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Abstract1

The local angle property of the (order-1) Delaunay triangulations of a generic set in R2 asserts2

that the sum of two angles opposite a common edge is less than π. This paper extends this3

property to higher order and uses it to generalize two classic properties from order-1 to order-2:4

(1) among the complete level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay5

triangulation lexicographically maximizes the sorted angle vector; (2) among the maximal level-26

hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation is the only one7

that has the local angle property. For order-1, both properties have been instrumental in numerous8

applications of Delaunay triangulations, and we expect that their generalization will make order-29

Delaunay triangulations more attractive to applications as well.10
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1 Introduction11

This paper is motivated by the desire to generalize optimal properties from order-1 to12

higher-order Delaunay triangulations. The classic (order-1) Delaunay triangulation (also13

called Delaunay mosaic) of a finite point set was introduced in 1934 by Boris Delaunay (also14

Delone). It is the edge-to-edge tiling whose polygons satisfy the empty circle criterion [4]:15

each polygon is inscribed in a circle and all other points lie strictly outside this circle. In the16

henceforth considered generic case, all tiles are triangles. The criterion implies that for an17

edge shared by two triangles, the sum of the two angles opposite to the edge is less than18

π. If a triangulation satisfies this criterion for every edge shared by two triangles, then we19

say the triangulation has the local angle property. Recognizing the potential of this type20

of triangulation for applications, Lawson in 1977 turned the empty circle criterion into an21

iterative algorithm that converts any triangulation of a given set of n points in R2 into the22

Delaunay triangulation using at most O(n2) edge-flips [12]. The correctness of this algorithm23

implies that the Delaunay triangulation is the only triangulation of the given set that has the24

local angle property. Using Lawson’s algorithm as a proof technique, Sibson proved in 197825

that among all triangulations of a finite generic point set in R2, the Delaunay triangulation26

lexicographically maximizes the vector whose components are the angles inside the triangles27

sorted in non-decreasing order [20]. We call this the sorted angle vector of the triangulation.28

The dual approach to the same topic predates the invention of the Delaunay triangulation.29

In 1907-08, Georgy Voronoi published seminal papers on what today is called the Voronoi30
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tessellation [21]. Given a finite set in R2, this tessellation contains a (convex) region for each31

point in the set, such that the points in the region are at least as close to the generating point32

as to any other point in the set. The Delaunay triangulation and the Voronoi tessellation of33

the same points are dual to each other: there is an incidence-preserving dimension-reversing34

bijection between the regions, edges, vertices of the tessellation and the vertices, edges,35

polygons of the triangulation.36

In the mid 1970s, Shamos and Hoey [19] and Fejes Tóth [8] independently generalized37

this concept to the order-k Voronoi tessellation, which contains a (possibly empty) region for38

each subset of size k, such that the points in the region are at least as close to each one of the39

k defining points as to any of the n− k other points. In 1982, Lee [13] gave an incremental40

algorithm for computing these tessellations, and in 1990, Aurenhammer [1] showed that there41

is a natural dual, which we refer to as the order-k Delaunay triangulation: each vertex is the42

average of a collection of k points with non-empty region, and the triangles are formed by43

connecting two vertices with a straight edge if the corresponding two regions share an edge44

in the order-k Voronoi tessellation. The special case in which k = n− 1 is closely related to45

the farthest-point Delaunay triangulation: its vertices are the extreme points of the set (the46

convex hull vertices), and two vertices are connected by a straight edge if the regions in the47

order-(n− 1) Voronoi tessellation that correspond to the complementary n− 1 points of the48

two vertices share a common edge. In 1992, Eppstein [7] proved an extension of Sibson’s49

result: among all triangulations of the convex hull vertices, the farthest-point Delaunay50

triangulation lexicographically minimizes the sorted angle vector.51

With the exception of Eppstein’s result—which is specific to the farthest-point Delaunay52

triangulation—there is a paucity of optimality properties known for higher-order Delaunay53

trinagulations, which we end with three inter-related contributions:54

I. we extend the local angle property from order-1 to order-k, for 1 ≤ k ≤ n− 1, and show55

that the order-k Delaunay triangulation has this property;56

II. we prove that among all complete level-2 hypertriangulations of a finite generic set in R2,57

the order-2 Delaunay triangulation lexicographically maximizes the sorted angle vector;58

III. we show that among all maximal level-2 hypertriangulations of a finite generic set in R2,59

the order-2 Delaunay triangulation is the only one that has the local angle property.60

For ordinary triangulations, the proofs of the properties analogous to II and III follow from61

the existence of a sequence of edge-flips that connects any initial (complete) triangulation62

to the (order-1) Delaunay triangulation, such that every flip lexicographically increases the63

sorted angle vector. While the level-2 hypertriangulations are connected by flips introduced64

in [6], there are cases in which every connecting sequence contains flips that lexicographically65

decrease the sorted angle vector; see Section 6. Without this tool at hand, the relation66

between the local angle property and the sorted angle vectors is unclear, and the proofs of67

Properties II and III fall back to an exhaustive analysis of elementary geometric cases.68

This paper is organized as follows. Section 2 provides information on the main background,69

including level-k hypertriangulations (maximal, complete, and otherwise) and the aging70

function. Section 3 introduces our extension of the local angle property to order k, and in71

Theorem 3.3 shows that the order-k Delaunay triangulation has this property. Section 4 proves72

Property II in Theorem 4.4 and discusses possible extensions to the class of maximal level-273

hypertriangulations and to levels beyond 2. Section 5 proves Property III in Theorem 5.4,74

which it extends it to order-3 for points in convex position in Theorem 5.5. Finally, Section 675

concludes the paper with discussions of open questions and conjectures related to the geometry76

and combinatorics of Delaunay and more general hypertriangulations.77



Edelsbrunner, Garber, Saghafian XX:3

2 Background78

We follow the standard approach to points in general position used in the literature: a finite79

set, A ⊆ R2, is generic if no three points are colinear and no four points are cocircular.80

2.1 Triangulations and Hypertriangulations81

We first define the families of all triangulations and hypertriangulations of A, which include82

the order-1 and order-k Delaunay triangulations discussed in Section 3. We write convA for83

the convex hull of the set A.84

▶ Definition 2.1 (Triangulations). For a finite A ⊆ R2, a triangulation, P , of A is an85

edge-to-edge subdivision of convA into triangles whose vertices are points in A. It is usually86

identified with the set of its triangles, so we write P = {T1, T2, . . . , Tm}. The triangulation is87

complete if every point of A is a vertex of at least one triangle, partial if it is not complete,88

and maximal if there is no other triangulation of the same points that subdivides it.89

It is easy to see that a triangulation is maximal iff it is complete. We nevertheless introduce90

both concepts because they generalize to different notions for hypertriangulations, which91

we introduce next. For a set of k points, I, we write [I] = 1
k

∑
x∈I x for the average of the92

points and, assuming a ̸∈ I and J ∩ I = ∅, we write [Ia] and [IJ ] for the averages of I ∪ {a}93

and I ∪ J , respectively. While [I] is a point, we sometimes think of it as the set I, in which94

case we call it a label.95

▶ Definition 2.2 (Hypertriangulations [6]). Let A ⊆ R2 be generic, n = #A, k an integer96

between 1 and n− 1, and A(k) = {[I] | I ⊆ A,#I = k} the set of k-fold averages of the points97

in A. A level-k hypertriangulation of A is a possibly partial triangulation of A(k) such that98

every edge with endpoints [I] and [J ] satisfies #(I ∩ J) = k − 1.99

Observe that every triangulation of A is a level-1 hypertriangulation of A, and vice versa,100

but for k > 1, only a subset of the triangulations of A(k) are level-k hypertriangulations of A.101

Note also that it is possible that a point can be written as the average of more than one102

subset of k points in A: for example, the center of a square is the 2-fold average of two pairs103

of diagonally opposite vertices. If a level-k hypertriangulation uses such a point as a vertex,104

then it can use only one of the possible labels.105

An alternative approach to these concepts is via induced subdivisions; see [22, Chapter 9]106

for details, including the definitions of induced subdivisions and tight subdivisions. According107

to this approach, a triangulation of A = {a1, a2, . . . , an} is a tight subdivision of convA108

induced by the projection π : ∆n → R2, in which ∆n = conv {e1, e2, . . . , en} ⊆ Rn is the109

standard (n − 1)-simplex, and π(ei) = ai, for i = 1, 2, . . . , n. To generalize, Olarte and110

Santos [15] use the level-k hypersimplex, ∆(k)
n , which is the convex hull of the k-fold averages111

of the ei in Rn, and define a level-k hypertriangulation of A as a tight subdivision of A(k)
112

induced by the same projection π restricted to ∆(k)
n . In this setting, the constraint to use113

only one label for each vertex is implicit.114

2.2 The Aging Function115

A triangle in a level-k hypertriangulation can be classified into two types. Letting [I], [J ], [K]116

be its vertices, each the average of k points, we say the triangle is117

black, if #(I ∩ J ∩K) = k − 2;118
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white, if #(I ∩ J ∩K) = k − 1.119

