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Abstract1

The Upper Bound Theorem for convex polytopes implies that the p-th Betti number of the Čech2

complex of any set of N points in Rd and any radius satisfies βp = O(Nm), with m = min{p+1, ⌈d/2⌉}.3

We construct sets in even and odd dimensions that prove this upper bound is asymptotically tight.4

For example, we describe a set of N = 2(n + 1) points in R3 and two radii such that the first Betti5

number of the Čech complex at one radius is (n + 1)2 − 1, and the second Betti number of the Čech6

complex at the other radius is n2.7
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1 Introduction8

Given a finite set of points A in Rd and a radius, their Čech complex is the collection of9

subsets of the points whose balls have a nonempty common intersection. This is an abstract10

simplicial complex isomorphic to the nerve of the balls, and by the Nerve Theorem [5], it11

has the same homotopy type as the union of the balls. This property is the reason for the12

popularity of the Čech complex in topological data analysis; see e.g. [7, 9]. Of particular13

interest are the Betti numbers, which may be interpreted as the numbers of holes of different14

dimensions. These are intrinsic properties, but for a space embedded in Rd, they describe15

the connectivity of the space as well as that of its complement. Most notably, the (reduced)16

zero-th Betti number, β0, is one less than the number of connected components, and the last17

possibly non-zero Betti number, βd−1, is the number of voids (bounded components of the18

complement). Spaces that have the same homotopy type—such as a union of balls and the19

corresponding Čech complex—have identical Betti numbers. While the Čech complex is not20

necessarily embedded in Rd, the corresponding union of balls is, which implies that also the21

Čech complex has no non-zero Betti numbers beyond dimension d− 1. To gain insight into22

the statistical behavior of the Betti numbers of Čech complexes, it is useful to understand23

how large the numbers can get, and this is the question we study in this paper.24

The question of maximum Betti numbers lies at the crossroads of computational topology25

and discrete geometry. Originally inspired by problems in the theory of polytopes [19,26

27], optimization [21], robotics, motion planning [23], and molecular modeling [20], many27

interesting and surprisingly difficult questions were asked about the complexity of the union28

of n geometric objects, as n tends to infinity. For a survey, consult [1]. Particular attention29

was given to estimating the number of voids among N simply shaped bodies, e.g., for the30

translates of a fixed convex body in Rd. In the plane, the answer is typically linear in N (for31

instance, for disks or other fat objects), but for d = 3, the situation is more delicate. The32
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maximum number of voids among N translates of a convex polytope with a constant number33

of faces is Θ(N2), but this number reduces to linear for the cube and other simple shapes [3].34

It was conjectured for a long time that similar bounds hold for the translates of a convex35

shape that is not necessarily a polytope. However, this turned out to be false: Aronov,36

Cheung, Dobbins and Goaoc [2] constructed a convex body in R3 for which the number37

of voids is Ω(N3). This is the largest possible order of magnitude for any arrangement of38

convex bodies that are not necessarily translates of a fixed one [18]. It is an outstanding39

open problem whether there exists a centrally symmetric convex body with this property.40

For the special case where the convex body is the unit ball in R3, the maximum number of41

voids in a union of N translates is O(N2). This can be easily derived from the Upper Bound42

Theorem for 4-dimensional convex polytopes. It has been open for a long time whether this43

bound can be attained. Our main theorem answers this question in the affirmative, in a44

more general sense.45

▶ Main Theorem. For every d ≥ 1, 0 ≤ p ≤ d− 1, and N ≥ 1, there is a set of N points in46

Rd and a radius such that the p-th Betti number of the Čech complex of the points and the47

radius is βp = Θ(Nm), with m = min{p+ 1, ⌈d/2⌉}.48

For d = 3, the maximum second Betti number is β2 = Θ(N2) in R3, which is equivalent to49

the maximum number of voids being Θ(N2). In addition to the Čech complex, the proof of50

the Main Theorem makes use of three complexes defined for a set of N points, A ⊆ Rd, in51

which the third also depends on a radius r ≥ 0:52

the Voronoi domain of a point a ∈ A, denoted dom(a,A), contains all points x ∈ Rd that53

are at least as close to a as to any other point in A, and the Voronoi tessellation of A,54

denoted Vor(A), is the collection of dom(a,A) with a ∈ A [25];55

the Delaunay mosaic of A, denoted Del(A), contains the convex hull of Σ ⊆ A if the56

common intersection of the dom(a,A), with a ∈ Σ, is non-empty, and no other Voronoi57

domain contains this common intersection [8];58

the Alpha complex of A and r, denoted Alf(A, r), is the subcomplex of the Delaunay59

mosaic that contains the convex hull of Σ if the common intersection of the dom(a,A),60

with a ∈ Σ, contain a point at distance at most r from the points in Σ [10, 11].61

The Delaunay mosaic is also known as the dual of the Voronoi tessellation, or the Delaunay62

triangulation of A. Note that Alf(A, r) ⊆ Alf(A,R) whenever r ≤ R, and that for sufficiently63

large radius, the Alpha complex is the Delaunay mosaic. Similar to the Čech complex, the64

Alpha complex has the same homotopy type as the union of balls with radius r centered65

at the points in A, and thus the same Betti numbers. It is instructive to increase r from 066

to ∞ and to consider the filtration or nested sequence of Alpha complexes. The difference67

between an Alpha complex, K, and the next Alpha complex in the filtration, L, consists68

of one or more cells. If it is a single cell of dimension p, then either βp(L) = βp(K) + 1 or69

βp−1(L) = βp−1(L) − 1, and all other Betti numbers are the same. In the first case, we say70

the cell gives birth to a p-cycle, while in the second case, it gives death to a (p− 1)-cycle, and71

in both cases we say it is critical. If there are two or more cells in the difference, this may72

be a generic event or accidental due to non-generic position of the points. In the simplest73

generic case, we simultaneously add two cells (one a face of the other), and the addition is74

an anti-collapse, which does not affect the homotopy type of the complex. More elaborate75

anti-collapses, such as the simultaneous addition of an edge, two triangles, and a tetrahedron,76

can arise generically. The cells in an interval of size 2 or larger cancel each other’s effect on77

the homotopy type, so we say these cells are non-critical. We refer to [4] for more details.78
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With these notions, it is not difficult to prove the upper bounds in the Main Theorem. As79

mentioned above, the Čech and alpha complexes for radius r have the same Betti numbers.80

Since a p-cycle is given birth to by a p-cell in the filtration of Alpha complexes, and every81

p-cell gives birth to at most one p-cycle, the number of p-cells is an upper bound on the82

number of p-cycles, which are counted by the p-th Betti number. The number of p-cells in83

the Alpha complex is at most that number in the Delaunay mosaic, which is, by the Upper84

Bound Theorem for convex polytopes [19, 27], at most O(Nm), with m = min{p+ 1, ⌈d/2⌉}.85

By comparison, to come up with constructions that prove matching lower bounds is delicate86

and the main contribution of this paper. Our constructions are multipartite and inspired by87

Lenz’ constructions related to Erdős’s celebrated question on repeated distances [13]: what88

is the largest number of point pairs in an N -element set in Rd that are at distance 1 apart?89

Lenz noticed that in 4 (and higher) dimensions, this maximum is Θ(N2). To see this, take90

two circles of radius √
2/2 centered at the origin, lying in two orthogonal planes, and place91

⌈N/2⌉ and ⌊N/2⌋ points on them. By Pythagoras’ theorem, any two points on different92

circles are at distance 1 apart, so the number of unit distances is roughly N2/4, which is93

nearly optimal. For d = 2 and 3, we are far from knowing asymptotically tight bounds. The94

current best constructions give Ω(N1+c/ log log N ) unit distance pairs in the plane [6, page95

191] and Ω(N4/3 log logN) in R3, while the corresponding upper bounds are O(N4/3) and96

O(N3/2); see [24] and [17, 26]. Even the following, potentially simpler, bipartite analogue of97

the repeated distance question is open in R3: given N red points and N blue points in R3,98

such that the minimum distance between a red and a blue point is 1, what is the largest99

number of red-blue point pairs that determine a unit distance? The best known upper bound,100

due to Edelsbrunner and Sharir [12] is O(N4/3), but we have no superlinear lower bound.101

This last question is closely related to the subject of our present paper.102

It is not difficult to see that the upper bounds in the Main Theorem also hold for the103

Betti numbers of the union of N not necessarily congruent balls in Rd. This requires the104

use of weighted versions of the Voronoi tessellation and the Upper Bound Theorem. In the105

lower bound constructions, much of the difficulty stems from the fact that we insist on using106

congruent balls. This suggests the analogy to the problem of repeated distances.107

Outline. Section 2 proves the Main Theorem for sets in even dimensions. Starting with108

Lenz’ constructions, we partition the Delaunay mosaic into finitely many groups of congruent109

simplices. We compute the radii of their circumspheres and obtain the Betti numbers by110

straightforward counting. In Section 3, we establish the Main Theorem for sets in three111

dimensions. The situation is more delicate now, because the simplices of the Delaunay mosaic112

no longer fall into a small number of distinct congruence classes. Nevertheless, they can113

be divided into groups of nearly congruent simplices, which will be sufficient to carry out114

the counting argument. In Section 4, we extend the result to any odd dimension. Again we115

require a detailed analysis of the shapes and sizes of the simplices, which now proceeds by116

induction on the dimension. Section 5 contains concluding remarks and open questions.117

