W (b, a) is not a window
with short wave of − f .

Because of the asymmetry of windows with short wave, the extension of The-
orem 3.2 to intervals requires a separate treatment of the ordinary and relative
subdiagrams of Dgm( f ).

Theorem 4.2 (Characterization for Intervals) Let f : [0, 1] → R be generic, let a be
a minimum or ↗-type endpoint, with f (a) = A, and let b be a maximum or ↘-type
endpoint, with f (b) = B. Then

(i) (A, B) ∈ Ord( f ) iff W (a, b) is a triple-panel window with simple or short wave
of f ,

(ii) (B, A) ∈ Rel( f ) iff W (b, a) is a triple-panel window with simple or short wave
of − f .

Proof The pairs in (i) correspond to components of the sublevel set, which are counted
by H0, while the points in (ii) correspond to relative cycles, which are counted by H1.
The proof of (i) is almost verbatim the same as that of Theorem 3.2, and we omit the
details.

Write I = [0, 1] and recall that f t = f −1[t, 1]. To prove (ii), we explain the
details of how H0( f t ) and H1(I, f t ) are related. To this end, we decrease t from ∞
to −∞ and show that the two groups change their ranks in parallel, with only one
exception at t = B0, the value of the global maximum, when H0( f t ) goes from rank
0 to 1 while H1(I, f t ) remains at rank 0. For this purpose, we consider the long exact
sequence of the pair (I, f t ). We recall that exactnessmeans that the image of a map is
the kernel of the next map in order along the sequence; see (Edelsbrunner and Harer
2010, Section IV.4) or (Hatcher 2002, Section 2.1) for details. In the 1-dimensional
case, all homology groups of dimension other than 0 and 1 are trivial, so the long exact
sequence is rather short:

0 → H1( f
t ) → H1(I) → H1(I, f t ) → H0( f

t ) → H0(I) → H0(I, f t ) → 0. (2)

We have rank H0(I) = 1 and rank H1(I) = rank H1( f t ) = 0 for every t . There are
only four possibly non-trivial groups, which we related to each other in a case analysis.
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Fig. 4 A triple-panel window
with branching wave, W (a, b).
There is a branching point in the
in-panel on the left and another
in the out-panel on the right.
Branching points and endpoints
are marked in black. Note that
W (b, a) violates the conditions
in Definition 4.3 for the negated
map

– For t > B0, the only non-trivial groups are H0(I) and H0(I,∅), which both have
rank1. In particular,H1(I, f t ) andH0( f t ) are both trivial and therefore isomorphic.

– For t ≤ B0, H0(I, f t ) is trivial, so by the exactness of (2), rank H1(I, f t ) =
rank H0( f t ) − 1.

To finish the argument, we remove the class born at t = B0 from all groups H0( f t )
to get two isomorphic persistence modules. It follows that the implied pairing of the
critical values is the same, whether we track the components of f t or the relative
cycles of (I, f t ). Claim (ii) thus follows from (i). ��

In addition to the points in the ordinary and relative subdiagrams—which are char-
acterized by Theorem 4.2—Dgm( f ) contains one more point, namely (A0, B0) in the
essential subdiagram. This point will be discussed in Sect. 5.

4.2 Maps on geometric trees

If we glue intervals at their endpoints without forming a cycle in the process, we get
a geometric tree, A = (V , E), with vertices, V , and edges, E . We restrict ourselves
to degree-3 trees, in which each vertex is an endpoint of either one or three edges. We
call f : A → R generic if all critical points are isolated, they have distict values, and
every degree-3 vertex is either a y-type or a λ-type vertex. It is tempting to consider
↗- and y-type vertices as minima and ↘- and λ-type vertices as maxima, but note
that components of sublevel sets are born at ↗-type but not at y-type vertices, and
they die at λ-type but not at ↘-type vertices.

Geometric trees introduce the topological phenomenon of branching, which
requires yet another extension of the notion of windowwith wave. Let a be aminimum
or↗-type vertex, with f (a) = A, and b a maximum or λ-type vertex, with f (b) = B.
Recall that J = J (a, b) is the component of f −1[A, B] that contains both a and b,
which is a geometric tree, and that a, b subdivide J into subtrees Jin, Jmid, Jout.