In other words, vertices of black triangles are labeled [Xab], [Xac], [Xbc], for some X of size120

k− 2, and vertices of white triangles are labeled [Ya], [Yb], [Yc], for some Y of size k− 1. Our121

next definition allows for transformations from white to black triangles.122

▶ Definition 2.3 (Aging Function). Letting T be a white triangle with vertices [Ya], [Yb], [Yc],123

the aging function maps T to the black triangle, F (T ), with vertices [Yab], [Yac], [Ybc].124

The aging function increases the level of the triangle by one, hence the name. Correspondingly,125

the inverse aging function maps a black triangle to a white triangle one level lower.126

To extend this definition to hypertriangulations, we say a level-k hypertriangulation,127

Pk, ages to a level-(k + 1) hypertriangulation, Pk+1, denoted Pk+1 = F (Pk). if the aging128

function defines a bijection between the white triangles in Pk and the black triangles in129

Pk+1. Note however that the aging of Pk is not unique as it says nothing about the white130

triangles of Pk+1. This notion is useful to obtain structural results for the family of all131

level-k hypertriangulations. For example, [6] has shown that every level-2 hypertriangulation132

is an aging of a level-1 hypertriangulation. For the special case in which the points are in133

convex position, [9] has extended this result to all levels, k. However, for points in possibly134

non-convex position, there are obstacles to applying the aging function. An example of a135

level-2 hypertriangulation, P2, for which F (P2) does not exist is given in [6, 15].136

For later reference, we compile several results about the relation between level-1 and137

level-2 hypertriangulations obtained in [6]. Given a vertex, x, in a triangulation, P , we138

define the star of x as the union of triangles that share x, denoted st(P, x), and shrinking139

the star by a factor two toward x, we get [st(P, x), x] = 1
2 (st(P, x) + x), which is the set of140

midpoints between x and any point y ∈ st(P, x). Observe that the shrunken star is contained141

in convA(2) iff x is an interior vertex of P . Indeed, x necessarily belongs to the shrunken142

star, but if x is a convex hull vertex, then x lies outside convA(2).143

▶ Lemma 2.4 (Aging Function for Triangulations). Let A ⊆ R2 be finite and generic, and144

recall that every level-1 hypertriangulation is just a triangulation.145

For every level-1 hypertriangulation, P , of A, there exists a level-2 hypertriangulation,146

P2, such that P2 = F (P ).147

For every level-2 hypertriangulation, P2, of A, there exists unique level-1 hypertriangula-148

tion, P , such that P2 = F (P ).149

If P2 = F (P ) and x ∈ A is a vertex of P , then the union of white triangles in P2 that150

have x in all their vertex labels is [st(P, x), x] ∩ convA(2).151

Since [st(P, x), x] ∩ convA(2) ̸= [st(P, x), x] iff x is a convex hull vertex, the third claim152

implies that for each interior vertex, x, scaled versions of the mentioned white triangles in153

P2 tile the star of x in P .154

2.3 Maximal and Complete Hypertriangulations155

The Delaunay triangulation of a finite set is optimal among all complete triangulations, but156

not necessarily among the larger family of possibly partial triangulations of the set. In this157

section, we introduce two families of level-2 hypertriangulations to which we compare the158

order-2 Delaunay triangulation.159
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▶ Definition 2.5 (Complete and Maximal Level-2 Hypertriangulations). Let A ⊆ R2 be finite160

and generic. A level-2 hypertriangulation of A is complete if its black triangles are the images161

under the aging function of the triangles in a complete triangulation of A, and it is maximal162

if no other level-2 hypertriangulation subdivides it.163

The notion of maximality extends to level-k hypertriangulations, while completeness does164

not since there are counterexamples to the existence of the aging function from level 2 to165

level 3; see Figure 8 in [6], which is based on Example 5.1 in [15].166

For k = 1, a triangulation of a finite and generic set is complete iff it is maximal. An167

easy way to see this is by counting the triangles in a possibly partial triangulation of A ⊆ R2.168

Write H ⊆ A for the vertices of the convex hull of A, and set n = #A and h = #H. The169

vertex set of a partial triangulation can be any subset of A that contains all points in H. Let170

m be the number of extra points, so the triangulation has m+ h vertices. We can add h− 3171

(curved) edges to turn the triangulation into a maximally connected planar graph, which has172

3(m+ h) − 6 edges and 2(m+ h) − 4 faces, including the outside. Hence, the triangulation173

has 3(m+ h) − 6 − (h− 3) = 3m+ 2h− 3 edges and 2(m+ h) − 4 − (h− 2) = 2m+ h− 2174

triangles. For a complete triangulation, we have m = n−h and therefore 2n−h− 2 triangles.175

If a triangulation has fewer than this number, then its vertex set misses at least one point,176

which we can add by subdivision. Hence, the triangulation is complete iff it is maximal. The177

situation is slightly more complicated for level-2 hypertriangulations.178

▶ Lemma 2.6 (Complete Implies Maximal). Let A ⊆ R2 be finite and generic. Then any two179

maximal level-2 hypertriangulations have the same number of triangles, and every complete180

level-2 hypertriangulation is maximal.181

Proof. To prove the first claim, let n = #A, h = #H, and consider a level-2 hypertriangula-182

tion, P2, aged from a possibly partial triangulation, P , with m+ h ≤ n vertices. Note that183

P has 2m+ h− 2 triangles, so P2 has the same number of black triangles.184

To count the white triangles in P2, we recall that each white region corresponds to the185

star of a vertex of P . If a is a vertex in the interior of convA, then the white region is the186

shrunken star, [st(P, a), a]. We modify P2 so this is also true for each vertex, b, of convA. To187

this end, we consider all boundary edges of P2 that connect vertices a′ = [ba] and c′ = [bc],188

and add the triangle a′bc′ to P2. The number of thus added triangles depends on the convex189

hull of the midpoints of pairs but not on how this convex hull is decomposed into triangles.190

The benefit of this modification is that we now have exactly m + h white regions, each a191

star-convex polygon, and each edge of P contributes a vertex to exactly two of the white192

regions. Not forgetting the h vertices added during the modification, this implies that the193

total number of edges of the m+h white regions is 2(3m+ 2h− 3) +h = 6m+ 5h− 6. Every194

triangulation of a j-gon has j − 2 triangles, so the total number of triangles in the white195

regions is (6m+ 5h− 6) − 2(m+ h) = 4m+ 3h− 6.196

We now turn our attention to the n− h−m points of A that are not vertices of P . Let x197

be such a point and abc the triangle in P that contains x in its interior. Hence, [xa] lies in198

the interior of [st(P, a), a], and similarly for b and c. To maximally subdivide P2, we thus199

add 3(n− h−m) points in the interiors of the white regions, which increases the number200

of white triangles to (4m + 3h − 6) + 6(n − h − m) = 6n − 2m − 3h − 6. Adding to this201

the 2m+ h− 2 black triangles, we get a total of 6n− 2h− 8 triangles. To get the number202

of triangles in this maximal triangulation, we still need to correct for the triangles added203

during the initial modification of P2. But their number does not depend on m, so neither204

does the final triangle count. Hence, all maximal level-2 hypertriangulations of A have the205

same number of triangles.206
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To get the second claim, observe that we have m = 0 whenever P2 is complete. Hence,207

we get the same number of triangles as just calculated, but without subdivision. It follows208

that P2 is maximal. ◀209

3 The Local Angle Property210

In this section, we define order-k Delaunay triangulations as special level-k hypertriangula-211

tions, introduce the local angle property for level-k hypertriangulations, and show that the212

order-k Delaunay triangulations have the local angle property. This property specializes to213

the standard local angle property that characterizes (order-1) Delaunay triangulations as214

well as their constrained versions.215

3.1 Higher Order Delaunay Triangulations216

We introduce the order-k Delaunay triangulation of a finite set as a special level-k hypertri-217

angulation of this set; but see [1] for a more geometric definition.218

▶ Definition 3.1 (Order-k Delaunay Triangulation). Let A ⊆ R2 be finite and generic, and k219

an integer between 1 and #A− 1. We construct a particular level-k hypertriangulation of A:220

a black triangle with vertices [Xab], [Xac], [Xbc] belongs to this hypertriangulation if221

X ⊆ A is the set of points inside the circumcircle of abc, and #X = k − 2;222

a white triangle with vertices [Y a], [Y b], [Y c] belongs to this hypertriangulation if Y ⊆ A223

is the set of points inside the circumcircle of abc, and #Y = k − 1.224

This hypertriangulation is called the order-k Delaunay triangulation of A and denoted Delk(A).225

While it may not be obvious that the above triangles form a triangulation of A(k), it can be226

seen, for example, by lifting the points of A onto a paraboloid in R3, and then considering227

the lower surface of the convex hull of the k-fold averages, which project to the points in228

A(k). Another way to construct Delk(A) is from the dual order-k Voronoi tessellation, as229

illustrated for k = 2 in Figure 1.

f g

h

a

b

c d

e

Figure 1: The (blue) order-2 Delaunay triangulation drawn on top of the (black) order-2 Voronoi
tessellation. Not all parts of the order-2 Voronoi tessellation are visible in the rectangular window.

