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Abstract

Given a locally finite set A ⊆ Rd and a coloring χ : A → {0, 1, . . . , s}, we introduce the chromatic
Delaunay mosaic of χ, which is a Delaunay mosaic in Rs+d that represents how points of different
colors mingle. Our main results are bounds on the size of the chromatic Delaunay mosaic, in which
we assume that d and s are constants. For example, if A is finite with n = #A, and the coloring
is random, then the chromatic Delaunay mosaic has O(n⌈d/2⌉) cells in expectation. In contrast, for
Delone sets and Poisson point processes in Rd, the expected number of cells within a closed ball is
only a constant times the number of points in this ball. Furthermore, in R2 all colorings of a dense
set of n points have chromatic Delaunay mosaics of size O(n). This encourages the use of chromatic
Delaunay mosaics in applications.
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1 Introduction

The work described in this paper is motivated by applications in biology and medicine, and by structural
obstacles encountered in related topological constructions. The motivating applications have to do with
the interaction of the members of a small number of different populations, such as cell types that segregate
during early development [10], or the tumor immune cell microenvironment in cancer [2]. The challenge
the interaction poses to topological data analysis has to do with the maps between the various sets, which
either do not exist or require high-dimensional complexes whose sheer size is prohibitive for applications.

A solution for two colors was proposed by Reani and Bobrowski [12], which we generalize to arbitrarily
many colors and whose structural and combinatorial properties we study. Given a locally finite set in Rd

and a coloring with s+ 1 colors, this generalization places the points of different colors on s+ 1 parallel
copies of Rd, which intersect an orthogonal copy of Rs at the vertices of the standard s-simplex. This is
a locally finite set in Rs+d, and the chromatic Delaunay mosaic of the colored set in Rd is, by definition,
the Delaunay mosaic of the set in Rs+d. A similar set-up was used in [3] for the purpose of geometric
morphing between s+1 shapes, so our work also sheds light on that proposal to construct a shape space.
The structural results we wish to highlight are as follows:

• the chromatic Delaunay mosaic contains the chromatic Delaunay mosaic as well as the Delaunay
mosaic of any subset of the s + 1 colors as a subcomplex; in particular, it contains the Delau-
nay mosaic of each color individually and of all colors as subcomplexes;

• the d-dimensional section of the colorful cells in the chromatic Delaunay mosaic (the cells that
have at least one vertex of each color) is dual to the overlay of the s+ 1 mono-chromatic Voronoi
tessellations.

Our combinatorial results help gauge the extent to which chromatic Delaunay mosaics can be used in
applications. By the size of a mosaic we mean the number or density of cells, which we relate to the
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number or density of the points. Further important parameters are d and s, which we assume are
contants:

• if the coloring of n points in Rd is random, then the chromatic Delaunay mosaic has expected size
O(n⌈d/2⌉);

• for a Delone set in Rd, the expected number of cells of the chromatic Delaunay mosaic whose
circumcenters project into a ball containing n points of the Delone set is O(n);

• for a dense set of n points in R2, the latter result can be strengthened to the worst-case size of the
chromatic Delaunay mosaic being O(n);

• a stationary Poisson point process in Rd with bounded intensity has a chromatic Delaunay mosaic
whose cells have bounded density, and we give explicit expressions for any number of colors in two
dimensions and for two colors in any dimension.

To illustrate the results on Poisson point processes, we present computational experiments with bi-
and tri-colored Poisson point processes in R2 and R3. Note the conspicuous absence of the number of
colors in all bounds given above, and this despite the fact that the chromatic Delaunay mosaic is an
(s+ d)-dimensional complex.

Outline. Section 2 presents general background on Delaunay mosaics and Voronoi tessellations. Sec-
tion 3 introduces the chromatic Delaunay mosaic and proves some of its structural properties. Section 4
proves combinatorial bounds for the size of chromatic Delaunay mosaics. Section 5 studies the size of
chromatic Delaunay mosaics for Poisson point processes and presents related computational experiments.
Section 6 concludes the paper.

2 Background

We need basic facts about Voronoi tessellations and their dual Delaunay mosaics in Euclidean space,
and refer to [1] for further reading on the subject.

2.1 Voronoi Tessellations

Letting A ⊆ Rd be a finite set and b ∈ A a point, the Voronoi domain of b, denoted dom(b, A), is
the set of points, x ∈ Rd, for which ∥x− b∥ ≤ ∥x− a∥ for all a ∈ A. Since A is finite, dom(b, A) is the
intersection of finitely many closed half-spaces and thus a convex polyhedron. This polyhedron contains
a neighborhood of b, which implies that it is d-dimensional. A supporting hyperplane of dom(b, A) is a
(d− 1)-plane whose intersection with the polyhedron is non-empty but with its interior is empty. A face
of dom(b, A) is the intersection with a supporting hyperplane, which is a convex polyhedron of dimension
p < d.

The Voronoi tessellation of A, denoted Vor(A), is the collection of Voronoi domains, dom(b, A) with
b ∈ A. We refer to the domains as d-cells and to their p-dimensional faces as p-cells of Vor(A). The
0-cells are also called vertices and the 1-cells are also called edges. While any two d-cells of Vor(A) have
disjoint interiors, they may intersect in shared faces. More generally, the common intersection of one
or more d-cells is either empty or a shared face. For every x ∈ Rd, there is a unique cell of smallest
dimension that contains x, and this cell contains x in its interior. It follows that the interiors of the cells
of Vor(A) partition Rd.

Writing n = #A, it is clear that Vor(A) has precisely n d-cells. For d = 2, this implies that there are
at most 3n edges and at most 2n vertices. More generally for n points in Rd, the Voronoi tessellation
has O(n⌈d/2⌉) cells. While this bound is tight, the number of cells depends on the relative position of
the points and is much smaller for many sets, including some considered in this paper. For example, the
Voronoi tessellation of n points chosen uniformly at random inside the unit cube in a constant-dimensional
Euclidean space has only O(n) cells in expectation; see e.g. [5].
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2.2 Delaunay Mosaics

The Delaunay mosaic of A ⊆ Rd, denoted Del(A), is the dual of the Voronoi tessellation of A. To be
specific, consider a p-cell of Vor(A), and observe that it is the common intersection of m ≥ d − p + 1
Voronoi domains. Assuming this collection of domains is maximal, and writing a1, a2, . . . , am for the
points in A that generate them, we call the convex hull of the ai the dual Delaunay cell of the Voronoi
p-cell. Its dimension is q = d− p. The Delaunay mosaic of A is the collection of Delaunay cells dual to
cells of Vor(A).

We note that Del(A) is a polyhedral complex; that is: it consists of closed polyhedral cells such that
the boundary of each cell is the union of lower-dimensional cells in the complex. Similarly, the collection
of cells of Vor(A) is a polyhedral complex, but note that Vor(A) is, by definition, only the collection of
Voronoi domains, which is not a complex.

