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Abstract1

Taking a discrete approach to functions and dynamical systems, this paper integrates the combinatorial2

gradients in Forman’s discrete Morse theory with persistent homology to forge a unified approach to3

function simplification. The two crucial ingredients in this effort are the Lefschetz complex, which4

focuses on the homology of a cell complex at the expense of the geometry of the cells, and the5

shallow pairs, which are birth-death pairs that can double as vectors in discrete Morse theory. The6

main new concept is the depth poset on the birth-death pairs, which captures all simplifications7

achieved through canceling shallow pairs. One of its linear extensions is the ordering by persistence.8
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1 Introduction9

The simplification of a smooth function on a manifold by canceling critical points in pairs is10

a classic idea in Morse theory [18], whose computational execution is riddled with technical11

difficulties. The 2- and 3-dimensional cases are of substantial practical importance in12

geometric visualization [12], and already in three dimensions, the technical challenges abound;13

see e.g. [11] or [16]. The purpose of this paper is to introduce new tools that help overcome14

the technical difficulties and facilitate a clean implementation of these topological ideas.15

We begin with an intuitive introduction of the topological idea, which we illustrate with16

a real-valued function on a circle; see Figure 1, where A and I are identified. The graph of17

this function may be interpreted as a mountain range in the winter, with skiers populating18

its slopes. A skier who uses only the force of gravity can descend from a peak to one of the19

two adjacent valleys, but this is were the journey ends. The situation improves if there is a20

ski lift that leads up to a neighboring peak. Assuming the cost of constructing such a lift21

increases with the height difference, we build only one lift for each peak and valley, and only22

if it is the less expensive of the respective two choices for both, the peak and the valley; see23

the arrows in the upper left panel of Figure 1. From the skier’s viewpoint, the lifts change24

the geometry of the mountain range as she can now reach further from most peaks. For25

example, from the peak labeled DE, she can now reach all the way to the valleys labeled C26

and G, but not yet beyond. The change in geometry can be visualized by leveling the peaks27

with lifts; see the upper right panel in Figure 1 for the outcome of this operation. The new28

geometry is reflected by the simplified graph, whose peaks and valleys are the ones without29

lifts. We iterate the construction of lifts and this way further extend the reach of our skier30

by simplifying the geometry; see the lower panels in Figure 1. The iteration ends with a31

single valley and a single peak that requires no additional lifts. In the original mountain32

range, every valley can now be reached from the remaining peak using the constructed lifts.33
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Figure 1: Upper left: a filter over the triangulation of a circle as height function. Upper right,
lower left, and lower right: the three derived filters obtained by canceling the shallow pairs, which
are indicated by upward sloping arrows.

In the hope to continue the development of a combinatorial theory of dynamics started34

in [19, 15], our approach is fundamentally discrete and not analytic. We therefore work with35

a cell complex that decomposes the space, which in the above example is a decomposition of36

the circle into edges that meet in pairs at shared vertices; see Figure 2. All we need to know

Figure 2: The triangulations of the circle whose vertices and edges correspond to the minima
and maxima of the height functions in Figure 1. The cancellation of a peak-valley pair corresponds
to removing the vertex of the valley and absorbing the edge of the peak into the neighboring edge.

37

about the geometry is the height of every peak, which we store with the corresponding edge,38

and the height of every valley, which we store with the corresponding vertex. The leveling39

of a peak corresponds to absorbing the corresponding edge into the neighboring edge that40

shares the vertex at which the ski lift originates. As a side-effect, this vertex disappears.41

The illustrated 1-dimensional case is of course a gross over-simplication of the general42

situation, so it is important to mention that the idea and our methods generalize. The43

2-dimensional case is illustrated in Figure 3, in which a real-valued function on the sphere44

on the left is represented by its critical points (minima, saddle points, maxima) and a few45

level lines to indicate the height differences. If we trace out the flow lines from the saddles46
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down to the minima, we decompose the sphere into the stable manifolds of the function,47

which in the generic case of a Morse–Smale function is a cell complex; see the sphere on48

the right. The geometry of this cell complex can be challenging, in particular in higher
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Figure 3: Left: level sets of a height function on the sphere. There are two minima, a,b, three
saddles, e,f,g, and three maxima, u,v,w. Right: the flow lines from the minima to the saddle
points, which trace the boundaries of the maxima’s influence regions.