Definition 4.3 (Windows forGeometric Trees)Wecall a non-empty frame,W (a, b) =
J × [A, B], a triple-panel window with branching wave if f (x) > A for every point
x �= a in Jin ∪ Jmid, and f (y) = A for at least one point y �= b in Jout.

Note that the triple-panel windowswith simple and short wave satisfy the conditions of
Definition 4.3, but there are also others, as illustrated in Fig. 4. We can now generalize
Theorem 4.2 from intervals to geometric trees.
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Theorem 4.4 (Characterization for Geometric Trees) Let f : A → R be a generic
map on a compact geometric degree-3 tree, let a be a minimum, ↗-type, or y-type
vertex, with f (a) = A, and let b be a maximum, λ-type, or ↘-type vertex, with
f (b) = B. Then

(i) (A, B) ∈ Ord( f ) iff W (a, b) is a triple-panel window with branching wave of f ,
(ii) (B, A) ∈ Rel( f ) iff W (b, a) is a triple-panel window with branching wave of− f .

Proof The proof is almost verbatim the same as that of Theorem 4.2. We thus restrict
ourselves to discussingwhat happens at the branchingpoints aswemonitor the sublevel
set of f while t moves from−∞ to∞. A connected component is born at a minimum
or a ↗-type vertex, a, and it dies at a maximum or a λ-type vertex, b. There is neither
a birth nor a death when t passes the value of a ↘-type vertex or a y-type vertex.

Assume b is a λ-type vertex. For A < t < B, we have a ∈ ft and b /∈ ft . At
t = B, the component of the sublevel set that contains a merges with another, older
component and therefore dies. Indeed, this other component approaches b from the
other branch leading up to b, and after t passes B, the component extends along the
branch leaving b upwards. ��

Note that every vertex is paired only once: the ↗-type and λ-type vertices in Phase
One, and the ↘-type and y-type vertices in Phase Two. This is in contrast to the
critical points in the interior of the edges, which are paired twice. Indeed, according
to Definition 4.3,W (a, b) is not a window of f if a is a y-type vertex or b is a ↘-type
vertex. Symmetrically, W (b, a) is not a window of − f if b is a λ-type vertex or a is
a ↗-type vertex. In addition to the points in the ordinary and relative subdiagrams—
which are characterized by Theorem 4.4—Dgm( f ) contains one point representing
the one component, which is the entire geometric tree, in the essential subdiagram.

4.3 Consequences: symmetry and variation

For a map, f , on a geometric tree, the upside-down version of a window of f is not
necessarily a window of − f . The strong symmetry statement in Corollary 3.4 thus
fails to generalize and must be replaced by a weaker statement of symmetry. Recall
that Dgm◦( f ) and Dgmr ( f ) are the reflections of Dgm( f ) through the origin and
across the minor diagonal.

Corollary 4.5 (Weak Symmetry for Geometric Trees) Let f : A → R be a generic
map on a compact geometric tree. Then Dgm(− f ) = Ord◦( f ) � Rel◦( f ) � Essr ( f ).

Proof Recall that Dgm( f ) = Ord( f )� Rel( f ) � Ess( f ). By Theorem 4.4, the triple-
panel windows with branching wave of f characterize Ord( f ), and those of − f
characterize Rel( f ). For − f , we turn all windows upside-down, which switches and
negates coordinates as well as switches the phases in which the windows are con-
structed. Hence, Ord(− f ) = Rel◦( f ) and Rel(− f ) = Ord◦( f ). There is only one
point (A0, B0) ∈ Ess( f ), inwhich A0 and B0 are the values of the globalminimumand
the global maximum of f . Similarly Ess(− f ) consists of a single point, (−B0,−A0),
which completes the proof. ��
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In contrast, Corollary 3.5 does generalize to geometric trees. However, the windows
with non-simple wave complicate the proof of this generalization.

Corollary 4.6 (Variation for Geometric Trees) Let f : A → R be a generic map on a
geometric tree. Then the variation equals the total persistence:Var( f ) = ‖Dgm( f )‖1.
Proof To formulate the proof strategy, we interpret each point (A, B) ∈ Dgm( f )
as the interval with endpoints A and B on the real line. We will show that for each
non-critical value, t ∈ R, the cardinality of f −1(t) is equal to the number of intervals
in Dgm( f ) that contain t . The claimed equation follows.