2 Even Dimensions118

In this section, we give an answer to the maximum Betti number question for Čech complexes119

in even dimensions. To state the result, let nk be the minimum integer such that the edges120

of a regular nk-gon inscribed in a circle of radius 1/
√

2 are strictly shorter than
√

2/k. For121

example, if k = 2, we have n2 = 5, as the side length of an inscribed square is equal to 1.122
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▶ Theorem 2.1 (Maximum Betti Numbers in R2k). For every 2k ≥ 2 and n ≥ nk, there exist123

a set A of N = kn points in R2k and radii ρ0 < ρ1 < . . . < ρ2k−2 such that124

βp(Čech(A, ρp)) =
(

k
p+1

)
· np+1 ±O(1), for 0 ≤ p ≤ k − 1; (1)125

βp(Čech(A, ρp)) =
(

k−1
p+1−k

)
· nk ±O(1), for k ≤ p ≤ 2k − 2. (2)126

For p = 2k − 1, there exist N = k(n+ 1) + 2 points in R2k and a radius such that the p-th127

Betti number of the Čech complex is nk ±O(nk−1).128

The reason for the condition n ≥ nk will become clear in the proof of Lemma 2.5, which129

establishes a particular ordering of the circumradii of the cells in the Delaunay mosaic. The130

proof of the cases 0 ≤ p ≤ 2k− 2 is not difficult using elementary computations, the results of131

which will be instrumental for establishing the more challenging odd-dimensional statements132

in Sections 3 and 4. The proof consists of four steps presented in four subsections: the133

construction of the point set in Section 2.1, the geometric analysis of the simplices in the134

Delaunay mosaic in Section 2.2, the ordering of the circumradii in Section 2.3, and the final135

counting in Section 2.4. The proof of the case p = 2k − 1 in R2k readily follows the case136

p = 2k − 2 in R2k−1, as we will describe in Section 4.5.137

2.1 Construction138

Let d = 2k. We construct a set A = A2k(n) of N = kn points in Rd using k concentric circles139

in mutually orthogonal coordinate planes: for 0 ≤ ℓ ≤ k − 1, the circle Cℓ with center at the140

origin, 0 ∈ Rd, is defined by x2
2ℓ+1 + x2

2ℓ+2 = 1
2 and xi = 0 for all i ̸= 2ℓ+ 1, 2ℓ+ 2. On each141

of the k circles, we choose n ≥ 3 points that form a regular n-gon. The length of the edges142

of these n-gons will be denoted by 2s. Obviously, we have s =
√

2
2 sin π

n . Assuming k ≥ 2,143

the condition n ≥ nk implies that the Euclidean distance between consecutive points along144

the same circle is less than 1, and by Pythagoras’ theorem, the distance between any two145

points on different circles is 1. It follows that for r = 1
2 , neighboring balls centered on the146

same circle overlap, while the balls centered on different circles only touch. Correspondingly,147

the first Betti number of the Čech complex for a radius slightly less than 1
2 is β1 = k. To get148

the first Betti number for r = 1
2 , we add all edges of length 1, of which k − 1 connect the k149

circles into a single connected component, while the others increase the first Betti number to150

β1 = k +
(

k
2
)
n2 − (k − 1) =

(
k
2
)
n2 + 1.151

To generalize the analysis beyond the first Betti number, we consider the Delaunay mosaic152

and two radii defined for each of its cells. The circumsphere of a p-cell is the unique (p− 1)-153

sphere that passes through its vertices, and we call its center and radius the circumcenter154

and the circumradius of the cell. To define the second radius, we call a (d− 1)-sphere empty155

if all points of A lie on or outside the sphere. The radius function on the Delaunay mosaic,156

Rad: Del(A) → R, maps each cell to the radius of the smallest empty (d− 1)-sphere that157

passes through the vertices of the cell. By construction, each Alpha complex is a sublevel set158

of this function: Alf(A, r) = Rad−1[0, r]. The two radii of a cell may be different, but they159

agree for the critical cells as defined in terms of their topological effect in the introduction.160

It will be convenient to work with the corresponding geometric characterization of criticality:161

▶ Definition 2.2 (Critical Cell). A critical cell of Rad: Del(A) → R is a cell Σ ∈ Del(A)162

that (1) contains the circumcenter in its interior, and (2) the (d− 1)-sphere centered at the163

circumcenter that passes through the vertices of Σ is empty and the vertices of Σ are the only164

points of A on this sphere.165
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There are two conditions for a cell to be critical for a reason. The first guarantees that166

its topological effect is not canceled by one of its faces, and the second guarantees that it167

does not cancel the topological effect of one of the cells it is a face of. As proved in [4],168

the radius function of a generic set, A ⊆ Rd, is generalized discrete Morse; see Forman [14]169

for background on discrete Morse functions. This means that each level set of Rad is a170

union of disjoint combinatorial intervals, and a simplex is critical iff it is the only simplex in171

its interval. Our set A is not generic because the (d − 1)-sphere with center 0 ∈ R2k and172

radius √
2/2 passes through all its points. Indeed, Del(A) is really a 2k-dimensional convex173

polytope, namely the convex hull of A and all its faces. Nevertheless, the distinction between174

critical and non-critical cells is still meaningful, and all cells in the Delaunay mosaic of our175

construction will be seen to be critical.176

The value of the 2k-polytope under the radius function is √
2/2, while the values of its177

proper faces are strictly smaller than √
2/2. Let Σℓ,j be such a face, in which ℓ + 1 is the178

number of circles that contain one or two of its vertices, and j + 1 is the number of circles179

that contain two. Specifically, Σℓ,j has j + 1 disjoint short edges of length 2s, while the180

remaining long edges all have unit length. Indeed, the geometry of the simplex is determined181

by ℓ and j and does not depend on the circles from which we pick the vertices or where along182

these circles we pick them, as long as two vertices from the same circle are consecutive along183

this circle. For example, Σ1,−1, Σ1,0, and Σ1,1 are the unit length edge, the isosceles triangle184

with one short and two long edges, and the tetrahedron with two disjoint short and four long185

edges, respectively. We call the Σℓ,j ideal simplices. In even dimensions they are precisely186

the simplices in the Delaunay mosaic of our construction. However, in odd dimensions, the187

cells in the Delaunay mosaic only converge to the ideal simplices. This will be explained in188

detail in Sections 3 and 4.189

2.2 Circumradii of Ideal Simplices190

In this section, we compute the sizes of some ideal simplices, beginning in four dimensions.191

The ideal 2-simplex or triangle, denoted Σ1,0, is the isosceles triangle with one short and two192

long edges. We write h(s) for the height of Σ1,0 (the distance between the midpoint of the193

short edge and the opposite vertex), and r(s) for the circumradius. There is a unique way194

to glue four such triangles to form the boundary of a tetrahedron: the two short edges are195

disjoint and their endpoints are connected by four long edges. This is the ideal 3-simplex or196

tetrahedron, denoted Σ1,1. We write H(s) for its height (the distance between the midpoints197

of the two short edges), and R(s) for its circumradius.198

▶ Lemma 2.3 (Ideal Triangle and Tetrahedron). The squared heights and circumradii of the199

ideal triangle and the ideal tetrahedron in R4 satisfy200

h2(s) = 1 − s2, 4r2(s) = 1
1 − s2 , (3)201

H2(s) = 1 − 2s2, 4R2(s) = 1 + 2s2. (4)202

Proof. By Pythagoras’ theorem, the squared height of the ideal triangle is h2 = 1 − s2. If203

we glue the two halves of a scaled copy of the ideal triangle to the two halves of the short204

edge, we get a quadrangle inscribed in the circumcircle of the triangle. One of its diagonals205

passes through the center, and its squared length satisfies 4r2 = 1 + (s/h)2 = 1 + s2

1−s2 .206

By Pythagoras’ theorem, the squared height of the ideal tetrahedron is H2 = h2 − s2 =207

1 − 2s2. Hence, the squared diameter of the circumsphere is 4R2 = H2 + (2s)2 = 1 + 2s2. ◀208
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To generalize the analysis beyond the ideal simplices in four dimensions, we write rℓ,j(s) for209

the circumradius of Σℓ,j , so r1,−1(s) = 1
2 , r1,0(s) = r(s), and r1,1(s) = R(s). For two kinds210

of ideal simplices, the circumradii are particularly easy to compute, namely for the Σℓ,−1 and211

the Σℓ,ℓ, and we will see that knowing their circumradii will be sufficient for our purposes.212

▶ Lemma 2.4 (Further Ideal Simplices). For ℓ ≥ 0, the squared circumradii of Σℓ,−1 and Σℓ,ℓ213

satisfy r2
ℓ,−1(s) = ℓ/(2ℓ+ 2) and r2

ℓ,ℓ(s) = (ℓ+ 2s2)/(2ℓ+ 2).214

Proof. Consider the standard ℓ-simplex, which is the convex hull of the endpoints of the ℓ+1215

unit coordinate vectors in Rℓ+1. Its squared circumradius is the squared distance between216

the barycenter and any one of the vertices, which is easy to compute. By comparison, the217

squared circumradius of the regular ℓ-simplex with unit length edges is half that of the218

standard ℓ-simplex:219

R2
ℓ = 1

2

[
ℓ2

(ℓ+ 1)2 + 1
(ℓ+ 1)2 + . . .+ 1

(ℓ+ 1)2

]
= ℓ

2(ℓ+ 1) , (5)220

Since r2
ℓ,−1(s) = R2

ℓ , this proves the first equation in the lemma. Note that the convex hull221

of the midpoints of the ℓ+ 1 short edges of Σℓ,ℓ is a regular ℓ-simplex with edges of squared222

length H2(s) = 1 − 2s2. The short edges are orthogonal to this ℓ-simplex, which implies223

r2
ℓ,ℓ = H2(s) ·R2

ℓ + s2 = R2
ℓ + (1 − 2R2

ℓ )s2 = ℓ+ 2s2

2ℓ+ 2 , (6)224

which proves the second equation in the lemma. ◀225

2.3 Ordering the Radii226

In this subsection, we show that the radii of the circumspheres of the ideal simplices increase227

with increasing ℓ and j:228

▶ Lemma 2.5 (Ordering of Radii in R2k). Let 0 < s < 1/
√

2k. Then the ideal simplices229

satisfy rℓ,ℓ(s) < rℓ+1,−1(s) for 0 ≤ ℓ ≤ k − 2, and rℓ,j(s) < rℓ,j+1(s) for −1 ≤ j < ℓ ≤ k − 1.230