49

dimensions. We therefore separate the geometry from the topology, which is encapsulated in50

the incidence relation between the cells of different dimensions. This is formalized in the51

notion of a Lefschetz complex, which we introduce in Section 2. From a purely algebraic52

point of view, a Lefschetz complex is merely a basis of a free chain complex. However, we53

feel that it is important to advocate a different point of view, with the basis elements as first54

class objects, and the chain complex a tool built on top of them. In our setting, a Lefschetz55

complex may also be viewed as a data structure for storing the homology of the complex56

while ignoring the geometry of its cells. Section 3 describes how this homology changes when57

we cancel a critical point pair and how this affects the Lefschetz complex.58

The remaining sections use these foundations to explore the simplification through59

successive cancellation. There is need for a global view in choosing the critical point pairs60

to cancel, else we may end in topologically convoluted dead-ends. We find guidance in the61

vectors of a combinatorial gradients [9], which we describe in Section 4, and in the birth-death62

pairs of persistent homology [7], which we explain in Section 5. The crucial concept that63

allows the unification of these two notions is that of a shallow pair, which is a sufficiently64

abundant type of birth-death pair that can be turned into a vector without sacrificing the65

acyclicity of the combinatorial vector field. By repeated cancellation of shallow pairs, we66

get a hierarchy of simplifications in terms of a partial order on the birth-death pairs, which67

we introduce in Section 6. Importantly, this poset does not depend on the order of the68

cancellations and represents all possible such simplifications as partitions of the poset into69

an upper set and a lower set.70

We conclude this paper with a discussion of possible applications and open questions in71

Section 7. Among these is what originally motivated the authors of the paper to engage in72

this research, which is a multi-scale combinatorial theory of dynamics under local changes of73

the vector field. A first step would be a combinatorial Cerf theory, which restricts attention74

to acyclic vector fields; that is: to gradients.75
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2 Lefschetz Complexes76

Introduced by the more modest name of a complex in the book on algebraic topology by77

Solomon Lefschetz [14], a Lefschetz complex may be understood as an abstraction of a cellular78

complex: its elements are the cells, and it stores the boundary relations between them. It is79

otherwise not concerned with the geometry of the cells, except that the homology of each80

cell is isomorphic to that of a pointed sphere of the same dimension; that is: the homology81

of the closed ball relative to its boundary; see the last paragraph of this section. We simplify82

its description by limiting ourselves to modulo-2 arithmetic.83

▶ Definition 2.1 (Lefschetz Complex). A Lefschetz complex is a triplet (X, dim, κ), in which84

X is a finite set of elements called cells, dim: X → N0 maps each cell to its dimension, and85

κ : X × X → {0, 1} is a map such that κ(y, x) ̸= 0 only if dim y = dim x + 1, and86 ∑
y∈X

κ(z, y) · κ(y, x) = 0 (1)87

holds for all z, x ∈ X. We call x a facet of y if κ(y, x) = 1.88

Referring to y as a p-cell if dim y = p, (1) says that for every (p + 1)-cell, z, and every89

(p − 1)-cell, x, there is an even number of p-cells, y, that are facets of z and have x as a facet.90

We will often say that X is a Lefschetz complex, assuming dim and κ are implicitly given.91

As an example, consider the division of a 2-sphere into three wedges by connecting the two92

poles by three arcs; see Figure 4. There are two 0-cells, a,b, three 1-cells, e,f,g, and three93

2-cells, u,v,w, and we have κ = 1 for the pairs (w,e),(w,f),(v,g),(v,e),(u,f),(u,g),94

(g,a),(g,b),(f,a),(f,b),(e,a),(e,b). Note that (1) is satisfied throughout.
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Figure 4: Left: a division of the 2-sphere into three wedges, in which a,b are the vertices at
the north-pole and south-pole, e,f,g are the arcs that connect the poles, and u,v,w are the thus
created regions. Right: the face poset of the division.