Call a (d − 1)-dimensional sphere empty of points in A if no point in A is enclosed by the sphere.
The points may lie on the sphere or outside the sphere, but they are not allowed to lie inside the sphere.
It is not difficult to see that the convex hull of m points in A is a cell in Del(A) iff these m points lie on
an empty (d − 1)-sphere, while all other points in A lie strictly outside this sphere. Indeed, the center
of such an empty sphere is a point in the interior of the dual Voronoi cell, and the Voronoi domains
generated by the m points all share the cell.

We say A ⊆ Rd is generic, or in general position, if no p + 2 points of A lie on a common (p − 1)-
sphere, for 1 ≤ p ≤ d. In this case, all cells in Del(A) are simplices, so Del(A) is a simplicial complex
in Rd. Correspondingly, every p-cell of Vor(A) is the common intersection of exactly d− p+ 1 Voronoi
domains, so the common intersection of any d + 2 Voronoi domains is necessarily empty. This is what
we call a simple decomposition of Rd. In this case, the Delaunay mosiac is isomorphic to the nerve of
the Voronoi tessellation, which consists of all collections of domains in Vor(A) that have a non-empty
common intersection. The assumption that A be generic often simplifies matters, and it can be simulated
computationally [6] to avoid cumbersome special cases.

3 Chromatic Complexes

The main concepts in this section are the chromatic Delaunay mosaics and Voronoi tessellations, which
generalize the bi-chromatic construction in [12] to more than two colors.

3.1 Chromatic Delaunay Mosaics

Throughout this section, we let A be n points in Rd, σ = {0, 1, . . . , s} a collection of colors, χ : A → σ a
coloring, and Aj = χ−1(j) the subset of points with color j, for 0 ≤ j ≤ s. We recall that the standard
s-simplex is the convex hull of the s + 1 unit coordinate vectors in Rs+1. To map this simplex to s
dimensions, we identify Rs with the s-plane defined by x1+x2+ . . .+xs+1 = 1 in Rs+1 and parametrize
it with the inherited s+1 barycentric coordinates. A subset of t+1 ≤ s+1 unit coordinate vectors defines
the standard t-simplex, which we map to Rt by parametrizing it with the t+ 1 barycentric coordinates
inherited from Rt+1. We are ready to construct the chromatic Delaunay mosaic of χ, denoted Del(χ),
which we do by writing Rs+d = Rs × Rd in three steps:

Step 1: let u0, u1, . . . , us be the vertices of the standard s-simplex in Rs;

Step 2: set A′ = A′
0 ⊔A′

1 ⊔ . . . ⊔A′
s, in which A′

j = uj +Aj ⊆ uj + Rd, for each 0 ≤ j ≤ s;

Step 3: construct Del(χ) = Del(A′);

see Figure 1. Similarly, we apply the construction to a subset of the colors, τ ⊆ σ, and write Del(χ|τ),
in which χ|τ is our notation for the restriction of χ to χ−1(τ). This mosaic lives in Rt+d, in which
t = 1 + #τ . It is not difficult to see that Del(χ|τ) is a subcomplex of Del(χ). To state this property
formally, we call a cell in Del(χ) τ -colored if the colors of its vertices belong to τ , and τ -colorful if it is
τ -colored and has a vertex of every color in τ . Every cell is τ -colorful for the smallest subset, τ ⊆ σ, for
which the cell is τ -colored. This implies that we get a partition of the cells into 2s+1 classes. Note that
the τ -colored cells form a subcomplex of Del(A), while the τ -colorful cells generally do not.
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Figure 1: The chromatic Delaunay mosaic of three finite sets in R1 together with the stratification of space
into membranes. The points of each set are placed on a copy of R1 orthogonal to the 2-plane that carries
the standard triangle constructed in Step 1. The stratification consists of a 1-dimensional membrane
geometrically located between the three lines, and three 2-dimensional membranes, one between any two
of the lines.

Lemma 3.1 (Sub-chromatic Delaunay Subcomplexes). Let A ⊆ Rd be finite, χ : A → σ a coloring, and
τ ⊆ σ. Then the subcomplex of τ -colored cells in Del(χ) is Del(χ|τ).

Proof. Let H be a hyperplane in Rs+d that passes through all points with color τ such that all other
points in A′ are contained in an open half-space bounded by H. The cells of Del(χ|τ) are characterized
by the existence of an empty (t + d − 1)-sphere in H that passes through the vertices of the cell and
through no other points with color in τ . Since all points with color in σ \ τ lie in an open half-space
bounded by H, we can extend this (t+d−1)-sphere to an empty (s+d−1)-sphere that passes through the
same points. Hence, Del(χ|τ) ⊆ Del(χ), which implies the claim because Del(χ|τ) exhausts all τ -colored
cells in Del(χ).

It is perhaps more difficult to see how Del(χ) relates to Del(A). In the relatively straightforward
simplicial case, Del(χ) contains a subcomplex whose projection to Rd is Del(A); see Figure 2. In the
general and therefore not necessarily simplicial case, we can for example have a convex quadrangle in
Del(A) that is the projection of a tetrahedron in Del(χ). We formulate the relationship that allows for
this and similar cases in terms of the nerves of Vor(A) and Vor(χ), which are possibly high-dimensional
abstract simplicial complexes.

Lemma 3.2 (Projection to Delaunay Mosaic). Let A ⊆ Rd be finite, σ = {0, 1, . . . , s}, and χ : A → σ
a coloring. Then the nerve of the (s+ d)-cells of Vor(χ) in Rs+d has a subcomplex that projects to the
nerve of the d-cells of Vor(A) in Rd.

Proof. Recall that k + 1 points in A are the vertices of a cell in Del(A) iff there is an empty (d − 1)-
sphere, S, that passes through these k + 1 points and through no other points of A. The nerve of the
corresponding k + 1 Voronoi d-cells is a k-simplex.

Following the construction of the chromatic Delaunay mosaic, we copy S to uj + S for each j ∈ σ.
Let S′ be the (s + d − 1)-sphere in Rs+d whose intersection with uj + Rd is uj + S, for every j ∈ σ. It
should be clear that S′ exists: its center projected to Rs is the barycenter of the standard s-simplex and
projected to Rd is the center of S. By construction, S′ is empty and passes through the points uj + a
with a ∈ S and χ(a) = j, and through no other points of A′. The nerve of the corresponding (s+d)-cells
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Figure 2: Left: the Delaunay mosaic of a bi-colored set in the plane, Del(A). Middle: the chromatic
Delaunay mosaic, Del(χ), with colorful triangles left unfilled for clarity. Right: the subcomplex of Del(χ)
that is isomorphic to Del(A).

in Vor(χ) is again isomorphic to a k-simplex, and its projection to Rd is the k-simplex isomorphic to the
nerve of the k + 1 Voronoi d-cells we started with. The claim follows.