Proof. To prove the first inequality, we use Lemma 2.4 to compute the difference between231

the two squared radii:232

r2
ℓ+1,−1(s) − r2

ℓ,ℓ(s) = ℓ+ 1
2(ℓ+ 2) − ℓ+ 2s2

2(ℓ+ 1) = 1 − 2s2(ℓ+ 2)
2(ℓ+ 2)(ℓ+ 1) . (7)233

Hence, r2
ℓ,ℓ(s) < r2

ℓ+1,−1(s) iff s2 < 1/(2ℓ+ 4). We need this inequality for 0 ≤ ℓ ≤ k − 2, so234

s2 < 1/(2k) is sufficient, but this is guaranteed by the assumption.235

We prove the second inequality geometrically, without explicit computation of the radii.236

Fix an ideal simplex, Σℓ,j , and let Sd−1 be the (d− 1)-sphere whose center and radius are237

the circumcenter and circumradius of Σℓ,j . Assume w.l.o.g. that the circles C0 to Cj contain238

two vertices of Σℓ,j each, and the circles Cj+1 to Cℓ contain one vertex of Σℓ,j each. For239

0 ≤ i ≤ k− 1, write Pi for the 2-plane that contains Ci and xi for the projection of the center240

of Sd−1 onto Pi. Note that ∥xi∥2 is the squared distance to the origin, and for 0 ≤ i ≤ ℓ241

write r2
i for the squared distance between xi and the one or two vertices of Σℓ,j in Pi. Fixing242

i between 0 and ℓ, the squared radius of Sd−1 is r2
i plus the squared distance of the center of243

Sd−1 from Pi, which is the sum of the squared norms other than ∥xi∥2. Taking the sum for244

0 ≤ i ≤ ℓ and dividing by ℓ+ 1, we get245

r2
ℓ,j(s) = 1

ℓ+ 1

[∑ℓ

i=0
r2

i + ℓ ·
∑ℓ

i=0
∥xi∥2 + (ℓ+ 1) ·

∑k−1

i=ℓ+1
∥xi∥2

]
. (8)246
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By construction, r2
ℓ,j(s) is the minimum squared radius of any (d − 1)-sphere that passes247

through the vertices of Σℓ,j . Hence, also the right-hand side of (8) is a minimum, but since248

the 2-planes are pairwise orthogonal, we can minimize in each 2-plane independently of the249

other. For ℓ + 1 ≤ i ≤ k − 1, this implies ∥xi∥2 = 0, so we can drop the last sum in (8).250

For j + 1 ≤ i ≤ ℓ, xi lies on the line passing through the one vertex in Pi and the origin.251

This implies that Sd−1 touches Ci at this vertex, and all other points of the circle lie strictly252

outside Sd−1. For 0 ≤ i ≤ j, xi lies on the bisector line of the two vertices, which passes253

through the origin. The contribution to (8) for an index between 0 and j is thus strictly254

larger than for an index between j + 1 and ℓ. This finally implies r2
ℓ,j(s) < r2

ℓ,j+1(s) and255

completes the proof of the second inequality. ◀256

Recall that 2s is the edge length of a regular n-gon inscribed in a circle of radius 1/
√

2.257

By the definition of nk, the condition s < 1/
√

2k in the lemma holds, whenever n ≥ nk.258

For the counting argument in the next subsection, we need the ordering of the radii259

as defined by the radius function, but it is now easy to see that they are the same as the260

circumradii, so Lemma 2.5 applies. Indeed, Rad(Σℓ,j) = rℓ,j(s) if Σℓ,j is a critical simplex of261

Rad. To realize that it is, we note that the circumcenter of Σℓ,j lies in its interior because of262

symmetry. To see that also the second condition for criticality in Definition 2.2 is satisfied,263

we recall that Sd−1 is the (d− 1)-sphere whose center and radius are the circumcenter and264

circumradius of Σℓ,j . By the argument in the proof of Lemma 2.5, Sd−1 is empty, and all265

points of A other than the vertices of Σℓ,j lie strictly outside this sphere.266

2.4 Counting the Cycles267

To compute the Betti numbers, we make essential use of the structure of the Delaunay mosaic268

of A, which consists of as many groups of congruent ideal simplices as there are different269

values of the radius function. For each 0 ≤ ℓ ≤ k − 1, we have ℓ+ 2 groups of simplices that270

touch exactly ℓ+ 1 of the k circles. In addition, we have a single 2k-cell, convA, with radius271
√

2/2, which gives 1 + 2 + . . .+ (k+ 1) =
(

k+2
2

)
groups. We write Aℓ,j = Rad−1[0, rℓ,j ] for the272

Alpha complex that consists of all simplices with circumradii up to rℓ,j = rℓ,j(s). We prove273

Theorem 2.1 in two steps, first the relations (1) for 0 ≤ p ≤ k − 1 and second the relations274

(2) for k ≤ p ≤ 2k− 2. The case p = 2k− 1 will be settled later, in Section 4.5. To begin, we275

study the Alpha complexes whose simplices touch at most ℓ+ 1 of the k circles.276

▶ Lemma 2.6 (Constant Homology in R2k). Let k be a constant, A = A2k(n) ⊆ R2k, and277

0 ≤ ℓ ≤ k − 1. Then βp(Aℓ,ℓ) = O(1) for every 0 ≤ p ≤ 2k − 1.278

Proof. Fix ℓ and a subset of ℓ+ 1 circles. The full subcomplex of Aℓ,ℓ defined by the points279

of A on these ℓ+ 1 circles consists of all cells in Del(A) whose vertices lie on these and not280

any of the other circles. Its homotopy type is that of the join of ℓ+ 1 circles or, equivalently,281

that of the (2ℓ + 1)-sphere; see [16, pages 9 and 19]. This sphere has only one non-zero282

(reduced) Betti number, which is β2ℓ+1 = 1. There are
(

k
ℓ+1

)
such full subcomplexes. The283

common intersection of any number of these subcomplexes is a complex of similar type,284

namely the full subcomplex of Del(A) defined by the points on the common circles, which285

has the homotopy type of the (2i + 1)-sphere, with i ≤ ℓ. By repeated application of the286

Mayer–Vietoris sequence [16, page 149], this implies that the Betti numbers of Aℓ,ℓ are287

bounded by a function of k and are, thus, independent of n. Since we assume that k is a288

constant, we have βp(Aℓ,ℓ) = O(1) for every p. ◀289

Now we are ready to complete the proof of Theorem 2.1 for p ≤ 2k − 2. To establish290

relation (1), fix p between 0 and k − 1 and consider Ap,−1 = Rad−1[0, rp,−1], which is the291
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Alpha complex consisting of all simplices that touch p or fewer circles, together with all292

simplices that touch p+ 1 circles but each circle in only one point. In other words, Ap,−1 is293

Ap−1,p−1 together with all the
(

k
p+1

)
np+1 p-simplices that have no short edges. By Lemma 2.6,294

Ap−1,p−1 has only a constant number of (p− 1)-cycles. Hence, only a constant number of295

the p-simplices can give death to (p− 1)-cycles, while the remaining p-simplices give birth to296

p-cycles. This is because every p-simplex either gives birth or death, so if it cannot give death297

to a (p− 1)-cycle, then it gives birth to a p-cycle. Hence, βp(Ap,−1) =
(

k
p+1

)
np+1 ±O(1), as298

claimed. The proof of relation (2) is similar but inductive. The induction hypothesis is299

βp(Ak−1,p−k) =
(

k−1
p−k+1

)
· nk ±O(1). (9)300

For p = k − 1, it claims βk−1(Ak−1,−1) = nk ± O(1), which is what we just proved. In301

other words, relation (1) furnishes the base case at p = k − 1. A single inductive step302

takes us from Ak−1,p−k to Ak−1,p−k+1; that is: we add all simplices that touch all k circles303

and p − k + 2 of them in two vertices to Ak−1,p−k. The number of such simplices is the304

number of ways we can pick a pair of consecutive vertices from p − k + 2 circles and a305

single vertex from the remaining 2k − p− 2 circles. Since there are equally many vertices as306

there are consecutive pairs, this number is
(

k
p−k+2

)
nk. The dimension of these simplices is307

(k− 1) + (p− k+ 1) + 1 = p+ 1. Some of these (p+ 1)-simplices give death to p-cycles, while308

the others give birth to (p+ 1)-cycles in Ak−1,p−k+1. By the induction hypothesis, there are309 (
k−1

p−k+1
)

· nk ±O(1) p-cycles in Ak−1,p−k, so this is also the number of (p+ 1)-simplices that310

give death. Since
(

k
p−k+2

)
−

(
k−1

p−k+1
)

=
(

k−1
p−k+2

)
, this implies311

βp(Ak−1,p−k+1) =
(

k−1
p−k+2

)
· nk ±O(1), (10)312

as required to finish the inductive argument.313

3 Three Dimensions314

In this section, we answer the maximum Betti number question for Čech complexes in the315

smallest odd dimension in which it is non-trivial:316

▶ Theorem 3.1 (Maximum Betti Numbers in R3). For every n ≥ 2, there exist N = 2n+ 2317

points in R3 such that the Čech complex for a radius has first Betti number β1 = (n+ 1)2 − 1318

and for another radius has second Betti number β2 = n2.319

The proof consists of four steps: the construction of the set in Section 3.1, the analysis of320

the circumradii in Section 3.2, the argument that all simplices in the Delaunay mosaic are321

critical in Section 3.3, and the final counting of the tunnels and voids in Section 3.4.322