95

Since we use modulo-2 arithmetic, many of the common algebraic notions needed to96

define homology simplify to elementary combinatorial concepts. We write C(X) for the set97

of subsets of X, and call c ∈ C(X) a chain. It is homogeneous if all cells in c have the same98

dimension, and we call it a p-chain if c ≠ ∅ and the common dimension of the cells in c is p.99

For c, d ∈ C(X), we write ⟨c, d⟩ = #(c ∩ d) for the cardinality of their intersection.100

The boundary of y ∈ X is ∂y ∈ C(X) consisting of all facets of y. Extending it linearly101

to chains, we get the boundary homomorphism, ∂ : C(X) → C(X), which maps c ⊆ X102
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to ∂c =
∑

y∈c ∂y. Since we use modulo-2 arithmetic, the formal sum is the symmetric103

difference of the sets. Condition (1) guarantees ∂∂ = 0, so (C(X), ∂) is a chain complex.104

Z(X) ⊆ C(X) contains all cycles, which are the chains with zero (empty) boundary, and105

B(X) ⊆ C(X) contains all boundaries, which are the chains that are the boundary of other106

chains. Since ∂∂ = 0, we have B(X) ⊆ Z(X). The homology is the quotient of the two:107

H(X) = Z(X)/B(X), which is the partition of Z(X) into sets B(X) + c with c ∈ Z(X).108

This partition is well defined because c, d ∈ Z(X) implies that B(X) + c is either equal to109

or disjoint of B(X) + d. We say X is boundaryless if κ = 0. Then ∂ = 0 and H(X) is the110

partition of X into singletons.111

The ordered pairs of cells in which the first is a facet of the second form a relation, and112

the transitive closure of this relation is a partial order, called the face poset of X. Indeed, we113

call x a face of z, and write x ≤ z, if there is a sequence of cells x = y0, y1, . . . , yk = z such114

that yi is a facet of yi+1 for 0 ≤ i ≤ k − 1. The case k = 0 is allowed, and we call x a proper115

face of z if k ≥ 1. It induces a topology on X via Alexandrov’s theorem [1]: calling116

U ⊆ X an upper set if x ∈ U and x ≤ y implies y ∈ U ;117

L ⊆ X a lower set if y ∈ L and x ≤ y implies x ∈ L,118

the open sets in this topology are the upper sets, and the closed sets are the lower sets. We119

refer to this as the Alexandrov topology of X. This topology satisfies only the weakest of120

the separation axioms, namely that for any two distinct points, at least one has an open121

neighborhood that excludes the other. Indeed, if x is a proper face of y, then every open set122

that contains x also contains y, but not the other way round. Such a topological space is often123

referred to as a T0 or Kolmogorov space. By a result of McCord [17], if the Lefschetz complex124

represents a regular cell complex (a cell complex with homeomorphic gluing maps), then its125

homology is isomorphic to the singular homology of that cell complex; see also Theorem 1.4.12126

on simplicial complexes and Theorem 7.1.7 on regular complexes in [3]. An example in which127

the Lefschetz complex does not represent a regular cell complex is illustrated in the right128

panel of Figure 5. Since the Lefschetz complex remembers the dimensions of the cells, we get129

the homology of the 2-sphere, as desired. But note that this is different from the homology130

of the order complex of this poset, which consists of two points.131

Let (X, dim, κ) be a Lefschetz complex, Y ⊆ X, and dim|Y : Y → N0, κ|Y ×Y : Y × Y →132

{0, 1} the corresponding restrictions of dim and κ. Then we call (Y, dim|Y , κ|Y ×Y ) a133

Lefschetz subcomplex of X if Y is a Lefschetz complex. It is not difficult to see that if Y is134

the intersection of an open set and a closed set in the Alexandrov topology of X, then Y is135

a Lefschetz subcomplex. A particular example is a single cell, x ∈ X, which by itself is a136

Lefschetz complex. Having only one cell, this Lefschetz complex is boundaryless. It follows137

that its homology is zero, except in dimension p = dim x, in which it is Z/2Z. This is the138

homology of a pointed sphere of dimension p, which thus proves the earlier claim about the139

cells in a Lefschetz complex.140

3 Cancellations141

We call an ordered pair of cells, (s, t) ∈ X × X, a reducible pair in X if s is a facet of t.142

Given such a pair, we construct another Lefschetz complex in a process that may be viewed143

as a deformation retraction during which a pulls the attached cells with it to attach to the144

other facets of t.145
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▶ Definition 3.1 (Cancellation). Given a reducible pair, (s, t) in X, set X ′ = X \ {s, t},146

dim′ = dim|X′ , and κ′ : X ′ × X ′ → {0, 1} defined by147

κ′(y, x) = κ(y, x) + κ(y, s) · κ(t, x), (2)148

call this operation the cancellation of (s, t), and (X ′, dim′, κ′) the quotient of X.149