To begin, we add every minimum and maximum of f as a vertex to A, so that f is
monotonic on every edge of the thus subdivided geometric tree. We have six types of
vertices, two each of degree 1, 2, and 3. We are interested in the change of the sublevel
set and the superlevel set when t passes the value of a vertex:

– ↗-type endpoint: a component of ft is born;
– ↘-type endpoint: a cycle of (A, f t ) is born, unless the endpoint is the global
maximum, in which case a component of ft dies.

– minimum: a component of ft is born and a cycle of (A, f t ) dies;
– maximum: a component of ft dies, and a cycle of (A, f t ) is born, unless the
maximum is the global maximum, in which case another component of ft dies;

– y-type vertex: a cycle of (A, f t ) dies;
– λ-type vertex: a component of ft dies.

We now increase t from −∞ to ∞. The births and deaths of components correspond
to start- and end-points of intervals, while the births and deaths of cycles correspond
to end- and start-points of intervals, respectively. Accordingly, the number of intervals
that contain t increases by 1 when t passes the value of a ↗-type endpoint or a y-
type vertex, it decreases by 1 when t passes a ↘-type endpoint or a λ-type vertex,
it increases by 2 when t passes a minimum, and it decreases by 2 when t passes a
maximum. The induction basis is provided by t smaller than the value of the global
minimum, when there are no intervals that contain t and there are no points in f −1(t).
The induction step is the observation that # f −1(t) changes in the same way as the
number of intervals that contain t , namely # f −1(t) increases by 1 when t passes the
value of a ↗-type endpoint or a y-vertex, etc. ��

5 The general geometric network case

In this section, we take the step from maps on the unit circle and on geometric trees
to maps on more general geometric networks. In contrast to a geometric tree, we do
not assume that a geometric network is connected.

5.1 Stable marriage

We call an element of H1(G) a cycle, which by definition is an even degree and not
necessarily connected subgraph of the network. We relate the global minima and
maxima of the cycles in G to each other using the notion of a stable marriage. Let
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f : G → R be a generic map on a compact geometric network, and write k =
rank H1(G) for the rank of the cycle space. For � ∈ H1(G), we introduce notation for
the global minimum and maximum of f along �:

lo(�) = argminx∈� f (x), (3)

hi(�) = argmaxx∈� f (x), (4)

calling them the low point and the high point of the cycle. If cycles � �= �′ have
the same low point, then genericity implies the existence of a common arc that con-
tains the shared low point in its interior. This arc does not belong to the sum, hence
f (lo(� + �′)) > f (lo(�)) = f (lo(�′)). The symmetric inequality holds for cycles
with shared high point. Write Lo( f ) and Hi( f ) for the collections of low and high
points of all cycles. We begin by proving that both collections have cardinality k.

Lemma 5.1 (Low and High Points) Let f : G → R be a generic map on a compact
geometric network. Then #Lo( f ) = #Hi( f ) = rank H1(G).

Proof It suffices to prove that #Lo( f ) is equal to k = rank H1(G) as the other equality
is symmetric. SinceH1(G) is a vector space, every one of its bases consists of k cycles.
Let �1,�2, . . . , �k be a basis that maximizes

∑k
i=1 f (lo(�i )). We claim that their

lowpoints are distinct. Indeed, if lo(�i ) = lo(� j )with i �= j , then f (lo(�i + � j )) >

f (lo(� j )) and we can substitute �i + � j for � j to get a new basis with larger sum
of values. This contradiction implies lo(�i ) �= lo(� j ) whenever i �= j and therefore
#Lo( f ) ≥ k.

To get #Lo( f ) ≤ k, we observe that the low point of a sum of cycles in the basis
(with distinct low points) is the lowest low point of these cycles and therefore one of
the k low points we already observed exist. Thus, #Lo( f ) = k, as claimed. ��

Since there are equallymany low and high points, we can pair them up. Of particular
interest is the solution to a stable marriage problem (Gale and Shapley 1962). To
formulate it, we call b ∈ Hi( f ) a candidate of a ∈ Lo( f ), and vice versa, if there
exists a cycle, �, with a = lo(�) and b = hi(�). Among its candidates, a low point
prefers high points with small function values, and a high point prefers low points
with large function values. We write hi(a) and lo(b) for the favorites among their
candidates and claim that everybody can be paired with its favorite.