3.1 Construction323

Given n and 0 < ∆ < 1, we construct the point set, A = A3(n,∆), using two linked circles324

in R3: Cz with center vz = (− 1
2 , 0, 0) in the xy-plane defined by (− 1

2 + cosφ, sinφ, 0) for325

0 ≤ φ < 2π, and Cy with center vy = ( 1
2 , 0, 0) in the xz-plane defined by ( 1

2 − cosψ, 0, sinψ)326

for 0 ≤ ψ < 2π; see Figure 1. On each circle, we choose n+ 1 points close to the center of327

the other circle. To be specific, take the points (0,−∆, 0) and (0,∆, 0), and project them328

to Cz along the x-axis. The resulting points are denoted by a0 = (− 1
2 +

√
1 − ∆2,−∆, 0)329

and an = (− 1
2 +

√
1 − ∆2,∆, 0). Divide the arc between them into n equal pieces by330

the points a1, a2, . . . , an−1. Symmetrically, project the points (0, 0,−∆) and (0, 0,∆) to331

b0 = ( 1
2 −

√
1 − ∆2, 0,−∆) and bn = ( 1

2 −
√

1 − ∆2, 0,∆) lying on Cy, and place n− 1 points332
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b1, b2, . . . , bn−1 on the arc between them, dividing it into n equal pieces. Let ε = ε(n,∆) be333

the half-length of the (straight) edge connecting two consecutive points of either sequence.334

Clearly, ε is a function of n and ∆, and it is easy to see that335

∆/n < ε < π
2 ∆/n and ε

∆→0−→ ∆/n. (11)336

x

Cz

b0
an

a0

Cy

bn

z

y

vz

vy

Figure 1: Two linked unit circles in orthogonal coordinate planes of R3, each touching the shaded
sphere centered at the origin and each passing through the center of the other circle. There are n + 1
points on each circle, on both sides and near the center of the other circle.

337

A sphere that does not contain a circle intersects it in at most two points. It follows that338

the sphere that passes through four points of A is empty if and only if two of the four points339

are consecutive on one circle and the other two are consecutive on the other. This determines340

the Delaunay mosaic: its N = 2n+ 2 vertices are the points ai and bj , its 2n+ (n+ 1)2 edges341

are of the forms aiai+1, bjbj+1, and aibj , its 2n(n + 1) triangles are of the forms aiai+1bj342

and aibjbj+1, and its n2 tetrahedra of the form aiai+1bjbj+1. Keeping with the terminology343

introduced in Section 2, we call the edges aibj long and the edges aiai+1 and bjbj+1 short.344

Hence, every triangle in the Delaunay mosaic has one short and two long edges, and every345

tetrahedron has two short and four long edges.346

3.2 Divergence from the Ideal347

The simplices in Del(A) are not quite ideal, in the sense of Section 2. We, therefore, need348

upper and lower bounds on their sizes, as quantified by their circumradii. We will make349

repeated use of the following two inequalities, which both hold for x > −1:350

√
1 + x ≤ 1 + x

2 , (12)351
√

1 + x ≥ 1 + x
2+x . (13)352

For example, we will obtain some bounds on the radii of the triangle and tetrahedron in353

Lemma 2.3, avoiding the use of square roots. For the triangle, we rewrite (3) to 4r2(s) = 1+x354
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with x = s2/(1 − s2), and for the tetrahedron, we have 4R2(s) = 1 + x with x = 2s2:355

1 + 1
2s

2 < 1 + s2/(1 − s2)
2 + s2/(1 − s2) ≤ 2r(s) ≤ 1 + s2

2 − 2s2 < 1 + 10
19s

2, (14)356

1 + 10
11s

2 ≤ 1 + s2

1 + s2 ≤ 2R(s) ≤ 1 + s2, (15)357

where we assume that n is large enough to imply 2 − 2s2 > 1.9 and therefore 1 + s2 < 1.1.358

We begin by proving bounds on the lengths of long edges.359

▶ Lemma 3.2 (Bounds for Long Edges in R3). Let 0 < ∆ < 1 and A = A3(n,∆) ⊆ R3. Then360

the half-length of any long edge, E ∈ Del(A), satisfies 1
2 ≤ RE ≤ 1

2 (1 + ∆4).361

Proof. To verify the lower bound, let a ∈ Cz and consider the sphere with unit radius362

centered at a. This sphere intersects the xz-plane in a circle of radius at most 1, whose363

center lies on the x-axis. The circle passes through vz ∈ Cy, which implies that the rest of364

Cy lies on or outside the circle and, therefore, on or outside the sphere centered at a. Hence,365

∥a− b∥ ≥ 1 for all b ∈ Cy, which implies the required lower bound.366

To establish the upper bound, observe that the distance between a and b is maximized367

if the two points are chosen as far as possible from the x-axis, so 4R2
E ≤ ∥a0 − b0∥2. By368

construction, a0 = (− 1
2 +

√
1 − ∆2,−∆, 0) and b0 = ( 1

2 −
√

1 − ∆2, 0,−∆). Hence,369

4R2
E ≤ ∥(−1 + 2

√
1 − ∆2,−∆,∆)∥

2
= 5 − 2∆2 − 4

√
1 − ∆2 (16)370

≤ 5 − 2∆2 − 4
(

1 − ∆2

2 − ∆2

)
= 1 + 2∆4

2 − ∆2 (17)371

≤ 1 + 2∆4, (18)372

where we used (13) to get (17) from (16), and ∆2 < 1 to obtain the final bound. Applying373

(12), wet get 2RE ≤ 1 + ∆4, as required. ◀374

Next, we estimate the circumradii of the triangles in Del(A). To avoid the computation375

of a constant, we use the big-Oh notation for ∆, in which we assume that n is fixed.376

▶ Lemma 3.3 (Bounds for Triangles in R3). Let 0 < ∆ <
√

2/n, A = A3(n,∆) ⊆ R3, and ε =377

ε(n,∆). Then the circumradius of any triangle, F , satisfies 1
2 + 1

4ε
2 ≤ RF ≤ 1

2 + 1
4ε

2 +O(∆4).378

Proof. To see the lower bound, recall that the short edge of F has length 2ε and the two long379

edges have lengths at least 1. We place the endpoints of the short edge on a circle of radius380

r(ε). By the choice of the radius, there is only one point on this circle with distance at least 1381

from both endpoints, and it has distance 1 from both. For any radius smaller than r(ε), there382

is no such point, which implies that the circumradius of F satisfies RF ≥ r(ε) ≥ 1
2 + 1

4ε
2,383

where the second inequality follows from (14).384

To prove the upper bound, we draw F in the plane, assuming its circumcircle is the circle385

with radius RF centered at the origin. Let a, b, c be the vertices of F , where a and c are the386

endpoints of the short edge. We have 0 ∈ F , since otherwise one of the angles at a and c is387

obtuse, in which case the squared lengths of the two long edges differ by at least 4ε2. By388

assumption,
√

2∆2 < 2∆/n ≤ 2ε, in which we get the second inequality from (11). But this389

implies that the difference between the squared lengths of the two long edges is larger than390

2∆4, which contradicts (18). Hence, b lies between the antipodes of the other two vertices,391
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a′ = −a and c′ = −c. By construction, ∥a′ − c′∥ = 2ε. Assuming ∥b− a′∥ ≤ ∥b− c′∥, this392

implies393

∥b− a′∥ ≤ RF arcsin ε
RF

≤ arcsin ε = ε+O(ε3). (19)394

Here, the second inequality follows from RF ≥ 1, using the convexity of the arcsin function,395

and the final expression using the Taylor expansion arcsin x = x+ 1
6x

3 + 3
40x

5 + . . .. Now396

consider the triangle with vertices a, a′, b. By the Pythagorean theorem,397

4R2
F = ∥b− a∥2 + ∥b− a′∥2

< 1 + 4∆4 + ε2 +O(ε4) = 1 + ε2 +O(∆4), (20)398

where we used Lemma 3.2 and (19) to bound ∥b− a∥2 and ∥b− a′∥2, respectively. We get399

the final expression using ε < ∆. Applying (12), we obtain 2RF ≤ 1 + 1
2ε

2 + O(∆4), as400

claimed. ◀401

Similar to the case of triangles, it is not difficult to establish that the circumradius of any402

tetrahedron in the Delaunay mosaic is at least the circumradius of the ideal tetrahedron.403

▶ Lemma 3.4 (Lower Bound for Tetrahedra in R3). Let 0 < ∆ < 1, A = A3(n,∆) ⊆ R3, and404

ε = ε(n,∆). Then the circumradius of any tetrahedron T ∈ Del(A) satisfies 1
2 + 5

11ε
2 ≤ RT .405

Proof. By construction, T has two disjoint short edges, both of length 2ε. We place the406

endpoints of one short edge on a sphere of radius R(ε). The set of points on this sphere that407

are at distance at least 1 from both endpoints is the intersection of two spherical caps whose408

centers are antipodal to the endpoints. We call this intersection a spherical bi-gon. Since409

the two caps have the same size, the two corners of the bi-gon are further apart than any410

other two points of the bi-gon. By choice of the radius, R(ε), the edge connecting the two411

corners has length 2ε. Hence, these corners are the only possible choice for the remaining412

two vertices of T , and for a radius smaller than R(ε), there is no choice. It follows that the413

circumradius of T is at least R(ε), and we get the claimed lower bound from (15). ◀414