3.2 Chromatic Voronoi Tessellations

The chromatic Voronoi tessellation of χ : A → σ is the Voronoi tessellation of A′ ⊆ Rs+d, and we write
Vor(χ) = Vor(A′). There is a bijection between the cells of Vor(χ) and Del(χ), denoted by mapping ν
to ν∗ ∈ Del(χ), such that dim ν + dim ν∗ = s + d and µ is a face of ν iff ν∗ is a face of µ∗. We call
ν τ -colored or τ -colorful if ν∗ is τ -colored or τ -colorful, respectively. For each τ ⊆ σ, we defined the
τ -membrane of χ as the union of the interiors of the τ -colorful cells of Vor(χ), denoted M(τ). Since
the interiors of the cells in Vor(χ) partition Rs+d, and the interior of each cell belongs to exactly one
membrane, the membranes are pairwise disjoint and partition Rs+d; see Figure 1.

Lemma 3.3 (Stratification into Membranes). Let A ⊆ Rd be finite, σ = {0, 1, . . . , s}, and χ : A → σ a
coloring.

1. For each non-empty τ ⊆ σ, M(τ) is a manifold homeomorphic to Rs−t+d, with t = #τ − 1.

2. The collection of M(τ) form a stratification of Rs+d with strata of dimension d to s+ d, in which
the p-stratum is the disjoint union of all M(τ) with #τ = s+ d− p+ 1.

Proof. We begin with τ = σ. Let w ∈ Rd and consider w + Rs, which is an s-plane parallel to Rs and
therefore orthogonal to Rd. By Pythagoras’ theorem, the squared distance between points x ∈ w + Rs

and y ∈ Rd is ∥x− w∥2 + ∥w − y∥2. Letting a be the point in A closest to x, this implies that a is the
closest point in A to any point in w + Rd. Similarly, if a′j is the point in A′

j closest to x, then a′j is the
closest point in A′

j to any point in w + Rs. There is a unique point z(w) ∈ w + Rs at equal distance to
a′0, a

′
1, . . . , a

′
s. Hence, z(w) ∈ M(σ) and it is indeed the only point of w + Rs in M(σ). It follows that

M(σ) is the image of z : Rd → Rs+d defined by mapping w to z(w). Note that z is continuous, so M(σ)
is homeomorphic to Rd. It is the stratum of the lowest dimension, d, in the claimed stratification.

To describe the remainder of the stratification, let V (σ) be the Voronoi tessellation of u0, u1, . . . , us

in Rs. Since the uj are the vertices of the standard s-simplex, this tessellation consists of a vertex
at 0 ∈ Rs, s + 1 half-lines emanating from 0,

(
s+1
2

)
2-dimensional wedges connecting the half-lines in

pairs, etc. Returning to w +Rs, we observe that it slices the stratification of Rs+d in a translate of this
s-dimensional Voronoi tessellation, z(w) + V (σ). Varying w over all points of Rd, we get the claimed
stratification of Rs+d.

3.3 Overlay of Mono-chromatic Voronoi Tessellations

Related to the strata are the overlays of tessellations. Given A ⊆ Rd, σ = {0, 1, . . . , s}, and χ : A →
{0, 1, . . . , s}, the overlay of the s + 1 mono-chromatic Voronoi tessellations, denoted Vor(Aj | j ∈ σ), is
the decomposition of Rd obtained by drawing the Voronoi cells of dimension at most d−1 on top of each
other; see Figure 3. More formally, each d-dimensional cell in the overlay is the common intersection
of s + 1 d-cells, one in each Vor(Aj) for j ∈ σ, and the overlay consists of these d-dimensional cells
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and their faces. Even if the points in A are in general position, the overlay is not necessarily a simple
decomposition of Rd.

Figure 3: The overlay of a blue and a orange Voronoi tessellation in the plane. In the generic case, each
of its vertices is either a vertex of a mono-chromatic tessellation, which has degree 3, or the crossing of
two edges, which has degree 4.

Lemma 3.4 (Membranes and Overlays). Let A ⊆ Rd be finite, χ : A → {0, 1, . . . , s} a coloring, and
Aj = χ−1(j) for 0 ≤ j ≤ s. For each τ ⊆ σ, Vor(Aj | j ∈ τ) is the projection of the τ -membrane, M(τ),
to Rd.

Proof. We begin with τ = σ. By Lemma 3.3, M(σ) is a manifold of dimension d, and in the proof of this
lemma we learn that the orthogonal projection, π : M(σ) → Rd, is a homeomorphism. Indeed, π−1 is the
restriction of z : Rd → Rs+d defined there. Since M(σ) is decomposed into cells of Vor(χ), z is piecewise
linear, so it suffices to prove that the linear pieces are the images of the cells in Vor(Aj | j ∈ σ).

Let νj be a d-cell of Vor(Aj) and write aj ∈ Aj for the point that generates νj , for 0 ≤ j ≤ s. Assume
that ν = ν0 ∩ ν1 ∩ . . . ∩ νs has non-empty interior, so it is a d-cell of the overlay. Correspondingly, the
image of every point x ∈ ν, z(x) = π−1(x), is equidistant from the points uj + aj , for 0 ≤ j ≤ s. It
follows that the image of ν is a subset of a linear piece in M(σ). For every neighboring d-cell of ν in the
overlay, we change one of the aj , so their images belong to different linear pieces of M(σ). This implies
that the image of ν is a linear piece of M(σ), as required.

To generalize, let τ ⊆ σ and use the above argument to conclude that Vor(Aj | j ∈ τ) is the projection
of the τ -membrane to Rd. Recall that Vor(χ|τ) decomposes Rt+d, and by Lemma 3.1, the extrusion of
the τ -membrane in Vor(χ|τ) along the remaining s − t coordinate directions in Rs+d contains the τ -
membrane in Vor(χ). Moreover, the projections of the two τ -membranes—one in Vor(χ|τ) and the other
in Vor(χ)—to Rd are identical, which implies the claim.

4 Counting Cells

In this section, we are interested in the size of the chromatic Delaunay mosaic or, equivalently, of the
overlays between the mono-chromatic Voronoi tessellations. We focus on extremal questions, in which we
minimize or maximize over locally finite sets and their colorings, but we also consider random colorings.

4.1 Few Spherical k-sets Imply Small Expected Overlays

Let A be a set of n points in Rd. We call a subset of k ≤ n points a spherical k-set of A if there is a sphere
that separates the k from the remaining n− k points. Note that this differs from the classic notion of a
k-set, for which there is a hyperplane that separates the k points of the k-set from the remaining n− k
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points. In this section, we relate the number of spherical k-sets with the expected size of the overlay
of mono-chromatic Voronoi tessellations for random colorings of A. Specifically, we prove the following
lemma.