Lemma 5.2 (Stable Marriage) Let Lo( f ) and Hi( f ) be the low and high points of a
generic map on a compact geometric network, f : G → R. Then μ : Lo( f ) → Hi( f )
defined by μ(a) = hi(a) is a bijection, and it satisfies μ−1(b) = lo(b).

Proof We show b = hi(a) iff a = lo(b), for all a ∈ Lo( f ) and b ∈ Hi( f ), which
implies the claim. To reach a contradiction, suppose b = hi(a) but a′ = lo(b) with
a′ �= a. By definition of favorite, there exists a cycle, �, with lo(�) = a and hi(�) =
b. Hence, a is a candidate of b. However, since a′ �= a is the favorite of b, this
implies f (a′) > f (a). Let �′ be the cycle with lo(�′) = a′ and hi(�′) = b. Then
lo(� + �′) = a and f (hi(� + �′)) < f (b), which contradicts that b is the favorite
of a. ��
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Fig. 5 A window of cycle. If the
two arms met at the ends, this
would be a violation of the
conditions in Definition 5.3 (ii)
since cutting at a and b would
not disconnect the strip

5.2 Maps on geometric networks

Thecomponents and cycles ofGgive rise to points in the 0- and1-dimensional essential
subdiagrams ofDgm( f ). They need newkinds ofwindows to be recognized. Themore
interesting case is that of a cycle. Let a ∈ Lo( f ), b ∈ Hi( f ), and recall the definition
of J = J (a, b). If a and b are candidates of each other, then J �= ∅ as it contains
at least the cycles whose low and high points are a and b. Even if a and b are not
candidates of each other, J �= ∅ is possible, but then it does not contain any cycle
through the two points.

Definition 5.3 (Windows for Geometric Networks) Let a ∈ G be a minimum, ↗-
type, or y-type vertex, with f (a) = A, and b ∈ G a maximum, ↘-type, or λ-type
vertex, with f (b) = B. Recall that J = J (a, b) is the component of f −1[A, B] that
contains both a and b, with J = ∅ if no such component exists.

(i) W (a, b) = J × [A, B] is a window of component if J is an entire component of
G.

(ii) W (a, b) is a window of cycle if J contains a cycle that passes through a and b
such that J \ {a, b} is not connected.

The window of cycle is illustrated in Fig. 5: (a, A) and (b, B) lie on the lower and
upper boundaries of the cylindrical strip. If W (a, b) does not satisfy the conditions in
Definition 5.3 (ii), then cutting the strip along vertical lines at a and b does not split it
into two connected pieces. On the other hand, if W (a, b) is a window of cycle, then
the two cuts split the strip into two components. Note that a window with wave can
neither be a window of component nor of cycle. On the other hand, it is possible that
a window of component is also a window of cycle.

The proof of Lemma 5.2 implies that W (a, b) is a window of cycle iff a and b are
each other’s favorites. We show that this is also equivalent to being paired in persistent
homology.

Theorem 5.4 (Characterization for Compact Geometric Networks) Let f : G → R

be a generic map on a compact geometric network, let a be a minimum, ↗-type, or
y-type vertex, with A = f (a), and let b be a maximum, ↘-type, or λ-type vertex, with
B = f (b). Then

(i) (A, B) ∈ Ess0( f ) iff W (a, b) is a window of component,
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(ii) (B, A) ∈ Ess1( f ) iff W (a, b) is a window of cycle.

Proof (i) is obvious enough so we omit the proof. To see (ii), assume a and b are each
other’s favorites, and let � be a cycle whose low and high points are a and b. When
t ∈ R reaches B in Phase One, � is born along with all cycles � + �′, in which �′
is a cycle born before �. All these cycles die when t reaches A in Phase Two. Indeed,
if �′ died earlier, then � + �′ would become homologous to �, but since � is born
after �′, the sum of the two cycles cannot die yet. On the other hand, � + �′ dies at
t = A because it becomes homologous to �′, which was born earlier. ��

The characterization of points in the essential subdiagram of Dgm( f ) in Theo-
rem 5.4 together with the characterization of the points in the ordinary and relative
subdiagrams in Theorem 4.4 completes the proof of the Main Theorem stated in the
Introduction.