3.3 All Simplices are Critical415

Since no empty sphere passes through more than four points of A, the Delaunay mosaic of A416

is simplicial, and the radius function on this Delaunay mosaic is a generalized discrete Morse417

function [4]. Furthermore, all simplices are critical; see Definition 2.2. The point set depends418

on two parameters, n and ∆, and we consider n fixed while ∆ goes to zero.419

▶ Lemma 3.5 (All Critical in R3). Let n ≥ 2, ∆ > 0 sufficiently small, and A = A3(n,∆) ⊆ R3.420

Then every simplex of the Delaunay mosaic of A is critical.421

Proof. It is clear that the vertices and the short edges are critical, but the other simplices422

in Del(A) require an argument. We begin with the long edges. Fix i and j, and write423

S2(i; j) for the smallest sphere that passes through ai and bj . Its center is the midpoint of424

the long edge and by (18) its squared diameter is between 1 and 1 + 2∆4. The distance425

between ai and any aℓ, ℓ ≠ i, is at least 2ε. Assuming aℓ is on or inside S2(i; j), we426

thus have ∥aℓ − bj∥2 ≤ 1 + 2∆4 − 4ε2, which, for sufficiently small ∆ > 0, is less than427

1. But this contradicts the lower bound in Lemma 3.2, so aℓ lies outside S2(i; j). By a428

symmetric argument, all bℓ, ℓ ̸= j, lie outside S2(i; j). Hence, S2(i; j) is strictly empty, for all429

0 ≤ i, j ≤ n, which implies that all edges of Del(A) are critical edges of the radius function.430

The fact that all edges of Del(A) are critical implies that all triangles are acute. Indeed,431

if aibjbj+1 is not acute, then the midpoint of one long edge is at least as close to the third432
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vertex as to the endpoints of the edge. Hence, any non-acute triangle would be an obstacle433

to the criticality of an edge, which implies that no such triangle can exist. However, the434

fact that all triangles are acute does not imply that all of them are critical. To prove the435

criticality of the Delaunay triangles, let x be the circumcenter of aibjbj+1, let S2(i; j, j + 1)436

be centered at x and pass through ai, bj , bj+1, and let a be the point other than ai in which437

S2(i; j, j + 1) intersects Cz. Since aibjbj+1 is acute, x lies in the interior of the triangle.438

It remains to show that the sphere is strictly empty. To this end, let x′ and x′′ be the439

centers of S2(i; j) and S2(i; j + 1), let a′ and a′′ be the points other than ai in which the two440

spheres intersect Cz, and consider the lines that pass through x and x′ and through x and441

x′′, respectively. Note that x lies between x′ and x′′. This implies that a is between a′ and442

a′′. Since S2(i; j) and S2(i; j + 1) are strictly empty, a′ and a′′ lie strictly between ai−1 and443

ai+1, and so does a. Hence, S2(i; j, j + 1) is strictly empty, which implies that all triangles444

of Del(A) are critical triangles of the radius function.445

Since all triangles are critical, all tetrahedra of Del(A) must also be critical. One can446

argue in two ways. Combinatorially: the radius function pairs non-critical tetrahedra with447

non-critical triangles, but there are no such triangles. Geometrically: since every triangle448

has a non-empty intersection with its dual Voronoi edge, every tetrahedron must contain its449

dual Voronoi vertex. ◀450

3.4 Counting the Tunnels and Voids451

Before counting the tunnels and voids, we recall that Rad: Del(A) → R maps each simplex452

to the radius of its smallest empty sphere that passes through its vertices. By Lemma 3.5,453

all simplices of Del(A) are critical, so Rad(E) is equal to the circumradius of E, for every454

edge E ∈ Del(A), and similarly for every triangle and every tetrahedron.455

▶ Corollary 3.6 (Ordering of Radii in R3). Let ∆ > 0 be sufficiently small, let A = A3(n,∆) ⊆456

R3, and let Rad: Del(A) → R be the radius function. Then Rad(E) < Rad(F ) < Rad(T )457

for every edge E, triangle F , and tetrahedron T in Del(A).458

Proof. Using Lemma 3.2 for the edges, Lemma 3.3 for the triangles, and Lemma 3.4 for the459

tetrahedra in the Delaunay mosaic of A, we get460

Rad(E) = RE < 1
2 +O(∆4), (21)461

1
2 + 1

4ε
2 ≤ Rad(F ) = RF < 1

2 + 1
4ε

2 +O(∆4), (22)462

1
2 + 5

11ε
2 ≤ Rad(T ) = RT , (23)463

so for sufficiently small ∆ > 0, the edges precede the triangles, and the triangles precede the464

tetrahedra in the filtration of the simplices. ◀465

For the final counting, choose ρ1 to be any number strictly between the maximum radius466

of any edge and the minimum radius of any triangle. The existence of such a number467

is guaranteed by Corollary 3.6. The corresponding Čech complex is the 1-skeleton of the468

Delaunay mosaic. It is connected, withN = 2n+2 vertices and 2n+(n+1)2 edges. The number469

of independent cycles is the difference plus 1, which implies β1(Čech(A, ρ1)) = (n+1)2 −1, as470

claimed. Similarly, choose ρ2 between the maximum radius of any triangle and the minimum471

radius of any tetrahedron, which is again possible, by Corollary 3.6. The corresponding Čech472

complex is the 2-skeleton of the Delaunay mosaic. The number of independent 2-cycles is473

the number of missing tetrahedra. This implies β2(Čech(A, ρ2)) = n2, as claimed.474
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4 Odd Dimensions475

In this section, we generalize the 3-dimensional results presented in Section 3 to every odd476

dimension.477

▶ Theorem 4.1 (Maximum Betti Numbers in R2k+1). For every d = 2k + 1 ≥ 1, n ≥ 2, and478

sufficiently small ∆ > 0, there are a set A = Ad(n,∆) ⊆ R2k+1 of N = (k + 1)(n+ 1) points479

and radii ρ0 < ρ1 < . . . < ρ2k such that480

βp(Čech(A, ρp)) =
(

k+1
p+1

)
· (n+ 1)p+1 ±O(1), for 0 ≤ p ≤ k; (24)481

βp(Čech(A, ρp)) =
(

k
p−k

)
· (n+ 1)k+1 ±O(nk), for k + 1 ≤ p ≤ 2k. (25)482

The steps in the proof are the same as in Sections 2 and 3: construction of the points, analysis483

of the circumradii, argument that all simplices are critical, and final counting of the cycles.484

In contrast to the earlier sections, the analytic part of the proof is inductive and distinguishes485

between erecting a pyramid or a bi-pyramid on top of a lower-dimensional simplex.486

4.1 Construction487

Equip Rd with Cartesian coordinates, x1, x2, . . . , xd, and consider a regular k-simplex, denoted488

by Σ, in the k-plane spanned by x1, x2, . . . , xk. It is not important where Σ is located inside489

the coordinate k-plane, but we assume for convenience that its barycenter is the origin of490

the coordinate system. It is, however, important that all edges of Σ have unit length. We491

will repeatedly need the squared circumradius, height, and in-radius of Σ, for which we state492

simple formulas for later convenience:493

R2
k = k

2(k+1) , H2
k = k+1

2k , D2
k = R2

k −R2
k−1 = 1

2k(k+1) . (26)494

Observe that the angle, α, between an edge and a height of Σ that meet at a shared vertex495

satisfies cosα = Hk. Let u0, u1, . . . , uk be the vertices of Σ, and let vℓ be the barycenter of496

the (k − 1)-face opposite to uℓ. For each 0 ≤ ℓ ≤ k, consider the 2-plane spanned by uℓ − vℓ497

and the xk+ℓ+1-axis, and let Cℓ be the circle in this 2-plane, centered at vℓ, that passes498

through uℓ; see Figure 2. Its radius is the height of the k-simplex: γ = Hk. Given a global499

choice of the parameter, 0 < ∆ < Hk, we cut Cℓ at xk+ℓ+1 = ±∆ into four arcs and place500

n + 1 point at equal angles along the arc that passes through uℓ. Repeating this step for501

each ℓ, we get a set of N = (k + 1)(n+ 1) points, denoted A = A2k+1(n,∆).502

A (d− 1)-sphere that contains none of the circles Cℓ intersects the k+ 1 circles in at most503

two points each. It follows that a sphere that passes through 2k + 2 points of Ad is empty504

if and only if it passes through two consecutive points on each of the k + 1 circles. This505

determines the Delaunay mosaic, which consists of nk+1 d-simplices together with all their506

faces. It follows that the number of p-simplices in Del(A) is at most some constant times507

nm, in which m = min{p+ 1, k + 1} and the constant depends on d = 2k + 1. Building on508

the notation introduced in Section 2, we describe a simplex, S ∈ Del(A), with two integers:509

ℓ = ℓ(S) is one less than the number of circles it touches, and j = j(S) is one less than the510

number of short edges. Hence, p = ℓ+ j + 1 is the dimension. For each 0 ≤ p ≤ k, there are511 (
k+1
p+1

)
(n+ 1)p+1 p-simplices that touch ℓ+ 1 = p+ 1 circles and thus have j + 1 = 0 short512

edges. As suggested by a comparison with relation (24) in Theorem 4.1, these p-simplices513

will be found responsible for the p-cycles counted by the p-th Betti number.514
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v2
u0

C1

C2

C0

u2

v0

u1

v1

Figure 2: The projection of the 5-dimensional construction to R3, in which x3, x4, x5 are all
mapped to the same, vertical coordinate direction. The circles C0, C1, C2 touch the shaded sphere in
the vertices of the triangle. In R5, the three circles belong to mutually orthogonal 2-planes, so the
two common points of the three circles in the drawing are an artifact of the particular projection.