230

Note that for k = 1, we get precisely the Delaunay triangulation of A, as all triangles are231

white and satisfy the empty circle criterion. For k = #A− 1, we get the (scaled and centrally232

inverted copy of) the farthest-point Delaunay triangulation [7]. Each of its triangles is black,233
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and every point of A is either a vertex or inside the circumcircle of the triangle. Moreover,234

the aging function applies, and we have Delk+1(A) = F (Delk(A)) for every 1 ≤ k < #A− 1.235

3.2 Angles of Black and White Triangles236

We now generalize the local angle property from order-1 to order-k. For 2 ≤ k ≤ #A− 2, we237

have black as well as white triangles. Hence, there are three types of interior edges: those238

shared by two white triangles, two black triangles, and a white and a black triangle. We239

have a different condition for each type.240

▶ Definition 3.2 (Local Angle Property). Let A ⊆ R2 be finite and generic. A level-k241

hypertriangulation of A has the local angle property if242

(ww) for every edge shared by two white triangles, the sum of the two angles opposite the243

edge is at most π;244

(bb) for every edge shared by two black triangles, the sum of the two angles opposite the245

edge is at least π;246

(bw) for every edge shared by a black triangle and a white triangle, the angle opposite the247

edge in the black triangle is bigger than the angle opposite the edge in the white triangle.248

For k = 1, there are no black triangles, so (bb) and (bw) are void. Delaunay [4] proved that249

the local angle property characterizes the (closest-point) Delaunay triangulation among all250

(complete) triangulations of a finite point set, and this was used by Lawson [12] to construct251

the triangulation by repeated edge flipping. Symmetrically, for k = #A − 1, there are no252

white triangles, so (ww) and (bw) are void. Eppstein [7] proved the local angle property253

for the (farthest-point) Delaunay triangulation, and the convergence of the flip-algorithm254

implies that it is the only (not necessarily complete) triangulation of the points that has this255

property. The goal of this section is to extend these result to level-k hypertriangulations.256

3.3 All Delaunay Triangulations Have the Local Angle Property257

We prove that the Delaunay triangulations of any order have the local angle property. This258

extends the results from k = 1,#A− 1 to any order between these limits.259

▶ Theorem 3.3 (Order-k Delaunay Triangulations have Local Angle Property). Let A ⊆ R2 be260

finite and generic. Then for every integer 1 ≤ k ≤ #A−1, the order-k Delaunay triangulation261

of A has the local angle property.262

Proof. Recall that white triangles of the order-k Delaunay triangulation of A have vertices263

[Ya], [Yb], [Yc], in which Y ⊆ A with #Y = k − 1, such that all points of Y are inside and264

all other points of A are outside the circumcircle of abc. Similarly, its black triangles have265

vertices labeled [Xab], [Xac], [Xbc], in which X ⊆ A with #X = k − 2, such that all points266

of X are inside and all other points of A are outside this circumcircle. We establish each of267

the three conditions separately.268

(ww): Let [Ya], [Yb], [Yc] and [Yb], [Yc], [Yd] be the vertices of two adjacent white triangles in269

the order-k Delaunay triangulation of A, and note that the points of Y lie inside and d lies270

outside the circumcircle of abc; see the left panel of Figure 2. The triangles abc and bcd are271

homothetic copies of these two white triangles, which implies that a and d lie on opposite272

sides of bc. Hence, ∡bac+ ∡bdc < π, because d is outside the circumcircle. (ww) follows.273

(bb): Let [Zabc], [Zabd], [Zacd] and [Zabd], [Zacd], [Zbcd] be the vertices of adjacent black274

triangles in the order-k Delaunay triangulation of A, and note that the points of Z and d lie275
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c

[Ya]

[Yb] [Yc]

[Yd]

[Zabc]

[Zabd] [Zacd]

[Zbcd]

[Xad]

[Xab] [Xac]

[Xbc]

a

d

b c

d

a

b c

a d

b

Figure 2: From left to right: an edge shared by two white triangles, two black triangles, a black
triangle and a white triangle. Top row: the adjacent triangles in the order-k Delaunay triangulation.
The vertex labels encode the locations of the vertices as averages of the listed points. Bottom row:
the corresponding triangles spanned by the original points.

inside the circumcircle of abc; see the middle panel of Figure 2. The triangles bcd and abc are276

homothetic copies of these two black triangles, which implies that a and d are on opposite277

sides of bc. Hence, ∡bac+ ∡bdc > π, because d is inside the circumcircle. (bb) follows.278

(bw): Let [Xab], [Xac], [Xbc] and [Xab], [Xac], [Xad] be the vertices of a black triangle and279

an adjacent white triangle in the order-k Delaunay triangulation of A, and note that the280

points of X lie inside while d lies outside the circumcircle of abc; see the right panel of281

Figure 2. The triangles abc and bcd are homothetic copies of the black and white triangles,282

with negative and positive homothety coefficients, respectively, which implies that a and d283

lie on the same side of bc. Thus, ∡bac > ∡bdc, because d is outside the circumcircle. (bw)284

follows. ◀285

We conjecture that the order-k Delaunay triangulation is the only level-k hypertriangula-286

tion with maximally many triangles that has the local angle property. For later reference, we287

refer to this as the Local Angle Conjecture for hypertriangulations.288

3.4 Constrained Delaunay Triangulations289

Given a bounded polygonal region, R, it is always possible to find a triangulation, P , of290

its vertices (the endpoints of its edges) that contains all edges of the region. Hence, every291

triangle of P lies either completely inside or completely outside the region. The restriction of292

P to R consists of the triangles inside R, and we call this restriction a triangulation of R. For293

some choices of P , the restriction to R looks locally like the Delaunay triangulation, namely294

when every edge that passes through the interior of R satisfies (ww). It is not difficult to see295

that such choices of triangulations exist and that their restriction to R is generically unique:296

run Lawson’s algorithm on an initial triangulation of R, flipping an interior edge whenever297

the sum of the two opposite angles exceeds π. This is the constrained Delaunay triangulation298

of R, as introduced in 1989 by Paul Chew [2], but see also [11]. A triangle uvw belongs to299

this specific triangulation iff it is contained in R and its circumcircle does not enclose any300

vertex that is visible from points inside the triangle. We state a weaker necessary condition301

for later reference.302
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▶ Lemma 3.4 (Triangles and Edges in Constrained Delaunay Triangulation). Let R be a bounded303

polygonal region in R2, assume its vertex set is generic, and let u, v, w be vertices of R. If304

the triangle uvw is contained in R, and its circumcircle does not enclose any vertex of R,305

then uvw is a triangle in the constrained Delaunay triangulation of R. Similarly, if the edge306

uv is contained in R but is not an edge of R, and it has a circumcircle that does not enclose307

any vertex of R, then uv is an edge of the constrained Delaunay triangulation of R.308

We use constrained Delaunay triangulations to decompose white regions in aged hypertri-309

angulations. To explain, let P be a complete triangulation of a finite and generic set, A ⊆ R2,310

let x ∈ A be a vertex of this triangulation, call wh(P, x) = st(P, x) ∩ conv (A \ {x}) the white311

region of x in P , and let P (x) be a triangulation of wh(P, x). Note that wh(P, x) = st(P, x)312

if x is an interior vertex, and wh(P, x) ⊊ st(P, x) if x is a convex hull vertex. In the special313

case in which P is the order-1 Delaunay triangulation and P (x) is the constrained Delaunay314

triangulation of wh(P, x) for each x ∈ A, these sets contains all white triangles in the order-2315

Delaunay triangulation, albeit the latter are only half the size.316

More generally, we use the constrained Delaunay triangulations of the white regions to317

disambiguate the aging function. This is done extensively in the proofs of our main results318

in Sections 4 and 5.319

4 Optimality of the Sorted Angle Vector320

In this section, we prove the first main result of this paper in an exhaustive case analysis.321

With the exception of Section 4.4, we work only with complete level-2 hypertriangulations.322

To aid the discussion, we begin by introducing convenient terminology and stating a few323

elementary lemmas.324

4.1 Triangulations and Angle Vectors325

Let A ⊆ R2 be a finite set of points, and let P be a complete triangulation of A, and326

write P2 = F (P ) for the (complete) level-2 hypertriangulation whose white regions are327

decomposed by constrained Delaunay triangulations. We prefer to work with the original328

points of A, rather than the midpoints of its pairs. We therefore write Φ2 = f(P ) for329

the collection of triangles in P , together with the triangles in the constrained Delaunay330

triangulations of the wh(P, x), with x ∈ A. Consistent with the earlier convention, we331

call the triangles of Φ2 in P black and the other triangles of Φ2 white. Accordingly, we332

write Black(Φ2) for the black triangles in Φ2, and White(Φ2, x) for the white triangles333

in Φ2 that triangulate wh(P, x). There is a bijection between Φ2 and P2 such that the334

corresponding triangles are similar (scaled by a factor 1
2 and possibly inverted), so the335

triangles in Φ2 and P2 define the same angles. Letting m be the number of triangles, we336

write Vector(P2) = Vector(Φ2) = (φ1, φ2, . . . , φ3m) for the vector of angles, which we order337

such that φi ≤ φi+1 for 1 ≤ i ≤ 3m− 1.338

Repeating the construction with another (maximal) triangulation Q of A, we get another339