Lemma 4.1 (Spherical k-sets and Overlay). Let c, d, e be positive constants, and A a set of n points in
Rd such that for every 1 ≤ k ≤ n, the number of spherical k-sets is O(kcne). Let furthermore s ≥ 0 be
a constant, let σ = {0, 1, . . . , s}, and write Aj = χ−1(j), in which χ : A → σ is a random coloring. Then
the expected size of Vor(Aj | j ∈ σ) is O(ne).

Proof. We assume that the points in A are in general position and write Aj = χ−1(j). Suppose we pick
s+1 cells, one from each Vor(Aj), and write ij−1 for their co-dimensions. The common intersection of the
s+1 cells is either empty or a cell of co-dimension

∑s
j=0(ij−1). This is a vertex only if

∑s
j=0(ij−1) = d

or, equivalently,
∑s

j=0 ij = d+ s+ 1. To bound the expected size of the overlay, we bound the expected
number of such vertices in the overlay, which is the sum of their probabilities to belong to the overlay.

Fix d+ s+ 1 points and a coloring χ : A → {0, 1, . . . , s} such that every color is assigned to at least
one of the d+ s+1 points. Writing ij for the number of points with color j, we have

∑s
j=0 ij = d+ s+1

and 1 ≤ ij ≤ d+ 1 for each j. Let Ej be the set of points y ∈ Rd at equal distance to the ij points with
color j; it is a plane of co-dimension ij −1. Since

∑s
j=0(ij −1) = d and the d+s+1 points are in general

position, the common intersection of the Ej is a point x ∈ Rd. This point is a vertex of the overlay iff
there is a stack of spheres, S0, S1, . . . , Ss, with common center, x, such that Sj passes through the ij
points with color j, and all other points in Aj = χ−1(j) lie outside Sj . Suppose that S0 is the largest
of the s + 1 spheres. Let k be the number of points on or inside S0, note that this is a spherical k-set,
and recall that there are at most O(kcne) such sets by assumption. Other than the i0 ≤ d+ 1 points on
S0, all points in the spherical k-set must have color different from 0. The probability of this is s/(s+ 1)
to the power k − i0 ≥ k − d − 1. The number of possible overlay vertices whose largest sphere of the
corresponding stack of spheres separates the same spherical k-set is at most

(
k

d+s+1

)
(s + 1)d+s+1. This

is the product of the number of subsets of size d+ s+ 1 and the number of different colorings of such a
set. Writing X for the number of vertices in the overlay, we thus get

E[X] <
∑n

k=d+s+1
O(kcne) ·

(
k

d+s+1

)
(s+ 1)d+s+1 ·

(
s

s+ 1

)k−d−1

(4.1)

< O(ne) ·
∑∞

k=0

(s+ 1)2d+s+2

sd+1
· kc+d+s+1 ·

(
s

s+ 1

)k

. (4.2)

The first factor within the latter sum is constant, the second is a constant degree polynomial, and the
last factor is an exponential that vanishes as k goes to infinity. Because of the exponential decay, the
sum converges to a constant that depends on c, d, and s but not on n. It follows that the number of
vertices in the overlay is O(ne).

Observe that every vertex of the overlay belongs to only a constant number of cells of dimension 1 to d.
Every such cell has at least one vertex, which implies that the number of cells of any dimension in the
overlay is O(ne).

As originally proved by Lee [9], the number of spherical k-sets of n points in R2 is less than 2kn.
The expected size of the overlay of the mono-chromatic Voronoi tessellations for a random coloring in
R2 is therefore O(n). To get a result for general dimensions, we note that the spherical k-sets in Rd

correspond to (linear) k-sets in Rd+1. For the latter, Clarkson and Shor [4] proved that the number of
ℓ-sets, for ℓ = 1, 2, . . . , k, is O(k⌈(d+1)/2⌉n⌊(d+1)/2⌋). Lemma 4.1 thus implies

Theorem 4.2 (Overlay Size for Random Coloring). Let d and s be constants, let A be a set of n points
in Rd, let σ = {0, 1, . . . , s}, and write Aj = χ−1(j), in which χ : A → σ is a random coloring. Then the
expected number of cells in Vor(Aj | j ∈ σ) is O(n⌈d/2⌉).

This bound is asymptotically tight since even a single Voronoi tessellation of n points in Rd can
have Ω(n⌈d/2⌉) vertices, for example if the points are chosen on the moment curve, which is defined by
(t, t2, . . . , td), t ∈ R.
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4.2 Delone Sets Have Small Expected Overlays

We start by showing that dense sets without big holes have few spherical k-sets. To formalize this claim,
we recall that A ⊆ Rd is a Delone set if there are constants 0 < r < R < ∞ such that every open ball
of radius r contains at most one point, and every closed ball of radius R contains at least one point of
A. For counting purposes, we say a spherical k-set, B ⊆ A, corresponds to a point, b ∈ A, if there is a
sphere that separates B from A \B and b is the point in A closest to the center of this sphere.

Lemma 4.3 (Bounded Correspondence). Let A ⊆ Rd be a Delone set. Then every point in A corresponds
to at most O(kd+1) spherical k-sets of A.

Proof. Let x be a point in Rd and suppose that it lies in the interior of a d-cell of the order-k Voronoi
tessellation of A. Assuming this cell is dom(B,A), then B is the unique spherical k-set that is separated
from A \ B by a sphere with center x. Letting t be the radius of this sphere, we have krd ≤ (t + r)d

because the sphere with center x and radius t+ r encloses k disjoint open balls of radius r. Furthermore,
(t−R)d ≤ kRd because the closed balls of radius R centered at the points of B cover the ball with center
x and radius t−R. Hence

(
d
√
k − 1)r ≤ t ≤ (

d
√
k + 1)R. (4.3)

Let b ∈ A be a point with x ∈ dom(b, A). Since A is Delone, dom(b, A) is covered by the ball with center
b and radius R. It follows that the sphere with center b and radius ( d

√
k + 2)R encloses all spherical

k-sets that correspond to b. The number of points in A enclosed by this sphere satisfies

ℓ ≤
[(

d
√
k + 2

)
R+ r

]d
/rd, (4.4)

which is O(k) because r and R and therefore R/r are positive constants. For a finite set in Rd, the
number of ways it can be split into two by a sphere is less than the (d + 1)-st power of its cardinality.
Hence, there are at most O(kd+1) spherical k-sets that correspond to b.

Delone sets are necessarily infinite, so we let Ω be the closed ball with radius ω centered at the origin,
and count a spherical k-set, B ⊆ A, only if there is a sphere that separates B from A \ B whose center
is in Ω.