4.2 Inductive Analysis515

The bulk of the proof of Theorem 4.1 is devoted to the analysis of the Delaunay simplices.516

The goal is to prove bounds on the circumradii that are strong enough to separate simplices517

of different types, and to show that all simplices are critical. The analysis is inductive with518

three hypotheses: the first about the circumradius, the second about the circumcenter, and519

the third about the projection of a vertex onto the affine hulls of the opposite facet. To520

formulate the second hypothesis, we write DS for the radius of the largest ball centered at521

the circumcenter that is contained in a simplex, S. To formulate the third hypothesis, we522

call a point x ∈ aff S edge-centric if the distance between the projection of x onto any edge523

of S has distance at most XE = n∆3 from the midpoint of that edge, and we write XS for524

the maximum distance between any edge-centric point and the circumcenter of S. Recall525

that ε = ε(n,∆) is a function of n and ∆ that satisfies ∆/n ≤ ε ≤ π
2 ∆/n.526

Hypothesis I: R2
S = R2

ℓ + j+1
(ℓ+1)2 ε

2 ±O(ε3).527

Hypothesis II: D2
S =

{
D2

ℓ ±O(ε2) if j(S) = −1,
1

(ℓ+1)2 ε
2 ±O(ε3) if 0 ≤ j(S) ≤ ℓ(S);528

Hypothesis III: XS = O(∆3),529

in which the big-Oh notation is used to suppress multiplicative constants, as usual. We530

assume that ∆ is chosen independent of the number of points, so in this context, n is531

considered to be a constant, and we write ∆ = O(ε), for example. The base case for the first532

two hypotheses will be covered by Lemmas 4.2 and 4.3, and the third hypothesis holds for533

edges, by definition. We will distinguish between two kinds of inductive steps, one reasoning534

from (ℓ − 1, j) to (ℓ, j) and the other from (ℓ, j − 1) to (ℓ, j). We need some notions to535

describe the difference. A facet of a simplex is a face whose dimension is 1 less than that of536

the simplex. We call a vertex a of S a twin if it is the endpoint of a short edge, in which537

case we write a′′ for the other endpoint of that edge. If a is not a twin, we write Q = S − a538

for the opposite facet, and call the pair (a,Q) a pyramid with apex a and base Q. The point539
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of Hypothesis III is that together with Lemma 4.3, it will imply that a projects to a point in540

Q whose distance from the circumcenter of Q is at most XS . If a is a twin, then there are541

two pyramids, (a, P ) and (a′′, P ) with P = S − a− a′′, and we call this the bi-pyramid case.542

4.2.1 Base Case543

The only non-trivial base cases are when S is a long edge in Hypothesis I, and when S is a544

short edge in Hypothesis III. To prove bounds on the length of a long edge, we write RE for545

its half-length, which is also its circumradius.546

▶ Lemma 4.2 (Bounds for Long Edges in R2k+1). Let d = 2k + 1, 0 < ∆ < 1, and547

A = Ad(n,∆) ⊆ Rd. Then the squared length of any long edge satisfies 1 ≤ 4R2
E ≤ 1 + 2∆4.548

Proof. We simplify the computations by assuming that the endpoints a and b of E are at549

equal distance from aff Σ. Call this distance ∆, suppose a ∈ C0 and b ∈ C1, and write a′ and550

b′ for their projections onto aff Σ. Recall that u0 is the point shared by Σ and C0, and note551

that ∥a′ − u0∥ = ξ = γ −
√
γ2 − ∆2, in which γ is the radius of C0. Similarly, ∥b′ − u1∥ = ξ.552

Let α be the angle enclosed by an edge of Σ and a height of Σ that shares a vertex with the553

edge. Set η = ξ cosα and note that ∥a′ − b′∥ = 1 − 2η. By construction of Σ as a regular554

simplex with unit length edges, we have cosα = γ, so555

∥a− b∥2 = (1 − 2η)2 + ∆2 + ∆2 =
(

1 − 2γ2 + 2γ
√
γ2 − ∆2

)2
+ 2∆2 (27)556

=
(
1 − 2γ2)2 + 4γ2 (

γ2 − ∆2)
+

(
2 − 4γ2)

2γ
√
γ2 − ∆2 + 2∆2 (28)557

=
(
1 − 4γ2 + 8γ4)

−
(
4γ2 − 2

) [
∆2 + 2γ

√
γ2 − ∆2

]
. (29)558

The squared radius of the circles is γ2 = (k+ 1)/(2k) > 1
2 , which implies 4γ2 − 2 > 0. Hence,559

we can bound ∥a− b∥2 from below using (12) to get
√
γ2 − ∆2 ≤ γ

[
1 − ∆2/(2γ2)

]
. Plugging560

this inequality into (29) and applying a sequence of elementary algebraic manipulations561

gives ∥a− b∥2 ≥ 1, as claimed. To prove the upper bound, we use (13) to get
√
γ2 − ∆2 ≥562

γ
[
1 − ∆2/(2γ2 − ∆2)

]
. Plugging this inequality into (29) gives563

∥a− b∥2 ≤
(
1 − 4γ2 + 8γ4)

−
(
4γ2 − 2

) [
∆2 + 2γ2 − 2γ2∆2

2γ2 − ∆2

]
(30)564

= 1 +
(
4γ2 − 2

) ∆4

2γ2 − ∆2 ≤ 1 + 2∆4, (31)565

where, to get the final inequality, we used that ∆2 < 1. ◀566

If we first take the square root and then divide by 2, we get RE ≤ 1
2 (1 + ∆4) for the567

half-length or circumradius of the edge. Since the length of long edges is so tightly controlled,568

the triangles formed by three long edges are almost equilateral, and the triangles formed by569

one short and two long edges are almost isosceles. The next lemma quantifies this claim.570

▶ Lemma 4.3 (Bounds for Bisectors in R2k+1). Let d = 2k + 1, ∆ > 0 sufficiently small,571

and A = Ad(n,∆) ⊆ Rd. Then the distance between a vertex connected by long edges to the572

endpoints of another (short or long) edge and the bisector of this edge is at most n∆3/2.573

Proof. Consider a vertex, a, connected by long edges to the endpoints, b and c, of another574

(short or long) edge. Let δ be the distance of a from the bisector of b and c, which is maximized575

if the length difference is as large as possible while ∥b− c∥ is as small as possible. In this576

case, Pythagoras’ theorem implies (1 + 2∆4) − (ε+ δ)2 = 1 − (ε− δ)2. Canceling 1, ε2, and δ2
577

on both sides, we get ∆4 = 2εδ. Since nε ≥ ∆, this implies that δ = ∆4/(2ε) ≤ n∆3/2. ◀578
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We mention that choosing ∆ is independent of n, so in this context, n is considered a579

constant and we write n∆3 = O(∆3). We also note that the upper bound on the distance of580

a point connected by two long edges to the endpoints of a short edge from the bisector of581

these two points can be improved to 2∆. We prefer the weaker bound in Lemma 4.3 because582

of its elementary proof.583

4.2.2 Inductive Step (Pyramid Case)584

The inductive step consists of two lemmas. The first one justifies the first kind of inductive585

step, from (ℓ − 1, j) to (ℓ, j). It handles the transition from the base of a pyramid to the586

pyramid. Letting (a,Q) be a pyramid of S, we write HQ,S and DQ,S for the distances of a587

and zS from aff Q, respectively.588

▶ Lemma 4.4 (Pyramid Step). Let d = 2k+ 1, ∆ > 0 sufficiently small, A = Ad(n,∆) ⊆ Rd,589

and ε = ε(n,∆). Furthermore, let S ∈ Del(A), write ℓ = ℓ(S) and j = j(S), assume j < ℓ,590

and let (a,Q) be a pyramid of S. Assuming Q satisfies Hypotheses I, II, and III, we have591

H2
Q,S = H2

ℓ − j + 1
ℓ2 ε2 ±O(ε3); (32)592

D2
Q,S = D2

ℓ − (2ℓ+ 1)(j + 1)
ℓ2(ℓ+ 1)2 ε2 ±O(ε3); (33)593

R2
S = R2

ℓ + j + 1
(ℓ+ 1)2 ε

2 ±O(ε3); (34)594

XS = O(∆3). (35)595

Proof. By construction, ℓ(Q) = ℓ − 1 and j(Q) = j. Assume first that the projection of596

a onto aff Q is zQ. In this case, all edges connecting a to Q have the same length, 2RE .597

Pythagoras’ theorem implies H2
Q,S = 4R2

E −R2
Q. Using Lemma 4.2 and Hypothesis I, we get598

the bounds for the squared height claimed in (32):599

4R2
E = 1 ±O(∆4); (36)600

R2
Q = R2

ℓ−1 + j + 1
ℓ2 ε2 ±O(ε3); (37)601

H2
Q,S = H2

ℓ − j + 1
ℓ2 ε2 ±O(ε3), (38)602

where (38) follows from (36) and (37), using 1 − R2
ℓ−1 = H2

ℓ . This proves (32). Since603

(HQ,S −DQ,S)2 = R2
S and R2

Q +D2
Q,S = R2

S , we get H2
Q,S − 2DQ,SHQ,S = R2

Q. Therefore,604

DQ,S =
H2

Q,S −R2
Q

2HQ,S
= 1

2HQ,S − 1
2
R2

Q

HQ,S
; (39)605

RS = HQ,S −DQ,S = 1
2HQ,S + 1

2
R2

Q

HQ,S
. (40)606

Using the formulas for Rℓ, Hℓ, Dℓ in (26), it is easy to prove the corresponding relations for607

the regular ℓ-simplex: Dℓ = 1
2Hℓ − 1

2R
2
ℓ−1/Hℓ and Rℓ = 1

2Hℓ + 1
2R

2
ℓ−1/Hℓ. Starting with608
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(38), we use
√