(complete) level-2 hypertriangulation of m black and white triangles, Q2, and another340

increasing angle vector, Vector(Q2) = Vector(Ψ2) = (ψ1, ψ2, . . . , ψ3m), in which Ψ2 = f(Q).341

It is lexicographically larger than the vector of Φ2, denoted Vector(Φ2) ≺ Vector(Ψ2), if there342

exists an index 1 ≤ p ≤ m such that φi = ψi, for 1 ≤ i ≤ p − 1, and φp < ψp. We write343

Vector(Φ2) ⪯ Vector(Ψ2) to allow for the possibility of equal angle vectors. This notation is344

useful because it is possible that two different triangulations, P ̸= Q, have the same angle345
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vector. For example, if A has only 4 points and they are in convex position, then there are346

only two different triangulations of A, and the black triangles in the level-2 hypertriangulation347

of one are the white triangles in the level-2 hypertriangulations of the other, and vice versa.348

4.2 Elementary Lemmas349

If uvw is a triangle in White(Φ2, x), then it is not possible that u lies inside xvw. This is350

true independent of how we triangulate wh(P, x):351

▶ Lemma 4.1 (Star-convex Triangulation). Let uvw be a triangle in White(Φ2, x). Then352

either x is inside uvw or x, u, v, w are the vertices of a convex quadrangle.353

Proof. Assume first that x is an interior vertex, so conv (A \ {x}) = convA. Since wh(P, x)354

is star-convex, with x in its kernel, every half-line emanating from x intersects the boundary355

of wh(P, x) in exactly one point. Now suppose u lies inside the triangle xvw, and consider356

the half-line emanating from x that passes through u. Since x lies in the interior of wh(P, x),357

the half-line goes from inside to outside the region as it passes through u. But it also enters358

the triangle uvw, which lies inside wh(P, x). This is a contradiction because entering and359

leaving st(P, x) at the same time is impossible.360

Assume second that x is a vertex of convA, so conv (A \ {x}) ̸= convA. Since uvw is a361

triangle in wh(P, x), it is also a triangle in st(P, x). Furthermore, u, v, w are points on the362

boundary of st(P, x), and every half-line emanating from x that has a non-empty intersection363

with the interior of convA intersects this boundary in exactly one point. Assuming u lies364

inside xvw, we can now repeat the argument of the first case and get a contradiction because365

the half-line passing through u both enters and leaves st(P, x) when it passes through u. ◀366

Every point x ∈ A belongs to at least two edges in P . However, if x belongs to only367

two edges, then every line that crosses both edges necessarily separates x from all points in368

A \ {x}. We state and prove a generalization of this observation.369

▶ Lemma 4.2 (Splitting a Triangulation). Let P be a triangulation of a finite set A ⊆ R2, let370

L be a line, and let Q be the vertices and edges of P that are disjoint of L. Then Q consists371

of at most two connected components, one on each side of L.372

Proof. Assume without loss of generality that L is horizontal, and let A′ ⊆ A contain all373

points strictly above L. The boundary of convA is a closed convex curve, γ, and we write374

γ′ ⊆ γ for the vertices and edges strictly above L. Every point a ∈ A′ is either a vertex of γ′,375

or there is an edge ab in P , with b above L and further from L than a. Hence, ab ∈ Q. We376

can therefore trace a path from a that eventually reaches a vertex of γ′ in Q, which implies377

that the part of Q strictly above L is either empty or connected. Symmetrically, the part of378

Q strictly below L is either empty or connected, which implies the claim. ◀379

By construction, the interior points of a black triangle, abc ∈ P , belong to st(P, a),380

st(P, b), st(P, c) but not to the stars of any other vertices. Hence, only the white triangles381

used in the triangulation of these three stars can possibly share interior points with abc. If a382

white triangle shares one or two of the vertices with abc, then this further restricts the stars383

this white triangle may help triangulate.384

▶ Lemma 4.3 (Shared Interior Points). Let P be a triangulation of a finite set A ⊆ R2, let385

abc be a black triangle and uvw a white triangle in Φ2 = f(P ), and suppose that abc and386

uvw share interior points.387
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(1) If u = a and v = b, then uvw ∈ White(Φ2, c).388

(2) If v = b is the only shared vertex between abc and uvw, then uw cannot cross ab and bc.389

(3) If v = b and uw crosses bc, then uvw ∈ White(Φ2, c).390

(4) uvw ∈ White(Φ2, x) for only one point x ∈ A.391

Proof. (1) is immediate because c is the only vertex of abc that is not also a vertex of uvw.392

To see (2), assume that uw crosses ab and also bc. Then uvw shares interior points with393

three black triangles in Φ2, namely abc and the neighboring triangles that share ab and bc394

with abc. The only common vertex of the three black triangles is b, so uvw ∈ White(Φ2, b),395

but this is impossible because b = v.396

To see (3), note that uvw shares interior points with two black triangles: bac and the397

black triangle on the other side of bc. Hence, uvw is contained in st(P, b) or st(P, c). Since398

b = v, the only remaining choice is uvw ∈ White(Φ2, c).399

To see (4), consider first the case that uvw shares interior points with only two black400

triangles, abc and bcd. Then one of its edges, say uv crosses bc, so u = a and w = d. But401

v cannot lie in the interior of the two black triangles or its edges, so v = b. Then c is the402

only remaining point such that uvw ∈ White(Φ2, c). If uvw shares interior points with three403

or more black triangles, then the black triangles share only one common vertex, x, hence404

uvw ∈ White(Φ2, x). ◀405

4.3 Global Optimality406

The first main result of this paper asserts that Sibson’s theorem on increasing angle vectors407

extends from order-1 to order-2 Delaunay triangulations.408

▶ Theorem 4.4 (Angle Vector Optimality). Let A ⊆ R2 be finite and generic, P a complete409

triangulation of A, Φ2 = f(P ), and ∆2 = f(Del(A)). Then Vector(Φ2) ⪯ Vector(∆2).410

Proof. Write D = Del(A), so ∆2 = f(D). The genericity of A implies that D and ∆2 are411

unique, but there may be two or more triplets of points that define the same angle. It will be412

convenient to have distinct angles, so we first apply a perturbation that preserves the order413

of unequal angles while making equal angles different. The relation for the perturbed points414

implies the same but possibly non-strict relation for the original points since undoing the415

perturbation does not change the order of any two angles. So assume that the angles defined by416

the points in A are distinct, and to derive a contradiction, assume Vector(∆2) ≺ Vector(Φ2).417

More specifically, we write α1 < α2 < . . . < α3m and φ1 < φ2 < . . . < φ3m for the angles of418

∆2 and Φ2, respectively, and we assume αi = φi, for 1 ≤ i ≤ p− 1, and αp < φp, for some419

1 ≤ p ≤ m. In other words, p is the first index at which the two angle vectors differ, and420

the p-th angle of ∆2 is smaller than the p-th angle of Φ2. Write α = αp and let bac ∈ ∆2 be421

the triangle with α = ∡bac. By the assumption of distinct angles, bac ̸∈ Φ2. To simplify the422

discussion of the various cases, we assume without loss of generality that423

the line, L, that passes through b and c is horizontal;424

the triangle bac, and therefore the vertex a, lie above L;425

see Figures 3 and 4. We first consider the case in which bac is a black triangle. There are426

three subcases, and in each we get a contradiction by constructing two triangles that share427

interior points. Note that two white triangles may share interior points, but not if they428

triangulate the same star.429

Case 1: bac is a black triangle in ∆2. By definition of D = Del(A), bac does not contain430

a point of A in its interior, and if x ∈ A \ {a} lies above L, then the angle ∡bxc is strictly431
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Figure 3: Edges of black and white triangles are bold and fine, respectively, and edges of triangles
in ∆2 and Φ2 are pink and green, respectively. Left: two overlapping triangles in White(∆2, a)
constructed in Case 1.1. Middle: two crossing edges of black triangles in Φ2 constructed in Case
1.2.1. Right: two overlapping triangles in White(∆2, c) constructed in Case 1.2.2.

smaller than α. We say a collection of triangles covers the upper side of the edge bc if every432

interior point of bc has an open neighborhood whose intersection with the closed half-plane433

above L is contained in the union of these triangles. The black triangles in Φ2 cover the434

entire convex hull of A and therefore also the upper side of bc. It is possible that a single435

black triangle in Φ2 suffices for this purpose, and this is our first subcase.436

Case 1.1: the upper side of bc is covered by a single triangle, bxc ∈ Black(Φ2), as in437