In words, we increment κ(y, x) iff s is a facet of y and x is a facet of t. See Figure 5 for150

examples of Lefschetz subcomplexes obtained through cancellations of reducible pairs of the151

Lefschetz complex in Figure 4.
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Figure 5: Left: the cancellations of the reducible pairs (b,e) and (g,u) simplifies the 3-division
of the sphere in Figure 4 into a 2-division with a single vertex. Right: the further cancellation of the
pair (f,v) leaves only two cells, the punctured sphere and the north-pole.

152

▶ Lemma 3.2 (Quotient). Let (s, t) be a reducible pair in the Lefschetz complex (X, dim, κ).153

Then the quotient, (X ′, dim′, κ′), obtained by canceling (s, t) is a Lefschetz complex, and the154

corresponding boundary homomorphism is defined by mapping a cell y ∈ X ′ to155

∂′y =


∂y + κ(y, s)∂t if dim′ y = dim t,

∂y + κ(y, t)t if dim′ y = dim t + 1,

∂y otherwise.

(3)156

The first row in (3) applies if y and t have the same dimension, and it removes the facets y157

shares with t and adds the other facets of t as new facets of y. The second row applies if y’s158

dimension exceeds that of t by one, and it removes t as a facet of y, if it was such a facet.159

All other cells are unaffected. We note that κ(y, s) = 0 unless dim′ y = dim t, and κ(y, t) = 0160

unless dim′ y = dim t + 1. Hence, (3) can be re-written as ∂′y = ∂y + κ(y, s)∂t + κ(y, t)t.161

Proof. We prove that the quotient is a Lefschetz complex by verifying that κ′ satisfies (1).162

While κ′ is formally defined only on X ′, (2) makes sense also when x = s and y = t, namely163

κ′(y, s) = κ(y, s) + κ(y, s) · κ(t, s) = 0, (4)164

κ′(t, x) = κ(t, x) + κ(t, s) · κ(t, x) = 0 (5)165

because κ(t, s) = 1. We can therefore write the sum in (1) over all middle cells in X rather166
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than in X ′:167 ∑
y∈X′

κ′(z, y)κ′(y, x) =
∑
y∈X

[κ(z, y) + κ(z, s)κ(t, y)][κ(y, x) + κ(y, s)κ(t, x)] (6)168

=
∑
y∈X

κ(z, y)κ(y, x) + κ(z, s)
∑
y∈X

κ(t, y)κ(y, x)169

+ κ(t, x)
∑
y∈X

κ(z, y)κ(y, s) + κ(z, s)κ(t, x)
∑
y∈X

κ(t, y)κ(y, s), (7)170

which vanishes because each of the four sums in (7) vanishes by assumption of X being171

a Leftschetz complex. We omit the proof of the boundary homomorphism, which is not172

difficult. ◀173

We introduce three homomorphisms, which will be instrumental in proving properties of174

the quotient. The first expresses the cancellation of (s, t) by mapping chains of X to chains175

of X ′, and the second goes the other direction, from X ′ to X. The homomorphisms are176

π : C(X) → C(X ′), η : C(X ′) → C(X), and γ : C(X) → C(X) defined by177

π(c) = c + ⟨c, s⟩∂t + ⟨c, t⟩t; (8)178

η(c) = c + ⟨∂c, s⟩t; (9)179

γ(c) = ⟨c, s⟩t. (10)180

We explain (8) in words: if c contains s, then π substitutes the other facets of t for s, and if181

c contains t, then π deletes t. To explain (9), we note that c is a chain in X ′, so it is also a182

chain in X, and ∂c denotes its boundary before the cancellation; that is: in X. If ∂c contains183

s, then η adds t to the chain. Finally, if c contains s, then γ maps c to {t}, and else it maps184

c to the empty chain. Inspired by work in [13], we get the following:185

▶ Lemma 3.3 (Chain Homotopy). The homomorphisms π : C(X) → C(X ′) and η : C(X ′) →186

C(X) defined by a reducible pair in the Lefschetz complex, X, are chain maps, and γ : C(X) →187