1 − x = 1 − x
2 + . . . and 1/

√
1 − x = 1 + x

2 + . . . to get609

HQ,S = Hℓ − j + 1
2ℓ2Hℓ

ε2 ±O(ε3); (41)610

1
HQ,S

= 1
Hℓ

+ j + 1
2ℓ2H3

ℓ

ε2 ±O(ε3); (42)611

R2
Q

HQ,S
=
R2

ℓ−1
Hℓ

+
[
j + 1
ℓ2Hℓ

+
R2

ℓ−1(j + 1)
2ℓ2H3

ℓ

]
ε2 ±O(ε3). (43)612

We plug (41) and (43) into (39) and (40), while using the relations for Dℓ and Rℓ mentioned613

above, as well as Rℓ/Hℓ = ℓ/(ℓ+ 1), Dℓ/Hℓ = 1/(ℓ+ 1), and R2
ℓ−1/H

2
ℓ = (ℓ− 1)/(ℓ+ 1):614

DQ,S =
[

1
2Hℓ − 1

2
R2

ℓ−1
Hℓ

]
−

[
j + 1
4ℓ2Hℓ

+ j + 1
2ℓ2Hℓ

+
R2

ℓ−1(j + 1)
4ℓ2H3

ℓ

]
ε2 ±O(ε3)615

= Dℓ − (2ℓ+ 1)(j + 1)
2ℓ2(ℓ+ 1)2Dℓ

ε2 ±O(ε3); (44)616

RS =
[

1
2Hℓ + 1

2
R2

ℓ−1
Hℓ

]
+

[
− j + 1

4ℓ2Hℓ
+ j + 1

2ℓ2Hℓ
+
R2

ℓ−1(j + 1)
4ℓ2H3

ℓ

]
ε2 ±O(ε3)617

= Rℓ + j + 1
2(ℓ+ 1)2Rℓ

ε2 ±O(ε3). (45)618

Taking squares, we get (33) and (34), but mind that this is only for the special case in which619

the apex projects orthogonally to the circumcenter of the base. To prove the bounds in the620

general case, we recall that Hypothesis III asserts that the projection of a onto aff Q is at621

most O(∆3) units of length from zQ. Hence, we get an additional error term of O(∆3) in all622

the above equations, but this does not change any of the bounds as stated.623

It remains to prove (35). By the inductive assumption, we have XQ = O(∆3). Consider624

the locus of points in aff S whose projections to aff Q are at distance at most XQ from625

zQ. This is a solid cylinder. In addition, consider the locus of points whose projections to626

an edge connecting a to a vertex of Q are at distance at most XE from the midpoint of627

this edge. This is a slab between two parallel hyperplanes in aff S. The points at distance628

at most XS from zS are contained in the intersection of this cylinder and the slab. Since629

H2
ℓ = (ℓ+ 1)/(2ℓ) is strictly larger than R2

ℓ−1 = (ℓ− 1)/(2ℓ), the angle at which the central630

axis of the cylinder and the central hyperplane of the slab intersect is larger than π/4,631

provided that ∆ > 0 is sufficiently small. But then the intersection is contained in a ball of632

radius at most
√

2XQ +XE = O(∆3). ◀633

Note that DS is the minimum of the DQ,S , over all facets Q of S. Hence, Lemma 4.4634

proves Hypothesis II in the case in which S has no short edges.635

4.2.3 Inductive Step (Bi-pyramid Case)636

The second kind of inductive step—from (ℓ, j − 1) to (ℓ, j)—makes use of a distance function637

between affine subspaces of Rd. Such a function is nonnegative, by definition, as well as638

convex; see e.g. Rockafellar [22, pages 28 and 34]. In our case, the function will measure the639

distance from a p-plane to a (d− 1)-plane, so it has a well-defined gradient, provided that640

the distance is taken with a sign, which is different on the two sides of the intersection with641

the hyperplane.642

▶ Lemma 4.5 (Bi-pyramid Step). Let d = 2k+1, ∆ > 0 sufficiently small, A = Ad(n,∆) ⊆ Rd,643

and ε = ε(n,∆). Furthermore, let S ∈ Del(A), with ℓ = ℓ(S) and j = j(S) ≥ 0, and let644
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a and a′′ be the endpoints of a short edge. Assuming Q = S − a′′ and Q′′ = S − a satisfy645

Hypotheses I, II, and III, we have646

D2
Q,S = 1

(ℓ+ 1)2 ε
2 ±O(ε3); (46)647

R2
S = R2

ℓ + j + 1
(ℓ+ 1)2 ε

2 ±O(ε3); (47)648

XS = O(∆3). (48)649

Proof. By construction, ℓ(Q) = ℓ(Q′′) = ℓ, j(Q) = j(Q′′) = j − 1, and (a,Q − a) and650

(a′′, Q′′ − a′′) are pyramids. We write P = Q− a = Q′′ − a′′ for the common base, which has651

ℓ(P ) = ℓ− 1 and j(S) = j − 1.. Let M be the bisector of a and a′′. It intersects the short652

edge orthogonally at its midpoint. Writing ψ : aff Q → M for the distance function from653

aff Q to M , we have ψ(a) = ε and, by Lemma 4.3, ψ(b) ≤ n∆3, for all vertices b of P . Let a′
654

be the projection of a onto aff P . By Hypotheses II and III, a′ is closer to zP than the radius655

of the largest ball centered at zP which is contained in P . Hence, a′ ∈ P , so ψ(a′) ≤ n∆3
656

by the convexity of the distance function. The signed version of ψ is linear and, thus, has657

a well-defined gradient. To compute it, recall Lemma 4.4, which shows that the height of658

(a, P ) and ∥zQ − zP ∥ satisfy659

H2
P,Q = H2

ℓ − j

ℓ2 ε
2 ±O(ε3); (49)660

D2
P,Q = D2

ℓ − (2ℓ+ 1)j
ℓ2(ℓ+ 1)2 ε

2 ±O(ε3). (50)661

By (49), the gradient of ψ has length ∥∇ψ∥ = ε/HP,Q ±O(∆3) = ε/Hℓ ±O(ε3), and by (50),662

the value of the function at the circumcenter is ψ(zQ) = (Dℓ/Hℓ)ε±O(ε3) = ε/(ℓ+1)±O(ε3).663

Hence, ∥zQ − zS∥ = ε/(ℓ+ 1) ±O(ε3), which implies664

D2
Q,S = 1

(ℓ+ 1)2 ε
2 ±O(ε3); (51)665

R2
S = R2

Q + 1
(ℓ+ 1)2 ε

2 ±O(ε3) = R2
ℓ + j + 1

(ℓ+ 1)2 ε
2 ±O(ε3), (52)666

where, to obtain the bounds for R2
S , we used the inductive assumption for R2

Q. This proves667

(46) and (47). To verify (48), we note that XQ = O(∆3) by Lemma 4.4. The set of points668

in aff S whose projections to aff Q are at distance at most XQ from zQ is a solid cylinder669

whose central axis is a line normal to aff Q. The edge with endpoints a and a′′ is almost670

parallel to this axis, so the bisector of the two points intersects the axis almost orthogonally,671

and certainly at an angle larger than π/4. The points at distance at most XS from zS are672

contained in the intersection of the cylinder with the slab of points at distance at most XE673

from the bisector, which is contained in a ball of radius
√

2XQ +XE = O(∆3). ◀674

This completes the inductive argument, establishing Hypotheses I, II, and III: the base675

case is covered by Lemmas 4.2 and 4.3, and the remaining cases are reached via the two676

kinds of inductive steps proved in Lemmas 4.4 and 4.5. In particular, the bounds furnished677

for the DQ,S imply the required bound for DS , which is the minimum over all facets Q of S.678

4.3 All Simplices are Critical679

The above analysis implies that for sufficiently small ∆ > 0 the circumcenter of every simplex680

in Del(A) is contained in the interior of the simplex. This is half of the proof that all simplices681

in Del(A) are critical. The second half of the proof is not difficult.682
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▶ Corollary 4.6 (All Critical in R2k+1). Let d = 2k + 1, n ≥ 2, ∆ > 0 sufficiently small, and683

A = Ad(n,∆) ⊆ Rd. Then every simplex in Del(A) is a critical simplex of Rad: Del(A) → R.684

Proof. A simplex S ∈ Del(A) is a critical simplex of Rad iff it contains the circumcenter in685

its interior, and the (d − 1)-sphere centered at the circumcenter and passing through the686

vertices of S does not enclose or pass through any of the other points of A. By Hypotheses II687

and III, the first condition holds. To derive a contradiction, assume the second condition688

fails for S ∈ Del(A). In other words, there is a point, b ∈ A, that is not a vertex of S but689

it is enclosed by or lies on the said (d− 1)-sphere. Then dimS < d, else the (d− 1)-sphere690

intersects each circle in two points, so there is no possibility for another point to interfere.691

Since the (d− 1)-sphere intersects every circle in only two points, we may assume that b692

lies on a circle not touched by S, or that b neighbors a vertex of S along their circle, and this693

is the only vertex of S on this circle. Then we can add b as a new vertex to get a simplex T694

with dimT = dimS + 1. This simplex also belongs to Del(A), but its circumcenter does not695

lie in its interior, which contradicts Hypotheses II and III. ◀696

4.4 Counting the Cycles697

The final counting argument is similar to the one for even dimensions, with a few crucial698

differences. Instead of congruent simplices, we have almost congruent simplices in odd699

dimensions, but they are similar enough to be separated by their circumradii.700

▶ Corollary 4.7 (Ordering of Radii in R2k+1). Let d = 2k+ 1, n ≥ 2, ∆ > 0 sufficiently small,701