Figure 3 on the left. Since ∡bxc < α, bxc must be a white triangle in ∆2. Specifically, since a438

and x are both above L, and a lies inside the circumcircle of bxc, we have bxc ∈ White(∆2, a).439

To get a contradiction, we construct a second such white triangle. Since there are at440

least two points of A above L, Lemma 4.2 implies that P contains an edge connecting x to441

another point, x′ ̸= x, above L. Hence, wh(P, x) has a non-empty overlap with the open442

half-plane above L. Since bc belongs to the boundary of wh(P, x), there is a triangle bx′c443

in White(Φ2, x). We have x′ ≠ x by construction, and x′ ̸= a because this would imply444

that ∡bx′c = α is an angle in Vector(Φ2), which we assumed it is not. Since x′ lies outside445

the circumcircle of bac, we have ∡bx′c < α, so bx′c ∈ White(∆2, a). But bxc and bx′c share446

interior points, which is a contradiction.447

Case 1.2: to cover the upper side of bc requires two or more triangles in Black(Φ2),448

as in Figure 3 in the middle and on the right. Among these triangles, let bxy and cx′y′ be the449

ones that share the vertices b and c with bac. Assuming x, x′ lie above L and y, y′ lie below450

L, we have ∡bxy < α and ∡cx′y′ < α, which implies bxy, cx′y′ ∈ ∆2. The two triangles451

share interior points with bac, so they cannot be black and are therefore white in ∆2.452

Case 1.2.1: at least one of x, x′ differs from a. Assume x ̸= a. Since xy crosses bc, it must453

cross another edge of bac, which by Lemma 4.3 (2) can only be ac. If x′ = a, then x′c = ac,454

and if x′ ̸= a, then x′y′ crosses ab and bc, again by Lemma 4.3 (2). In either case, bxy and455

cx′y′ share interior points inside triangle abc, which contradicts bxy, cx′y′ ∈ Black(Φ2).456

Case 1.2.2: both x and x′ are equal to a. Then bay, cay′ ∈ Black(Φ2). Since ∡bay < α457

and ∡cay′ < α, both are white triangles in ∆2. By Lemma 4.3 (1), bay ∈ White(∆2, c)458

and cay′ ∈ White(∆2, b), which implies that cy and by′ are edges in Del(A). If y ̸= y′,459

then there are three possible choices for the points b, c, y, y′. First, they form a convex460

quadrangle, byy′c, with the points ordered as they are seen from a. But then by′ and cy461

cross, which contradicts that they both belong to Del(A). Second, y lies inside bcy′. Since462
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cay′ ∈ White(∆2, b), the circumcircle of cay′ encloses b and therefore y, which is one point463

too many for a white triangle in ∆2. Third, y′ lies inside bcy, but this is symmetric to the464

second choice. Since we get a contradiction for all three choices, we conclude that y = y′.465

To get a contradiction, we use Lemma 4.2 to construct yet another triangle baz ∈466

White(∆2, c). Specifically, we let L be the line that passes through a and b, and rotate the467

picture so L is horizontal and c, y lie above L. Hence, there is a point z above L such that468

yz is an edge in P and baz ∈ White(Φ2, y). We have z ̸= y by construction, and z ̸= c by469

assumption on angle α. Since ba and ac are both edges in the boundary of st(P, y), za crosses470

bc, so ∡baz < α, which implies that baz is a white triangle in ∆2, and by Lemma 4.3 (1),471

baz ∈ White(∆2, c). But bay and baz share interior points, which is a contradiction. This472

concludes the proof of the first case.473

za ax = a = x′

b c

d

α

y = d = y′

α

b c cb

α d z

z′x′ x

Figure 4: As before, we draw edges of black and white triangles bold and fine, respectively. To
simplify, we show only edges of triangles in ∆2. Left: two overlapping triangles in White(∆2, a)
constructed in Case 2.1.1. Middle: similar two overlapping triangles in White(∆2, a) constructed in
a chain of deductions in Case 2.1.2. Right: a white triangle whose circumcircle encloses two points
constructed in Case 2.2.

Case 2: bac is a white triangle in ∆2. Let d be the point such that bac ∈ White(∆2, d).474

Then da, db, dc are edges of black triangles in ∆2. We distinguish between the cases in which475

d lies below and above L.476

Case 2.1: d lies below L; see the left and middle panels of Figure 4. Then ∡bxc < ∡bac477

for all x ∈ A above L, and ∡byc < ∡bdc for all y ∈ A below L. Similar to Case 1.1, we478

distinguish between the upper side of bc being covered by one or requiring two or more479

black triangles in Φ2. In both cases, we derive a contradiction by constructing triangles in480

White(∆2, a) that share interior points.481

Case 2.1.1: the upper side of bc is covered by a single triangle, bxc ∈ Black(Φ2); see482

the left panel of Figure 4. Then ∡bxc < α, so bxc is a triangle in ∆2, and since a lies inside483

its circumcircle, we have bxc ∈ White(∆2, a). Using Lemma 4.2, we find a point x′ above484

L such that xx′ is an edge in P and bx′c is a triangle in White(Φ2, x). We have x′ ̸= x by485

construction, and x′ ̸= a, else ∡bx′c = α would be an angle in Vector(Φ2). Again ∡bx′c < α,486

so bx′c ∈ White(∆2, a). This is a contradiction because bxc and bx′c share interior points.487

Case 2.1.2: to cover the upper side of bc requires at least two triangles in Black(Φ2).488

Among these triangles, let bxy and cx′y′ be the ones that share b and c with bac, respectively,489

and assume that x, x′ are above L and y, y′ are below L. We first prove that d is connected to490

b and c by edges of black triangles in Φ2, and thereafter derive a contradiction by constructing491

two triangles in White(∆2, a) that share interior points.492
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Claim: bd and cd are edges of triangles in Black(Φ2).493

Proof. To derive a contradiction, assume the claim is false and bd is not edge of any black494

triangle in Φ2. Hence y ≠ d. Since ∡bxy < α, bxy is also in ∆2. It shares interior points495

with the star of d without having d as a vertex, which implies that bxy must be white in ∆2.496

Consider bdc, which is not necessarily a triangle in ∆2 or Φ2. However, since d is the497

only point inside the circumcircle of bac, there is no point of A inside bdc. Since xy crosses498

bc, it must cross either bd or cd. Assuming xy crosses bd, bxy shares interior points with499

the two black triangles with common edge bd in ∆2, so bxy ∈ White(∆2, d) by Lemma 4.3500

(3). This is not possible since bxy and bac share interior points. Thus, xy crosses cd. Since501

bxy ∈ Black(Φ2), this implies that cd cannot be edge of any black triangle in Φ2. Hence502

y′ ̸= d, so we can use the symmetric argument to conclude that x′y′ crosses bd. But this is a503

contradiction since in this case bxy and cx′y′ share interior points inside the triangle bcd; see504

the middle panel of Figure 3 where the situation is similar. This completes the proof of the505

claim.506

Since bd and cd are edges of triangles in Black(Φ2), we have y = y′ = d. Consider st(P, d),507

which contains b and c on its boundary. The black triangles in Φ2 that cover the upper side508

of bc all share d as a vertex, which implies that bc lies inside this star. Indeed, by Lemma 3.4,509

it is an edge of a triangle in White(Φ2, d). Thus, there exists a triangle bzc ∈ White(Φ2, d)510

with z above L. We have z ̸= a by assumption on α, so ∡bzc < α, which implies that bzc is511

also a white triangle in ∆2, and since its circumcircle encloses a, bzc ∈ White(∆2, a).512

To construct a second such white triangle, note that this implies that ab and ac are edges513

of triangles in Black(∆2). As illustrated in the middle panel of Figure 4, all of ab, ac, ad, bd, cd514

are edges of black triangles in ∆2, so bac, bdc ∈ Black(∆2). Hence, bd and cd are edges in the515

boundary of st(D, a), and since bzc ∈ White(∆2, a), we also have bdc ∈ White(∆2, a). The516

angle at b satisfies ∡dbc < ∡dac < α because a lies inside the circumcircle of dbc, and since517

dbc is a triangle in ∆2, it must therefore also be a triangle in Φ2. It cannot be in Black(Φ2)518

because the upper side of bc requires at least two black triangles of Φ2 to be covered, by519

assumption. Hence, dbc is white in Φ2. It shares interior points with the two black triangles520

with common edge dz in Φ2, so dbc ∈ White(Φ2, z), by Lemma 4.3 (3).521

Finally consider White(Φ2, z). It contains bdc and, by Lemma 4.2, it covers the upper522

side of bc. Hence, there is a triangle bz′c ∈ White(Φ2, z) with z′ above L. We have z′ ̸= z by523

construction, and z′ ≠ a by assumption on α. Again, ∡bz′c < α, so bz′c ∈ ∆2, and since its524

circumcircle encloses a, we have bz′c ∈ White(∆2, a). But this is a contradiction because bzc525

and bz′c share interior points.526

Case 2.2: d lies above L; see the right panel of Figure 4. Similar to Case 2.1.2, we begin527