Theorem 4.4 (Overlay Size for Delone Set). Let d and s be constants, let A ⊆ Rd be a Delone set,
let σ = {0, 1, . . . , s}, let χ : A → σ be a random coloring, and let Ω be the ball of points at distance at
most ω > R from the origin. Writing n = #(A ∩ Ω) and Aj = χ−1(j), the expected number of cells in
Vor(Aj | j ∈ σ) that have at least one vertex in Ω is O(n).

Proof. Let 0 < r < R < ∞ be constants for which A is Delone, and note that the number of points of A
at distance at most ω+R from the origin is O(n). Any spherical k-set that has a separating sphere with
center in Ω corresponds to a point in this slightly larger ball, so Lemma 4.3 implies that the number of
such spherical k-sets is O(kd+1n).

We count the vertices of the overlay using Lemma 4.1 but restricted to crossings inside Ω. We have
c = d + 1 and e = 1, so we get an expected number of O(n) vertices in Ω. Assuming general position,
every vertex belongs to only a constant number of cells, which implies the claimed bound on the number
of cells with at least one vertex in Ω.

A vertex of the overlay corresponds to an (s + d)-cell in the chromatic Delaunay mosaic whose
circumcenter project to the vertex. Theorem 4.4 thus counts the cells in the chromatic Delaunay mosaic
that are faces of (s+ d)-cells whose circumcenters project into Ω.

4.3 Dense Sets in the Plane Have Always Small Overlays

In d = 2 dimensions, Theorem 4.4 can be strengthened while weakening the assumptions on the points.
The strong bound is presented in Theorem 4.7. The proof relies on two technical lemmas, which we
prove first.

Let Y ⊆ R2, ϱ : Y → R non-negative, and Union(Y, ϱ) the union of closed disks with centers x ∈ Y
and radii ϱ(x). For example, Y may be a line segment, a square, or the complement of a square, as
illustrated in Figure 4, and the radii may be any non-negative real numbers.
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Lemma 4.5 (Boundary of Union of Disks). Let S be a line segment of length L, Q a square with sides
of length L, and Q̄ the closed complement of Q. For Y ∈ {S,Q, Q̄}, let ϱY : Y → R be non-negative and
RY = maxx∈Y ϱY (x). Then

length[∂Union(S, ϱS)] < 4L+ 8RS , (4.5)

length[∂Union(Q, ϱQ)] < 8L+ 8RQ, (4.6)

length[∂Union(Q̄, ϱQ̄)] < 8L. (4.7)

Proof. We begin with the line segment, S, write aff S for the line that contains S, and assume that this
line is horizontal. Note that ∂Union(S, ϱS) is invariant under reflection across this line. Think of the
boundary above the line as the graph of a function, with alternating minima and maxima as we go from
left to right. We focus on the piece of the graph between a minimum and an adjacent maximum, and
claim that this piece is at least as wide as it is high. To see this, note that the maximum is the center
of a disk, and the piece lies on or above the upper half-circle in the boundary of this disk. If the entire
piece lies in this half-circle, and the minimum is where the half-circle touches the line, then the width is
equal to the height. In all other cases, the width exceeds the height. The length of the piece is less than
its width plus its height, which is at most twice the width. The sum of widths is at most L+2RS , which
implies that the length of ∂Union(S, ϱS) above aff S is less than 2L+ 4RS . We get the same bound for
the length below aff S, which implies (4.5).

Figure 4: Unions of closed disks whose centers lie on a line segment, on the left, in a square, in the
middle, and in the complement of a square, on the right. The blue points mark the shared endpoints of
the circular arcs that make up the boundary of the union of disks.

To get (4.6), we decompose ∂Union(Q, ϱQ) into four curves by cutting along the lines that support
the upper and lower sides of the square. By the above argument, the length of the upper curve is less
than 2L+ 4RQ, and similar for the lower curve. The left curve has (vertical) width L, so we get 2L as
an upper bound for the length, and similar for the right curve. The sum of the four bounds is equal to
the right-hand side of (4.6).

To get (4.7), we decompose Q̄ into four pieces by cutting along the two lines that contain the diagonals
of the square. For each piece, we take the union of disks with centers in the piece, and finally clip the
boundary to within Q. The four curves cover ∂Union(Q̄, ϱQ̄), and by the above argument, each curve
has length less than 2L. This implies (4.7).

Suppose there is a finite set, B ⊆ R2, such that ϱ(x) is the distance to the closest point in B. In
this case, the number of points in B that lie on the boundary of Union(Y, ϱ) relates to the number of
edges in Vor(B) that cross Y or the boundary of Y . As before, we distinguish between a line segment,
a square, and the complement of the square.

Lemma 4.6 (Counting Points and Crossings). Let S be a line segment, Q a square, Q̄ the closed
complement of Q, and B ⊆ R2 finite. For Y ∈ {S,Q, Q̄}, let ϱY : Y → R be defined by ϱY (x) =
mina∈B ∥x− a∥, and write BY = B ∩ ∂Union(Y, ϱY ). Then the number of edges of Vor(B) that have a
non-empty intersection with S, ∂Q, ∂Q̄ is bounded from above by #BS , #BQ, #BQ̄, respectively.

Proof. We begin with the line segment, S, and as before we assume that aff S is horizontal. By construc-
tion, Union(S, ϱS) is contractible and symmetric with respect to aff S. It follows that ∂Union(S, ϱS) is
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a closed curve with even number of circular arcs meeting at the same number of vertices. In the generic
case, every point of B on ∂Union(S, ϱS) is a vertex of the curve, and a vertex is a point in B iff the
reflected vertex on the other side of aff S is not a point in B. If we replace a point of B that is a vertex
of the curve by its reflected copy, then this changes the Voronoi tessellation but not the way in which S
crosses its edges. We can therefore assume that all vertices above aff S are points in B, while all vertices
below aff S are not. In this case, we have a crossing for each pair of adjacent vertices above aff S. The
number of crossings is thus less than the number of points of B on the boundary of the union of disks,
which implies the first claim.

Consider next the case of a square, Q. As before, we decompose ∂Union(Q, ϱQ) into four curves, one
above the line of the upper side, the second below the line of the lower side, and the remaining left and
right curves. For each curve, we reflect points of B so that all vertices shared between adjacent circular
arcs are points in B. In this case, we have four more points of B on ∂Union(Q, ϱQ) than edges of Vor(B)
that cross the sides of Q. The argument for the complement of Q is similar and omitted.

Define the density of a finite set as the maximum distance between two points divided by the minimum
distance between two points. A set in R2 is dense if its density is not much bigger than

√
n. We show

that for a dense set in the plane, the overlay of mono-chromatic Voronoi tessellations has small size for
every coloring.