A = A2k+1(n,∆) ⊆ R2k+1, and Rad: Del(A) → R the radius function. Then the circumradii702

of two simplices, S, T ∈ Del(A), satisfy Rad(S) < Rad(T ) if ℓ(S) < ℓ(T ), or ℓ(S) = ℓ(T )703

and j(S) < j(T ).704

Proof. By Corollary 4.6, the circumradii are the values of the simplices under the radius705

function, and by Hypothesis I, the circumradii are segregated into groups according to the706

number of touched circles and the number of short edges. It follows that the values of Rad707

are segregated the same way. ◀708

We are interested in three kinds of thresholds: the ϱℓ−1,ℓ−1, which separate the simplices709

that touch at most ℓ circles from those that touch at least ℓ + 1 circles, the ϱℓ,−1, which710

separate the ℓ-simplices without short edges from the other simplices that touch the same711

number of circles, and the ϱk,j , which separate the (k + j + 1)-simplices that touch all k + 1712

circles from the (k + j + 2)-simplices that touch all k + 1 circles. We first study the Alpha713

complexes defined by the first type of thresholds, Aℓ−1,ℓ−1 = Rad−1[0, ϱℓ−1,ℓ−1].714

▶ Lemma 4.8 (Constant Homology in R2k+1). Let d = 2k+ 1 be a constant, A = Ad(n,∆) ⊆715

R2k+1, and 1 ≤ ℓ ≤ k. Then βp(Aℓ−1,ℓ−1) = O(1) for every p.716

Proof. Pick ℓ of the k + 1 circles used in the construction of A, let A′ ⊆ A be the points on717

these ℓ circles, and note that the full subcomplex of Del(A) with vertices in A′ has no non-718

trivial (reduced) homology. We may collapse this full subcomplex to a single (ℓ− 1)-simplex,719

e.g. the (ℓ− 1)-dimensional face of Σ whose vertices correspond to the ℓ circles.720

Aℓ−1,ℓ−1 is the union of
(

k+1
ℓ

)
such full subcomplexes of Del(A), one for each choice of721

ℓ circles. The intersections of these subcomplexes are of the same type, namely induced722

subcomplexes of Del(A) for points on ℓ or fewer of the circles. Hence, Aℓ−1,ℓ−1 has the723

homotopy type of the complete (ℓ− 1)-dimensional simplicial complex with k + 1 vertices,724

which has a single non-trivial homology group of rank is
(

k
ℓ

)
. As required, this rank is a725

constant independent of n and ∆. ◀726
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To prove relation (24) of Theorem 4.1, we second consider the Alpha complexes defined727

by the second type of thresholds, Aℓ,−1 = Rad−1[0, ϱℓ,−1]. This complex is Aℓ−1,ℓ−1 together728

with all ℓ-simplices without short edges. By Lemma 4.8, only a constant number of them729

give death to (ℓ− 1)-cycles, while all others give birth to ℓ-cycles. This implies that the rank730

of the ℓ-th homology group of Aℓ,−1 is the number of ℓ-simplices without short edges minus731

a constant, which is
(

k+1
ℓ+1

)
(n+ 1)ℓ+1 ±O(1). This construction works for 0 ≤ ℓ ≤ k, which732

implies relation (24).733

To prove relation (25) inductively, we third consider the Alpha complexes defined by the734

third type of thresholds, Ak,j = Rad−1[0, ϱk,j ], for 0 ≤ j ≤ k. The induction hypothesis is735

βp(Ak,p−k−1) =
(

k
p−k

)
· (n+ 1)k+1 ±O(nk), (53)736

and we use the case p = k of relation (24) as the induction basis. The difference between737

Ak,p−k−1 and Ak,p−k are the (p+ 1)-simplices with p− k + 1 short edges. Their number is738 (
k+1

p−k+1
)

· (n+ 1)2k−pnp−k+1 =
(

k+1
p−k+1

)
· (n+ 1)k+1 ±O(nk), (54)739

This number divides up into the ones that give death and the remaining ones that give birth.740

Since
(

k+1
p−k+1

)
−

(
k

p−k

)
=

(
k

p−k+1
)
, this implies741

βp+1(Ak,p−k) =
(

k
p−k+1

)
· (n+ 1)k+1 ±O(nk), (55)742

as needed to finish the inductive argument.743

4.5 Voids in Even Dimensions744

We return to the one case in d = 2k dimensions that is not covered by the construction in745

Section 2, namely the (2k − 1)-st Betti number. It counts the top-dimensional holes, which746

we refer to as voids. Notwithstanding that the construction in Section 2 does not provide747

any voids, Theorem 2.1 claims the existence of N = k(n+ 1) + 2 points in R2k and a radius748

such that β2k−1 = nk ±O(nk−1).749

The set of N points whose Čech complex has that many voids is a straightforward750

modification of the construction in 2k− 1 dimensions: place A = A2k−1(n,∆) in the (2k− 1)-751

dimensional hyperplane x2k = 0 in R2k. Every (2k − 2)-cycle—which corresponds to a void752

in 2k − 1 dimensions—is now a pore in the hyperplane that connects the two half-spaces. In753

the odd-dimensional construction, all pores arise when the radius is roughly Rk−1 ≥ 1
2 , and754

they are located in a small neighborhood of the origin. By choosing ∆ > 0 sufficiently small,755

we can make this neighborhood arbitrarily small. It is thus easy to add two points, one on756

each side of the hyperplane, such that their balls close the pores from both sides and turn757

them into voids in R2k. More formally, the two points doubly suspend each (2k − 2)-cycle758

into a (2k − 1)-cycle. Hence, Theorem 4.1 for d = 2k − 1 and p = 2k − 2, which gives759

βp = (n+ 1)k ±O(nk−1), provides the missing case in the proof of Theorem 2.1.760

5 Discussion761

In this paper, we give asymptotically tight bounds for the maximum p-th Betti number of762

the Čech complex of N points in Rd. These bounds also apply to the related Alpha complex763

and the dual union of equal-size balls in Rd. They do not apply to the Vietoris–Rips complex,764

which is the flag complex that shares the 1-skeleton with the Čech complex for the same765

data. In other words, the Vietoris–Rips complex can be constructed by adding all 2- and766
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higher-dimensional simplices whose complete set of edges belongs the 1-skeleton of the Čech767

complex. This implies β1(Rips(A, r)) ≤ β1(Čech(A, r)), since adding a triangle may lower768

but cannot increase the first Betti number.769

As proved by Goff [15], the 1-st Betti number of the Vietoris–Rips complex of N points770

is O(N), for all radii and in all dimensions, so also in R3. Compare this with the quadratic771

lower bound for Čech complexes proved in this paper. This implies that the first homology772

group of this Čech complex has a basis in which most generators are tri-gons; that is: the773

three edges of a triangle. The circumradius of a tri-gon is less than
√

2 times the half-length774

of its longest edge, which implies that most of the Θ(N2) generators exist only for a short775

range of radii. In the language of persistent homology [9], most points in the 1-dimensional776

persistence diagram represent 1-cycles with small persistence. Similarly, the 2-nd Betti777

number of a Vietoris–Rips complex in R3 is o(N2) [15], compared to that of a Čech complex,778

which can be Θ(N2). Hence, most points in the corresponding persistence diagram represent779

2-cycles with small persistence.780
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A Notation838

839 A = Ad ⊆ Rd, N point set, cardinality
840 d = 2k, 2k + 1; ℓ, p dimensions
841

842 βp(Čech(A, r)) Betti number, Čech complex
843 Del(A) Delaunay mosaic
844 Rad: Del(A) → R radius function
845 Alf(A, r) = Rad−1[0, r] Alpha complex
846

847 A = A2k ⊆ R2k, N = kn point set, cardinality
848 x1, . . . , xℓ, . . . , x2k Cartesian coordinates
849 i + j + 1 = k dimensions of complementary faces
850 Σℓ,j , Σ∗

ℓ,j ideal simplex, proxy
851 s; h(s), H(s) half-length of short edge; heights
852 Rℓ, Dℓ, Hℓ = Hℓ,0; Hℓ,j circum-, in-radius, heights of regular ℓ-simplex
853 hℓ,j(s) = µ + ν partition of height
854 r(s), R(s), rℓ,j(s) radii
855 Aℓ,j = Rad−1[0.rℓ,j ] particular Alpha complex
856 uℓ, vℓ, Cℓ vertices, barycenters, circles
857

858 A = A3 ⊆ R3, N = 2(n + 1) point set, cardinality
859 ai, bj points/vertices
860 ε ≥ ∆/n half-length of short edge
861 S2(i; j), S2(i; j, j + 1) smallest sphere passing through vertices
862 E, F, T ; RE , RF , RT edge, triangle, tetrahedron; circumradii
863 U, V, W ; u, U, v, V, w, W lengths of edges
864

865 d = 2k + 1; A = Ad ⊆ Rd dimension; point set
866 N = (k + 1)(n + 1) number of points
867 Σ, Cℓ, γ regular k-simplex, circles, radius
868 J, M, P, Q, S ⊆ T simplices
869 aff P , aff Q; M affine subspaces; bisector
870 ℓ = ℓ(S), j = j(S); ϱℓ,j characterizing integers; radius threshold
871

872 zS , zT circumcenters
873 RS , DS , XS circumradius, ‘in-radius’, distance of projection
874 HQ,S , DQ,S height, depth of pyramid

Table 1: Notation used in the paper.
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B Results and Definitions875
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