by proving that d is connected to b and c by edges of black triangles in Φ2.528

Claim: bd and cd are edges of triangles in Black(Φ2).529

Proof. To derive a contradiction, assume the claim is false and bd is not edge of any black530

triangle in Φ2. Among the one or more black triangles needed to cover the upper side of bc,531

let bxy ∈ Black(Φ2) be the triangle that shares b with bac. Letting x be the vertex above L,532

we have x ̸= d by assumption. If bxy covers the upper side of bc by itself, then y = c, and533

otherwise, y lies below L. In either case, ∡bxy < α, so bxy is also a triangle in ∆2. It cannot534

be black because it shares interior points with st(D, d) without having d as a vertex, so bxy535

is a white triangle in ∆2. But this implies y ̸= c. Indeed, if y = c, then either bxy = bac,536

which contradicts the assumption on α, or the circumcircle of bxy encloses a as well as d,537

which is one point too many for a white triangle in ∆2.538

So y is below L. Note that the circumcircle of bac encloses d and therefore bdc, and since539

x lies on or outside this circle, it cannot lie inside bdc. Since xy crosses bc, it thus must cross540
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another edge of this triangle, either bd or cd. Assuming xy crosses bd, which is common to541

two black triangles in ∆2, we get bxy ∈ White(∆2, d) from Lemma 4.3 (3). But bxy and542

bac ∈ White(∆2, d) share interior points, which is a contradiction. Hence, xy crosses bc and543

cd, so cd cannot be an edge of a black triangle in Φ2.544

Let now cx′y′ be among the triangles in Black(Φ2) needed to cover the upper side of bc545

that shares c with bac. By a symmetric argument, we conclude that x′y′ crosses bc and bd.546

But this is a contradiction because bxy and cx′y′ share interior points inside the triangle bcd;547

see again the middle panel of Figure 3 but substitute d for a. This completes the proof of548

the claim.549

Hence, bd and cd are edges of black triangles in Φ2. This implies that b and c are points550

in the boundary of st(P, d). As argued above, there are no points of A inside bdc, so st(P, d)551

covers the upper side of bc. There is a circle that passes through b and c and encloses d but552

no other points of A, so by Lemma 3.4, bc is an edge of a triangle in White(Φ2, d). Let z553

be the point above L such that bzc ∈ White(Φ2, d). We have z ̸= d by construction, and554

z ̸= a by assumption on α. Hence, ∡bzc < α, which implies that bzc is also a triangle in ∆2.555

However, the circumcircle of bzc encloses a and d, which is one too many for a white triangle556

in ∆2. This furnishes the final contradiction and completes the proof of the theorem. ◀557

4.4 Counterexamples558

Can Theorem 4.4 be extended or strengthened? In this subsection, we present examples that559

contradict the extension to order beyond 2 and the strengthening to order-2 hypertriangula-560

tions obtained from possibly incomplete triangulations.561

Figure 5: From left to right: the order-1, order-2, and order-3 Delaunay triangulations of four
points, interleaved with the two possible triangulations of these points.

Order beyond 2. Four points in convex position permit only two triangulations: D =562

Del(A), and P , which consists of the other two triangles spanned by the four points. As563

illustrated in Figure 5, Del2(A) consists of shrunken and possibly inverted copies of all four564

triangles, and Del3(A) consists of shrunken and inverted copies of the two triangles in P . As-565

suming A is generic, Sibson’s theorem implies Vector(P ) ≺ Vector(D). There are two level-3566

hypertriangulations: the order-3 Delaunay triangulation, with Vector(Del3(A)) = Vector(P ),567

and another, with Vector(P3) = Vector(D). Hence, Vector(Del3(A)) ≺ Vector(P3). In words,568

the vector inequality asserted in Theorem 4.4 for order-2 Delaunay trinagulations does not569

even extend to order 3.570

Compare this with Eppstein’s theorem [7], which asserts that for n points in convex571

position in R2, the order-(n − 1) Delaunay triangulation lexicographically minimizes the572

increasing angle vector. For n = 4 and points in convex position, the above conclusion is a573

consequence of this theorem.574
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Incomplete hypertriangulations. Theorem 4.4 compares the order-2 Delaunay trian-575

gulation with all complete level-2 hypertriangulations, each aged from a triangulation that576

contains each point in A as a vertex. Enlarging this collection to possibly incomplete level-2577

hypertriangulations is problematic since they do not necessarily have the same number of578

angles as Del2(A). We can still compare the smallest angles, but there are counterexamples.579

Indeed, Figure 6 shows a set of nine points whose order-2 Delaunay triangulation does not580

maximize the minimum angle if incomplete level-2 hypertriangulations participate in the581

competition. We note that for these particular nine points, the angle vectors of Del2(A)582

and the displayed level-2 hypertriangulation have the same length. This implies that the583

requirement of completeness cannot be weakened to maximality, which is equivalent to having584

the same number of triangles.

[fg] [eh]

[cg]
a b

c

d

g h

i

[gh]

[di]

[gi] [hi]

[cd]

[eg]

[de] [fd]

[fh]

[ag] [bg] [ah] [bh]

[bd][ad]

[dg] [dh]

e f

[ch]

Figure 6: The minimum angle in the displayed level-2 hypertriangulation is larger than the
minimum angle of the order-2 Delaunay triangulation of the same points. Indeed, the smallest
angle in the hypertriangulation of about 9 degrees is defined by the vertices [eh], [dh], [gh]. For
comparison, the circle in the picture proves that the angle of about 6.4 degrees defined by the
vertices [bc], [cd], [ac] belongs to the order-2 Delaunay triangulation (not shown).

585

4.5 Corollary for MaxMin Angle586

Theorem 4.4 implies that among all complete level-2 hypertriangulation, the order-2 Delaunay587

triangulation is distinguished by maximizing the minimum angle. Using Sibson’s result for588

level-1 hypertriangulations [20], there is a short proof of this corollary. No such similarly589

short proof is known for the angle vector optimality of order-2 Delaunay triangulations.590

▶ Corollary 4.5 (MaxMin Angle Optimality). Let A ⊆ R2 be finite and generic, and P a591

complete triangulation of A. Then the minimum angle of the triangles in Φ2 = f(P ) is592

smaller than or equal to the minimum angle of the triangles in ∆2 = f(Del(A)).593
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Proof. Write D = Del(A), for each x ∈ A, write D(x) = Del(A \ {x}), and let P (x) be the594

triangulation of A \ {x} obtained by removing the triangles that share x from P and adding595

the triangles in the constrained Delaunay triangulation of wh(P, x). By Sibson’s theorem,596

the smallest angle in P is smaller than or equal to the smallest angle in D, and for each597

x ∈ A, the smallest angle in P (x) is smaller than or equal to the smallest angle in D(x).598

The smallest angle in ∆2 is the minimum angle in D and all D(x), and the smallest angle in599

Φ2 is the minimum angle in P and all P (x), for x ∈ A. Hence, the smallest angle in Φ2 is600

smaller than or equal to the smallest angle in ∆2. ◀601

5 Uniqueness of Local Angle Property602

In this section, we prove the second main result of this paper, which supports the Local Angle603

Conjecture formulated at the end of Section 3.3 by proving it for the case k = 2. We begin604

with three basic lemmas on hypertriangulations that satisfy some or all of the conditions in605

Definition 3.2.606

5.1 Useful Lemmas607

To streamline the discussion, we call a union of black triangles a black region if its interior is608

connected and it is not contained in a larger black region of the same triangulation. Similarly,609

we define white regions. Furthermore, we refer to black or white angles when we talk about610

the angles inside a black or white triangle.611

▶ Lemma 5.1 (Black Regions are Convex). Let A ⊆ R2 be finite and generic, and let Pk be a612

level-k hypertriangulation of A that satisfies (bb). Then every black region of Pk is convex,613

and all vertices of the restriction of Pk to the black region lie on the boundary of that region.614

Proof. Let a be a boundary vertex of a black region, with edges ab0, ab1, . . . , abp+1 bounding615

the p+ 1 incident black triangles in the region. (bb) implies ∡abi−1bi + ∡abi+1bi > π for616

1 ≤ i ≤ p, so the sum of the 2(p + 1) angles is larger than pπ. Hence, the sum of the617

remaining p+ 1 angles at a is less than π, as required for the black region to be convex at a.618

The same calculation shows that a ring of black triangles around a vertex in the interior of619

the black region is not possible. ◀620

▶ Lemma 5.2 (Total Black Angles). Let A ⊆ R2 be finite and generic, and let Pk be a level-k621

hypertriangulation of A that has the local angle property. Then the sum of black angles at622

any vertex of Pk is less than π.623

Proof. Let a be a vertex of Pk. If a is a boundary vertex, then the claim is trivial. If a624

is an interior vertex and incident to at most one black region, then the claim follows from625

Lemma 5.1. So assume that a is interior and incident to p ≥ 2 black and therefore the same626

number of white regions. Let ab1, ab2, . . . , ab2p be the edges separating the black and white627

regions around a, with the region between ab1 and ab2 being black. We also assume that the628

angle between any two consecutive edges is less than π, else the claim is obvious.629