Theorem 4.7 (Overlay size for Dense set). Let A ⊆ R2 be finite with density m, write n = #A, let
σ = {0, 1, . . . , s}, and write Aj = χ−1(j), in which χ : A → σ is any coloring. Then the number of regions
in Vor(Aj | j ∈ σ) is O(s2m2).

Proof. We will show that the number of crossings between the edges of any two mono-chromatic Voronoi
tessellations is O(m2). There are

(
s+1
2

)
≤ s2 pairs of colors and therefore O(s2m2) crossings in total.

The number of regions in the overlay is the number of regions in the s + 1 mono-chromatic Voronoi
tessellations, which is n = #A, plus twice the number of crossings. Since n = O(m2), this implies that
the number of regions is O(s2m2).

For the remainder of this proof, we fix two colors, 0 and 1, we assume that the minimum distance
between points in A is 1, so the maximum distance is m. Observe that there is a square with sides of
length m that contains A, and therefore A0 and A1. If there is at least one point each of A0 and A1 in
the square, then we subdivide it into four equally large squares. We recursively subdivide each of these
squares independently until we arrive at squares that contain points of at most one of these two colors.
By choosing the initial square judiciously, we may assume that no point of A lies on the boundary of any
of these squares. Since subdivision does not alter the total area, the sum of areas of these squares is m2.

Let Q be a square in this subdivision, write L for the length of its sides, and assume that it contains no
points of A0. Let Q

′ be the parent square of four times the area, which, by construction, contains at least
one point of A0 and at least one point of A1. Let ϱQ : Q → R be defined by ϱQ(x) = mina∈A0 ∥x− a∥.
Since Q′ contains at least one point of A0, we have RQ = maxx∈Q ϱQ(x) < 2

√
2L. Recall that

Union(Q, ϱQ) is the union of closed disks with centers x and radii ϱQ(x). By Lemma 4.5, the length of
the boundary satisfies

length[∂Union(Q, ϱQ)] < 8L+ 8RQ < (8 + 16
√
2)L < 31L. (4.8)

Since any two points of A0 are at least a distance 1 apart, this implies that there are fewer than 31L
points of A0 on the boundary of the union of disks. By Lemma 4.6, fewer than 31L edges in Vor(A0)
cross the sides of Q. Since no point of A0 is inside Q, the edges of Vor(A0) inside Q do not form
cycles, so more than half of them cross the sides of Q. It follows that fewer than 62L edges of Vor(A0)
have a non-empty intersection with Q. Let S be the intersection of one such edge with Q, which is
either the entire edge or a connected piece of it. The length of S is at most

√
2L. Let ϱS : S → R be

defined by ϱS(x) = mina∈A1 ∥x− a∥. The maximum such distance satisfies RS = maxx∈S ϱS(x) < 2
√
2L.

By Lemma 4.5, the length of the boundary satisfies

length[∂Union(S, ϱS)] < 4L+ 8RS < (4 + 16
√
2)L < 27L. (4.9)

Since any two points of A1 are at least a distance 1 apart, this implies that fewer than 27L points of
A1 lie on the boundary of the union of disks. By Lemma 4.6, fewer than 27L edges of Vor(A1) cross
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S. Multiplying with the number of edges in Vor(A0) inside Q, we get fewer than 62L · 27L = 1674L2

crossings. This is only a constant times the area of Q. Taking the sum over all squares in the subdivision,
we thus get fewer than 1674m2 crossings between edges of Vor(A0) and Vor(A1) inside the initial square.

It remains to bound the number of crossings outside the initial square. Let Q̄ be the complement
of the initial square, which we recall has sides of length m. Let ϱj : Q̄ → R be defined by ϱj(x) =
mina∈Aj

∥x− a∥, for j = 0, 1. By Lemma 4.5, we have

length[∂Union(Q̄, ϱj)] < 8m. (4.10)

By Lemma 4.6, fewer than 8m edges of Vor(Aj) cross the sides of Q̄. Since there are no points of Aj in Q̄,
this implies that Vor(Aj) has fewer than 16m edges with non-empty intersection with Q̄. Even if every
such edge of Vor(A0) crossed every such edge of Vor(A1), we still have fewer than 16m · 16m = 256m2

crossings outside Q. Adding the numbers of crossings inside and outside Q, we get fewer than 1930m2

crossings altogether.

For dense sets, A, we have m = Θ(
√
n), so the size of the overlay of s + 1 mono-chromatic Voronoi

tessellations is O(s2n), which is linear in n if we assume that s is a constant.

5 Poisson Point Processes

We use a stationary Poisson point process in Rd with a random coloring as the model for random data.
Recall that the intensity of the process is the expected number of points per unit volume in Rd. To make
a linguistic difference, we call the expected number of vertices of the Voronoi tessellation per unit volume
the density of the vertices, and similar for the cells of dimension one or higher. After deriving relevant
densities from prior work, we present experimental findings, which confirm some of the derived densities
but also go beyond them. We note that a stationary Poisson point process on a compact domain is a
sampling according to the uniform distribution. So modulo boundary effects, the density of the process
translates to a linear bound for the uniform distribution.

5.1 Densities, Analytically

We focus on the vertices of the overlay of Voronoi tessellations. The local neighborhood of every such
vertex has constant size, which implies that the density of p-cells in the overlay is at most a constant
times the density of the vertices. Besides the vertices of the mono-chromatic Voronoi tessellations, there
are also crossings, which are the 0-dimensional common intersections of two or more cells in differently
colored mono-chromatic Voronoi tessellations. Assuming general position, the sum of the co-dimensions
of these cells is necessarily equal to d. For every 0 ≤ p ≤ d and every k ≥ 1, the density of the p-
cells in the order-k Voronoi tessellation of a stationary Poisson point process, A ⊆ Rd, is a constant
times kd−1, and an explicit formula is given in [8, Theorem 1.2]. Given a random coloring, the proof of
Lemma 4.1 thus implies that the density of crossings between the mono-chromatic Voronoi tessellations
is also bounded away from infinity. For the cases in which d = 2 or s+ 1 = 2, we can use prior work on
weighted and unweighted Delaunay mosaics [7, 8] to determine these densities precisely. In R2, crossings
happen between two edges, one each of two different Voronoi tessellations.

Theorem 5.1 (Density of Crossings in Plane). Let A ⊆ R2 be a stationary Poisson point process with
intensity ϱ > 0, s a constant, and χ : A → {0, 1, . . . , s} a random coloring. Then the density of crossings
between the mono-chromatic Voronoi tessellations is ϱcross =

4s
π · ϱ.