5.3 Consequences: symmetry and variation

The weak symmetry assertion for geometric trees stated in Corollary 4.5 generalizes
to geometric networks.

Corollary 5.5 (Weak Symmetry forGeometricNetworks)Let f : G → R be a generic
map on a compact geometric network. Then Dgm(− f ) = Ord◦( f ) � Rel◦( f ) �
Essr ( f ).

Proof The argument for the triple-panel windows with wave is the same as in the
proof of Corollary 4.5. Since geometric networks are not necessarily connected, we
can have more than one window of component, which is different for geometric trees,
which are connected. Nevertheless, the argument for such windows is the same as in
the proof of Corollary 4.5.

It remains to argue about the cycles in the network. By Lemma 5.2, the cycles are
represented by pairing their low and high points in a symmetric manner. Specifically,
each lowpoint is pairedwith the lowest candidate high point, and because the candidate
relation is symmetric, this is equivalent to pairing each high point with the highest
candidate low point. Each such pair generated in Phase One corresponds to a point
(A, B) ∈ Ess( f ), and by symmetry to a point (−B,−A) ∈ Ess(− f ), which completes
the proof. ��

The equality of the variation and the total persistence generalizes from circles and
geometric trees to geometric networks.We can reuse the proof of Corollary 4.6, which
we complement with an argument about cycles.

Corollary 5.6 (Variation for Geometric Networks) Let f : G → R be a generic map
on a compact geometric network. Then the variation is the total persistence:Var( f ) =
‖Dgm( f )‖1.
Proof We cut each cycle in G at its high point to obtain a geometric network, G′,
with one less cycle. Let η : G′ → G be the surjection that reverses the cut, and let
g : G′ → R be defined by g(x) = f (η(x)). Since the maps are essentially the same,
we have Var(g) = Var( f ).
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To show that the total persistence remains the same, let� be a cycle inG, a = lo(�)

its low point, and b = hi(�) its high point. Assume thatW (a, b) is a window of cycle,
so that (A, B) ∈ Ess1( f ), in which A = f (a) and B = f (b), as usual. The cut at
b removes the cycle and thus the point (A, B) from the diagram. There is a second
window, generated by b and another point x ∈ G, whose corresponding point, (B, X),
is removed from the diagram. In lieu of b, we get two ↗-type endpoints in G′, which
we denote b′ and b′′. By definition of η, we have g(b′) = g(b′′) = B. Since b′ and
b′′ are endpoints, they are paired only once. By the local characterization of windows
in Theorems 3.2, 4.2, 4.4, 5.4, all windows of f other than W (a, b) and W (b, x) are
also windows of g. Hence b′ and b′′ can only be paired with a and x . We thus get two
new points, (B, A) and (B, X) in Dgm(g). Their persistence is the same as that of the
two points they replace, so ‖Dgm(g)‖1 = ‖Dgm( f )‖1.

We now repeat the argument, cutting one cycle at the time, until we reach a col-
lection of geometric trees. Corollary 4.6 implies that the variation is equal to the
total persistence. Since both quantities did not change during the process, we thus
established the equality also for compact geometric networks. ��

6 Discussion

The main contribution of this paper is the local characterization of points in the
extended persistence diagram of a map on a compact geometric network. This work
gives rise to a number of open questions, of which we state two:

– The characterization through critical point pairs by windows identifies endpoints
and branching points as culprits for the failure of Dgm( f ) = DgmR( f ) beyond
circles. Can we sharpen this to a quantitative relationship between the symmetric
difference of the two diagrams and the number of endpoints and branching points
in the geometric network?

– While the variation is a natural concept for 1-dimensional maps, there are several
competing extensions to maps on 2- and higher-dimensional domains (Hardy–
Wright variation, Harman variation, etc.); see e.g. Pausinger and Svane (2015).
How does the total persistence of such a map relate to these extensions?

In conclusion, we mention the development of a fast dynamic data structure for main-
taining the persistence diagram of lists (Cultrera di Montesano et al. 2023), which
is based on the results of this paper. It paves the way to efficient software for the
persistence of long time-series. Are there questions for series with bifurcations (mod-
eled by geometric trees and networks) that benefit from the ready availability of the
persistence diagram?
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