We look at the edge ab2 and claim that ∡ab1b2 > ∡ab3b2. The black region between ab1630

and ab2 satisfies (bb), so its triangulation is the farthest-point Delaunay triangulation. In it,631

every triangle that shares an edge with the boundary of the region has the property that the632

angle opposite to the boundary edge is minimal over all choices of third vertex [7]. Therefore,633

∡ab1b2 is greater than or equal to the angle opposite to ab2 inside the black triangle.634

Similarly, the triangulation of the white region between ab2 and ab3 satisfies (ww), so635

its triangulation is the constrained Delaunay triangulation of the region. Thus, ∡ab3b2 is636
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smaller than or equal to the angle opposite to ab2 inside the white triangle. Applying (bw)637

to ab2, we get the claimed inequality.638

We repeat the same argument for all other edges separating black from white regions639

around a, and compare the sum of black and white angles opposite these edges:640 ∑p

i=0
(∡ab2i+1b2i+2 + ∡ab2i+2b2i+1) >

∑p

i=0
(∡ab2ib2i+1 + ∡ab2i+1b2i) , (1)641

in which the indices are modulo 2p. The sum of black angles at a is pπ minus the first sum642

in (1), and the sum of white angles at a is pπ minus the second sum in (1). Therefore the643

sum of black angles at a is less then the sum of white angles at a. ◀644

▶ Lemma 5.3 (Local Angle Property and Aging Function). Let A ⊆ R2 be finite and gen-645

eric, Pk a level-k hypertriangulation of A, and Pk−1 = F−1(Black(Pk)) a level-(k − 1)646

hypertriangulation of A. If Pk has the local angle property, then Pk−1 satisfies (ww).647

Proof. We consider two adjacent white triangles with vertices [Xa], [Xb], [Xc] and [Xb], [Xc],648

[Xd] in Pk−1. Applying the aging function, we get two black triangles of Pk with vertices649

[Xab], [Xac], [Xbc] and [Xbc], [Xbd], [Xcd]. They share [Xbc], which implies that the sum650

of their angles at this vertex is less than π by Lemma 5.2. The two black triangles are651

homothetic copies of abc and bcd, and so are the corresponding two white triangles in Pk−1,652

so (ww) follows. ◀653

5.2 Level-2 Hypertriangulations654

We are now ready to confirm the Local Angle Conjecture for level-2 hypertriangulations.655

▶ Theorem 5.4 (Local Angle Conjecture for Level 2). Let A ⊆ R2 be finite and generic, and656

let P2 be a maximal level-2 hypertriangulation of A. Then P2 has the local angle property iff657

it is the order-2 Delaunay triangulation of A.658

Proof. No two black triangles in P2 share an edge, which implies that (bb) is void. On the659

other hand, there are pairs of adjacent white triangles that belong to the triangulation of white660

regions in P2. In complete level-2 hypertriangulations, each such region is a polygon without661

points (vertices) inside, but in the more general case of maximal level-2 hypertriangulations662

considered here, there may be such points or vertices. In either case, (ww) implies that the663

restriction of P2 to each white region is the constrained Delaunay triangulation of this region.664

Let P be the underlying (order-1) triangulation of A, which consists of the images of665

the black triangles in P2 under the inverse aging function. We begin by establishing that666

P is maximal and therefore P2 is complete. Suppose x ∈ A is not a vertex of P , and let667

abc be the triangle in P that contains x in its interior. Consider the triangle with vertices668

c′ = [ab], b′ = [ac], and a′ = [bc] in Black(P2). The edge connecting b′ and c′ is shared with669

[wh(P2, a)], and this white region contains x′ = [ax]. Since P2 is maximal, by assumption, x′
670

is a vertex of the restriction of P2 to this white region. Recall that the triangle b′d′c′ in the671

constrained Delaunay triangulation of the white region has the property that the angle at d′
672

is maximal over all possible choices of d′ visible from b′ and c′. Hence, ∡b′d′c′ ≥ ∡b′x′c′, but673

also ∡b′x′c′ = ∡bxc > ∡bac = ∡b′a′c′ because x is inside abc. This implies ∡b′d′c′ > ∡b′a′c′,674

which contradicts (bw) for P2, so P is necessarily maximal.675

Applying Lemma 5.3 to P2, we conclude that P satisfies (ww). Since P is a maximal,676

the only choice left is that P is the Delaunay triangulation of A. The black triangles in P2677

thus coincide with the black triangles in the order-2 Delaunay triangulation of A, and P2678

restricted to each of its white regions is the constrained Delaunay triangulation of this region.679

Hence, P2 is the order-2 Delaunay triangulation of A. ◀680
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5.3 Level-3 Hypertriangulations681

We say A ⊆ R2 is in convex position if all its points are vertices of convA. For such sets, we682

can extend Theorem 5.4 to level-3 hypertriangulations. The main differences to general finite683

sets are that all triangulations have the same number of triangles, and the aging function684

exists, as established by Galashin in [9] but see also [6]. We use this function together with the685

characterization of the order-2 Delaunay triangulation as the only level-2 hypertriangulation686

that has the local angle property.687

▶ Theorem 5.5 (Local Angle Conjecture for Level 3). Let A ⊆ R2 be finite, generic, and in688

convex position, and let P3 be a hypertriangulation of A. Then P3 has the local angle property689

iff it is the order-3 Delaunay triangulation of A.690

Proof. By Theorem 3.3, the order-3 Delaunay triangulation has the local angle property. Let691

P3 be a possibly different level-3 hypertriangulation that also has the local angle property, and692

let P2 = F−1(Black(P3)), which exists because A is in convex position [9]. By Lemma 5.3,693

P2 satisfies (ww). Recall that (bb) is void for level-2 hypertriangulations, so if in addition694

to (ww), P2 also satisfies (bw), then it has the local angle property. By Theorem 5.4, this695

implies that P2 is the order-2 Delaunay triangulation of A. Its white triangles are in bijection696

with the triplets of points whose circumcircles enclose exactly one point of A, and since697

Black(P3) = F (White(P2)), so are the black triangles of P3. Thus, P3 has the same black698

triangles as the order-3 Delaunay triangulation of A. Furthermore, the white regions of699

P3 coincide with the white regions of the order-3 Delaunay triangulation, and because the700

restriction of either triangulation to a white region is the constrained Delaunay triangulation701

of that region, we conclude that P3 is the order-3 Delaunay triangulation of A.702

c
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b = x1

d = xp

a

y3

w = xi+1 w = yq

u = y1
v = xi

u = xi−1

c = x2

y2
v

b

d

[auv]

[auw]

[ay3v]

[uwv]

[awv][awv]
[auv]

[ay2v]

Figure 7: The superposition of three levels. Left: part of the star of a in P on level 1, the (white)
triangles in this star aging to black triangles in P2 on level 2, and the only two white triangles in
the star of [av] aging to two black triangles in P3 on level 3. One is similar to uvw and the other to
auw, which is assumed to be unique. Right: compared to the configuration on the left, there are two
extra white triangles, which increase the star of [av] in P2 from two to four triangles. Accordingly,
we see a white quadrangle on level 3.

It remains to show that P2 indeed satisfies (bw). To derive a contradiction, we assume703

it does not. Let [ab], [ac], [bc] and [ab], [ac], [ad] be the vertices of a black triangle and an704



XX:20 Order-2 Delaunay Triangulations Optimize Angles

adjacent white triangle that violate (bw), so ∡bac < ∡bdc. Let P = F−1(Black(P2)), and705

consider the star of a in P . All vertices are in convex position, including a, b, c, d, so we may706

assume that ac crosses bd, as in Figure 7 on the left. Let ax1 = ab, ax2 = ac, . . . , axp = ad707

be the sequence of edges in the star of a that intersect bd. We consider the polygon with708

vertices a, x1, x2, . . . , xp. Since A is in convex position, the polygon is convex, which implies709

that its constrained Delaunay triangulation is also the Delaunay triangulation of the p+ 1710

points. Denote this Delaunay triangulation by ∆, and note that it includes bcd = x1x2xp: a711

is outside the circumcircle of bcd, because abc and bcd violate (bw), and so is every xi with712

3 ≤ i ≤ p−1, because bcd is a triangle in White(P2, a). The rest of ∆ consists of abd = ax1xp713

and the triangles of White(P2, a) on the other side of x2xp. An ear of ∆ is a triangle that714

has two of its edges in the boundary of the polygon. For example, ax1xp is an ear, but715

since every triangulation of a polygon with at least four vertices has at least two ears, there716

is another one, and we write uvw = xi−1xixi+1 for a second ear of ∆. The corresponding717

triangle in P2 has vertices [au], [av], [aw] and is adjacent to black triangles with vertices [au],718