Proof. Since the coloring is random, each Aj = χ−1(j) is a stationary Poisson point process with intensity
ϱ

s+1 ; see e.g. [11, Chapter 11]. By [8, Theorem 1.1], this implies that the density of the length of the

1-skeleton of Vor(Aj) is 2
√
ϱ/(s+ 1), and as proved in [7], the density of crossings between a line and the

1-skeleton is 4
π

√
ϱ/(s+ 1). This is true for every 0 ≤ j ≤ s, so we get the density of crossings between

the two 1-skeletons by multiplication, which gives 8
π

ϱ
s+1 . There are

(
s+1
2

)
= 1

2s(s + 1) pairs of colors,

which implies ϱcross =
4s
π · ϱ.
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The proof of Theorem 5.1 can be modified to show that the density of crossings is maximized by
balanced colorings. Suppose for example that s + 1 = 2 and the random coloring is biased, with
probabilities λ and 1− λ for colors 0 and 1, respectively. Then the intensities of A0 and A1 are λϱ and
(1 − λ)ϱ, so the density of the crossings between their Voronoi tessellations is 8

π

√
λ(1− λ), which is a

maximum for λ = 1
2 .

We extend Theorem 5.1 to two colors in d dimensions, while leaving the case of three or more colors
in three or more dimensions as an open question. We prepare the extension by introducing three families
of constants, in which we write ωd for the (d− 1)-dimensional volume of the unit sphere in Rd and Γ for
the gamma function, which generalizes the factorial to real arguments:

Vp,d =
2d−p+1π

d−p
2

d(d− p+ 1)!
·
Γ(d

2−pd+p+1
2 )

Γ(d
2−pd+p

2 )
·
Γ(d+2

2 )d−p+ p
d

Γ(d+1
2 )d−p

·
Γ(d− p+ p

d )

Γ(p+1
2 )

, (5.1)

Dp,d =
ω1ωd+1

ωp+1ωd−p+1

2p+1π
p
2

d(p+ 1)!
·
Γ(pd+d−p+1

2 )

Γ(pd+d−p
2 )

·
Γ(d+2

2 )p+1− p
d

Γ(d+1
2 )p

·
Γ(p+ 1− p

d )

Γ(d−p+1
2 )

, (5.2)

Xd = 1
2 (V1,dD1,d + V2,dD2,d + . . .+ Vd−1,dDd−1,d), (5.3)

for d ≥ 2 and 1 ≤ p ≤ d − 1. By comparing the factors of Vp,d and Dp,d, it is not difficult to see that
Vp,dDp,d = Vd−p,dDd−p,d. Indeed, the two sides of this equation are just different ways to count the
same thing, as we will see shortly. Table 1 gives approximations of the constants for small values of d
and p. The meaning of the constants and the corresponding sources will be revealed in the proof of the

Vp,d ·Dp,d

p = 1 p = 2 p = 3 p = 4 p = 5 Xd

d = 2 2.00 · 1.27 1.27
d = 3 5.83 · 1.46 2.91 · 2.92 8.49
d = 4 23.96 · 1.58 10.97 · 3.66 3.72 · 10.17 57.88
d = 5 126.74 · 1.67 53.22 · 4.25 17.00 · 13.30 4.45 · 47.53 437.78
d = 6 809.75 · 1.74 316.00 · 4.74 94.90 · 16.11 23.68 · 63.20 5.12 · 274.93 3668.63

Table 1: Approximations of the constants in (5.1), (5.2), (5.3) for small values of d and p.

next theorem. For two Voronoi tessellations in Rd, crossings happen between the p-cells of one and the
(d− p)-cells of the other tessellation.

Theorem 5.2 (Density of Crossings for Two Colors). Let A ⊆ Rd be a stationary Poisson point process
with intensity ϱ > 0, and let χ : A → {0, 1} be a random bi-coloring. Then the density of the crossings
between the mono-chromatic Voronoi tessellations is ϱcross(χ) = Xd · ϱ.

Proof. Because the bi-coloring is random, both A0 = χ−1(0) and A1 = χ−1(1) are stationary Poisson
point processes with intensity ϱ

2 in Rd. By [8, Theorem 1.1], the density of the p-dimensional volume of

the p-skeleton of either tessellation is Vp,d · (ϱ2 )
(d−p)/d, and by [7], the density of the crossings between

a p-plane and the (d − p)-cells of either tessellation is Dp,d · (ϱ2 )
p/d. Multiplying the two densities and

taking the sum for 1 ≤ p ≤ d− 1, we get ϱcross = 2Xd · ϱ
2 = Xd · ϱ.

5.2 Points in the Plane, Experimentally

This subsection presents experimental results for points in two dimensions. As a substitute for R2, we
glue the sides of the unit square to form a torus and let A ⊆ [0, 1)2 be a stationary Poisson point
process with intensity ϱ > 0. Letting χ : A → {0, 1} be a random bi-coloring, we construct the chromatic
Delaunay mosaic, Del(χ), while simulating general position of the points, if necessary, so the mosaic is
simplicial. Finally, we count the simplices of different types and write Nuv for the number of simplices
with u vertices of color 0 and v vertices of color 1. For example, N02 counts the edges in Del(A1), and
N11 counts the colorful edges in Del(χ). Writing mp for the number of p-cells in the two mono-chromatic
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Voronoi tessellations, and np for the number of colorful p-cells in Vor(χ), we have

m0 = N03 +N30, n0 = N13 +N22 +N31, (5.4)

m1 = N02 +N20, n1 = N12 +N21, (5.5)

m2 = N01 +N10, n2 = N11; (5.6)

see Table 2 for some computed averages. By symmetry, Nuv = Nvu in expectation, so almost half the
entries in this table are redundant.

Average #Simplices
Vertices Edges Triangles Tetrahedra

N01 = 499.7 N02 = 1499.0 N03 = 999.3 N13 = 999.3
N10 = 500.3 N11 = 2274.8 N12 = 2773.8 N22 = 1274.8

N20 = 1501.0 N21 = 2775.8 N31 = 1000.7
N30 = 1000.7

Table 2: The average number of simplices of each type—computed over 100 repeats of the experiment—in
the chromatic Delaunay mosaic of a randomly bi-colored stationary Poisson point process with intensity
ϱ = 1000 in [0, 1)2.

#Colorful Tetrahedra #Crossings
ϱ Min Max Avg Avg StDev

1000 2999 3513 3265.8 1.2711 0.0466
2000 6121 6872 6562.0 1.2774 0.0321
5000 15812 17025 16393.9 1.2753 0.0201
10000 31855 33468 32744.3 1.2731 0.0152

Table 3: The minimum, maximum, average number of colorful Delaunay tetrahedra of a bi-chromatic
stationary Poisson point process with intensities from 1000 to 10000 in [0, 1)2. Right: the mean and
standard deviation of the normalized crossing density, (n0 −m0)/ϱ.