[av], [uv] and [av], [aw], [vw]. Both pairs violate (bw) because a lies outside the circumcircle719

of uvw. Looking closely at this configuration, we note that [av] is shared by the two black720

triangles and also belongs to [wh(P2, a)] and [wh(P2, v)]; see again Figure 7 on the left. We721

distinguish between two cases: when [av] belongs to only one triangle in the triangulation of722

the latter white region, and when it belongs to two or more such triangles.723

Assuming the first case, we apply the aging function to the two white triangles sharing724

[av], which gives two black triangles with vertices [auv], [auw], [awv] and [auv], [awv], [uwv]725

in P3. They share an edge, and since a lies outside the circumcircle of uvw, they violate726

(bb), which is the desired contradiction.727

There is still the second case, when [av] belongs to two or more triangles in the triangulation728

of [wh(P2, v)]. Let [uv] = [y1v], [y2v], . . . , [yqv] = [wv] be the vertices of [wh(P2, v)] connected729

to [av]; see Figure 7 on the right. These q edges bound q − 1 white triangles in P2. Consider730

their images under the aging function, which are q − 1 black triangles in P3. Together with731

the black triangle with vertices [auv], [auw], [awv], these black triangles surround a convex732

q-gon with vertices [auv] = [ay1v], [ay2v], . . . , [ayqv] = [awv]; see again Figure 7 on the right.733

The q-gon is convex because A is in convex position, and we claim it is a white region in734

P3. If there is any black triangle, T , inside this q-gon, then we consider any generic segment735

connecting T to the boundary of the q-gon, and the closest part of that segment to the736

boundary colored black in P3. By construction, the triangle T ′ containing this part has two737

vertices labeled [avz1] and [avz2], for some z1 and z2. Hence, F−1(T ′) is a white triangle of738

P2 incident to [av], which is impossible, as all white triangles in P2 incident to [av] age to739

black triangles surrounding the q-gon. Recall that P3 satisfies (ww), so the restriction of P3740

to the q-gon is the (constrained) Delaunay triangulation of the q-gon.741

Consider the edge connecting [auv] = [ay1v] and [awv] = [ayqv] of the q-gon, and let742

[ayiv] be the third vertex of the incident white triangle. Because this triangle is part of the743

(constrained) Delaunay triangulation, we have ∡uyjw < ∡uyiw for all j ̸= i, and because744

P3 satisfies (bw), we have ∡uyiw < ∡uvw. Recall that a lies outside the circumcircle of745

uvw, so ∡uvw+∡uaw < π. This implies ∡uyiw+∡uaw < π. Hence, the circumcircle of the746

triangle with vertices [uv], [yiv], [wv] does not enclose any of the other vertices. It follows that747

the triangle belongs to the constrained Delaunay triangulation of the polygon with vertices748

[uv] = [y1v], [y2v], . . . , [yqv] = [wv], but it does not because this polygon is triangulated with749

edges that all share [av]. This gives the final contradiction. ◀750
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6 Concluding Remarks751

In this last section, we discuss open questions about hypertriangulations. The obvious one is752

whether optimality properties other than angles can be generalized from level 1 to higher753

levels: for example the smallest circumcircle [3], the smallest enclosing circle [17], roughness754

[18], and other functionals [5, Chapter 3] and [14], which are all optimized by the order-1755

Delaunay triangulation. In addition, we list a small number of more specific questions and756

conjectures directly related to the discussions in the technical sections of this paper.757

Flipping as a proof technique. Sibson’s original proof for the angle vector optimality758

of the Delaunay triangulation [20] uses the sequence of edge-flips provided by Lawson’s759

algorithm [12]. There is such a sequence for every complete triangulation, and each flip760

lexicographically increases the vector. The authors of this paper pursued a similar approach761

to prove Theorem 4.4 using the flips of Types I to IV developed in [6]; see Figure 8 on762

the right. While these flips connect all level-2 hypertriangulations of a finite generic set763

(Theorem 4.4 in [6]), they do not necessarily lexicographically increase the angle vector.764

Indeed, there is a level-2 hypertriangulation of six points, Q2, different from the order-2765

Delaunay triangulation, such that every applicable flip lexicographically decreases the sorted766

angle vector. The six points in this example are a, b, c, g, h, i in Figure 8, and we obtain Q2767

from the shown hypertriangulation by removing the vertices [ad], [dg], [be], [eh], [cf ], [fi]. In768

Q2, there are only three possible flips, all of Type I, and all three lexicographically decrease769

the sorted angle vector. Incidentally, six is the smallest number of points for which such a770

counterexample to using flips as a proof technique for level-2 hypertriangulations exists.

Type III

Type II

Type I

Type IV

[fi]
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d
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i
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[ci] f

[eh]

c

g

[ad]
[ag]

[dg]

[ab]

[bg]

[be]

[bh]

[ch]
[cf ]

[ai]

Figure 8: Right: the four types of flips that connect the level-2 hypertriangulations of a given set.
Left: a complete level-2 hypertriangulation such that every applicable compound flip decreases the
sorted angle vector. The dashed edges appear after removing vertices [ad], [dg], [be], [eh], [cf ], [fi].

771

Let P2 be the level-2 hypertriangulation in Figure 8 (without removing points d, e, f). It772

provides a counterexample to using a local retriangulation operation more powerful than a flip773

as a proof technique. To explain, let P and P ′ be two complete level-1 hypertriangulations of774

the same set. Let P2 = F (P ) and P ′
2 = F (P ′) be the aged level-2 hypertriangulations such775

that the restriction to any white region is the constrained Delaunay triangulation of that776

region. Equivalently, P2 and P ′
2 satisfy (ww). If P and P ′ are connected by a single flip of777
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Type I, we say that P2 and P ′
2 are connected by a compound flip. It consists of a sequence of778

Type I flips affecting white regions in P2, followed by a Type III flip, followed by a sequence779

of Type I flips affecting white regions in P ′
2. Such a compound flip may increase the sorted780

angle vector even if some of its elementary flips do not. Nevertheless, all compound flips781

applicable to P2 in Figure 8 decrease the sorted angle vector, thus spoiling the hope for an782

elegant proof of Theorem 4.4 using compound flips. This motivates the following question.783

▶ Question A. Does there exist a flip-like approach to proving Theorem 4.4 on the angle784

vector optimality for complete level-2 hypertriangulations?785

Angle vector optimality and local angle property. Recall that Theorem 4.4 proves the786

optimality of the Delaunay triangulation only for order-2 and among all complete level-2787

hypertriangulations. Indeed, Section 4.4 shows counterexamples for order-3 and for relaxing788

to maximal level-2 hypertriangulations. This motivates the following two questions:789

Is there a sense in which the order-k Delaunay triangulations optimize angles for all k?790

Among all maximal level-2 hypertriangulations, which one lexicographically maximizes791

the sorted angle vector?792

Recall also that Theorem 5.4 proves that the local angle property characterizes the order-2793

Delaunay triangulation among all maximal level-2 hypertriangulations, leaving the case794

of higher orders open. We venture the following conjecture, while keeping in mind that795

some condition on the family of competing hypertriangulations is needed to avoid Delaunay796

triangulations of proper subsets of the given points.797

▶ Conjecture B. Let A ⊆ R2 be finite and generic, and for every 1 ≤ k ≤ #A− 1 let Fk be798

the family of level-k hypertriangulations that have the local angle property. Then Pk ∈ Fk799

has the maximum number of triangles iff Pk is the order-k Delaunay triangulation of A.800

In the formulation of this conjecture, we maximize the number of triangles over all members801

of Fk, and not over all level-k hypertriangulations of A, because the latter may not contain802

any that have the local angle property. To see this, let A be any finite set that is not in803

convex position. For k = #A− 1, all triangles are black, and by Lemma 5.1, condition (bb)804

of the local angle property implies that no point in the interior of convA is a vertex of the805

triangulation. Thus every hypertriangulation on this level that has the local angle property806

does not have the maximum number of triangles. Also note that Theorem 5.5 shows that807

the conjecture holds for the case k = 3 and points in convex position. More generally, for808

such points all level-k hypertriangulations have the same number of triangles; see [6] for809

interpretation of results from [9, 16].810

Maximal and maximum hypertriangulations. Recall that a hypertriangulation is811

maximal if no other hypertriangulation of the same level subdivides it. We say a hypertri-812

angulation is maximum if no other hypertriangulation of the same level has more triangles.813

In an attempt to generalize Lemma 2.6 to levels beyond 2, we conjecture that the number814

of triangles in a maximum hypertriangulation depends on the given points but not on how815

these points are triangulated.816

▶ Conjecture C. Let A ⊆ R2 be finite and generic. Then any two maximal level-k hypertri-817

angulations of A have the same and therefore maximum number of triangles. In other words,818

every maximal level-k hypertriangulation is maximum.819
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The conjecture holds for points in convex position [9, 16], and we have verified it for a few820

small configurations in non-convex position. If true, this might have combinatorial meaning821

as the vertices of maximal hypertriangulations would then encode data from the matroid822

defined by the point set. We refer to [10] for an extensive discussion of this topic in connection823

to zonotopal tilings and collections of separated subsets, in particular for points in convex824

position.825
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