Table 3 shows more detailed statistics for the colorful tetrahedra, which correspond to the vertices
in the overlay of the two mono-chromatic Voronoi tessellations. To facilitate the comparison between
the mono-chromatic and chromatic Delaunay mosaics, we also consider the surplus of vertices in the
chromatic Voronoi tessellation, by which we mean n0−m0. Since N03 = N13 and N30 = N31, the surplus
is the number of crossings, n0 −m0 = N22, and by dividing with the intensity, we get an approximation
of the normalized crossing density, (n0 −m0)/ϱ. In our experiments, the latter agrees with the constant
in Theorem 5.1, which for s+1 = 2 is 4

π = 1.27 . . .. While the standard deviation shrinks with increasing
intensity, the approximation of the normalized crossing density does not seem to be affected by the
number of points used in the experiment.

Moving on to a random tri-coloring, χ : A → {0, 1, 2}, we write Nuvw for the number of simplices in
Del(χ) with u, v, w vertices of color 0, 1, 2, respectively. The number of p-cells in the mono-chromatic
and chromatic Voronoi tessellations thus satisfy

m0 = N003 +N030 +N300, n0 = N113 +N131 +N311 +N122 +N212 +N221, (5.7)

m1 = N002 +N020 +N200, n1 = N112 +N121 +N211, (5.8)

m2 = N001 +N010 +N100, n2 = N111; (5.9)

see Table 4 for some computed averages. We omit any detailed statistics for number of colorful 4-simplices
and just mention that n0 −m0 = N022 +N202 +N220 counts the crossings, and that (n0 −m0)/ϱ agrees
with the constant in Theorem 5.1, which for s+ 1 = 3 is 8

π = 2.54 . . ..

5.3 Points in Space, Experimentally

This subsection presents experimental results for points in three dimensions. As a substitute for R3, we
glue the sides of the unit cube to form a 3-dimensional torus and let A ⊆ [0, 1)3 be a stationary Poisson
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Average #Simplices
Vertices Edges Triangles Tetrahedra 4-Simplices

N001 = 337.0 N002 = 1010.8 N003 = 673.9 N013 = 673.9 N113 = 673.9
N011 = 1526.3 N012 = 1864.5 N022 = 853.7 N122 = 853.7

N111 = 3557.3 N112 = 2716.4

Table 4: The average number of simplices of each type—computed over 100 repeats of the experiment—in
the chromatic Delaunay mosaic of a tri-colored stationary Poisson point process with intensity ϱ = 1000
in [0, 1)2. Numbers implied by symmetry are omitted

point process with intensity ϱ > 0. We begin with a random bi-coloring, χ : A → {0, 1}, for which the
p-cells in the mono-chromatic and chromatic Voronoi tessellations satisfy

m0 = N04 +N40, n0 = N14 +N23 +N32 +N41, (5.10)

m1 = N03 +N30, n1 = N13 +N22 +N31, (5.11)

m2 = N02 +N20, n2 = N12 +N21, (5.12)

m3 = N01 +N10, n3 = N11; (5.13)

see Table 5 for some computed averages. The crossings for two colors in three dimensions are between
Voronoi edges and Voronoi polygons, which are counted by n0 −m0 = N23 +N32.

Average #Simplices
Vertices Edges Triangles Tetrahedra 4-simplices

N01 = 503.6 N02 = 3912.8 N03 = 6818.5 N04 = 3409.2 N14 = 3409.2
N11 = 5269.8 N12 = 12441.8 N13 = 11082.8 N23 = 4264.4

N22 = 12793.8

Table 5: The average number of simplices of each type in the chromatic Delaunay mosaic of a bi-colored
stationary Poisson point process with intensity ϱ = 1000 in [0, 1)3. Numbers implied by symmetry are
omitted.

We continue with a random tri-coloring, χ : A → {0, 1, 2}, for which the chromatic Delaunay mosaic
is a complex in R5. The p-cells of the mono-chromatic and chromatic Voronoi tessellations satisfy

m0 = N004 +N040 +N400, n0 = N114 +N141 +N411 +N123 +N132

+N213 +N312 +N231 +N321 +N222, (5.14)

m1 = N003 +N030 +N300, n1 = N113 +N131 +N311 +N122 +N212 +N221, (5.15)

m2 = N002 +N020 +N200, n2 = N112 +N121 +N211, (5.16)

m3 = N001 +N010 +N100, n3 = N111; (5.17)

see Table 6 for some computed averages. The crossings are either between an edge of one color and a
polygon of another color, or between three polygons, one of each color, which are counted by n0 −m0 =
N123 +N132 +N213 +N312 +N231 +N321 +N222. We remark that N222 is the only count for which the
previous subsection does not offer an analytic expression for its expected value.

6 Discussion

This paper introduces chromatic Delaunay mosaics to study the mingling of points of different color
classes in Euclidean space. Our main results are structural—proving relations useful in the topological
analysis of mingling—and combinatorial—arguing that the size of the mosaic is sufficiently small to be
attractive in applications. There are two questions suggested by the work in this paper we mention.

• Given a tri-colored stationary Poisson point process in R3, what is the density of crossings between
three 2-cells—one each from the Voronoi tessellations of the three color classes? Indeed, d = s+1 =
3 is the first case for which the density of crossings is not yet known. What if d ≥ 3 and s+1 ≥ 3?
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Average #Simplices
Vertices Edges Triangles Tetrahedra 4-simplices 5-simplices

N001 = 332.7 N002 = 2585.6 N003 = 4505.7 N004 = 2252.8 N014 = 2252.8 N114 = 2252.8

N011 = 3491.8 N012 = 8237.4 N013 = 7331.2 N023 = 2825.6 N123 = 2825.6

N111 = 12678.0 N022 = 8478.8 N113 = 10150.7 N222 = 3217.8

N112 = 17092.8 N122 = 11696.5

Table 6: The average number of simplices of each type in the chromatic Delaunay mosaic of a tri-colored
stationary Poisson point process with intensity ϱ = 1000 in [0, 1)3. Numbers implied by symmetry are
omitted.

• We prove that sets with few spherical k-sets have small expected overlays of mono-chromatic
Voronoi tessellations; see Lemma 4.1. Is the converse also true? More generally, how are sets with
few spherical k-sets, sets with colorings whose mono-chromatic Voronoi tessellations have small
overlays, and dense sets under some notion of density related?

• For a dense set in R2, we strengthen the linear bound on the overlay size from expected to worst
case, so it holds for every coloring of the set. Is there a reasonable notion of density in three and
higher dimensions, such that the overlay of the mono-chromatic Voronoi tessellations has linear
size for every coloring of a dense set?

There are also open-ended research directions suggested by the work reported in this paper. For example:
how tolerant are our results to faults in the data, such as the misclassification of (biological) cells? How
much of a difference does the change of the color of a small number of points make to the size and
structure of the chromatic Delaunay mosaic? What is the variance of the overlay size assuming the
coloring is random?
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