C(X) is a chain homotopy such that η ◦ π = idC(X) + ∂ ◦ γ + γ ◦ ∂ and π ◦ η = idC(X′). In188

particular, the chain complexes (C(X), ∂) and (C(X ′), ∂′) are chain homotopic.189

Proof. To see the first relation, we apply first π and then η to c ∈ C(X) and rewrite the190

terms using the two compositions of γ and ∂:191

η ◦ π(c) = η(c + ⟨c, s⟩∂t + ⟨c, t⟩t) (11)192

= c + ⟨∂c, s⟩t + ⟨c, s⟩∂t + ⟨c, t⟩t + ⟨c, t⟩t (12)193

= idC(X)(c) + γ ◦ ∂(c) + ∂ ◦ γ(c), (13)194

since the last two terms in (12) cancel. To see the second relation, recall that π ◦ η applies195

to chains in C(X ′), which by construction contain neither s nor t:196

π ◦ η(c) = π(c + ⟨∂c, s⟩t) (14)197

= c + ⟨c, s⟩∂t + ⟨c, t⟩t + ⟨∂c, s⟩t + ⟨∂c, s⟩t (15)198

= idC(X′), (16)199

because the second and third terms in (15) vanish and the last two terms cancel. ◀200

The existence of the chain homotopy asserted by Lemma 3.3 implies that the two Lefschetz201

complexes, X and X ′, have isomorphic homology.202
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4 Vectors of Combinatorial Gradients203

Cancellations in a Lefschetz complex are not independent of each other, and one my enable204

or disable another. We use combinatorial gradients as introduced by Forman [9] to organize205

the cancellations and thus make their effect on the complex more predicbable. We begin by206

introducing the main notions and terminology, while referring to Forman [9, 10] for a more207

comprehensive treatment of the background.208

Let X be a Lefschetz complex. A combinatorial vector field, V ⊆ X × X, is a collection209

of ordered pairs, called vectors, such that every cell belongs to at most one vector, and if210

(s, t) ∈ V , then s is a facet of t. Every cell that does not belong to any vector is called211

a critical cell, while the vectors are made up of non-critical cells. There is an associated212

directed graph, GV , whose vertices are the cells in X and whose explicit arcs are the vectors213

in V . It also has implicit arcs, which are the pairs (y, x) such that x is a facet of y but (x, y)214

is not in V . A (directed) path is a sequence of vertices, x0, x1, . . . , xn such that (xi, xi+1)215

is an arc in GV for 0 ≤ i ≤ n − 1. Its length is n, and the path is trivial if n = 0. A path216

is a cycle if x0 = xn and xi ̸= xj for 0 ≤ i < j < n. Since the vectors are disjoint, every217

explicit arc of a path is followed by an implicit arc. Moving along an explicit arc, we gain218

one dimension, while moving along an implicit arc, we lose a dimension. A cycle ends at the219

same cell it started from, which implies that it alternates between explicit and implicit arcs.220

We call V a combinatorial gradient on X if GV has only trivial cycles. A Lyapunov221

function for V is a map f : X → R, such that f(x) = f(y) whenever (x, y) is an explicit arc,222

and f(x) > f(y) whenever (x, y) is an implicit arc. It follows that f(x0) ≥ f(xn) if there is223

a path from x0 to xn.224

▶ Lemma 4.1 (Lyapunov Function). A combinatorial vector field on a Lefschetz complex225

admits a Lyapunov function iff it is a combinatorial gradient.226

Proof. “=⇒”: if the vector field is not a gradient, then there is at least one non-trivial cycle227

from a cell x0 back to xn = x0. After every explicit arc, there is an implicit arc, so this cycle228

contains at least one implicit arc. But this contradicts f(x0) = f(xn).229

“⇐=”: since GV has no non-trivial cycle, the directed graph obtained by merging the230

endpoints of every explicit arc has an ordering such that x precedes y whenever (x, y) is231

an implicit arc. Going from left to right in this ordering, we assign a strictly decreasing232

sequence of function values. If a vertex corresponds to the two endpoints of an explicit arc,233

both endpoints get the value of the vertex. This is a Lyapunov function because f(x) > f(y)234

for every implicit arc (x, y), and f(x) = f(y) for every explicit arc (x, y). ◀235

An important property of a combinatorial gradient is the independence of the vectors236

if used in cancellations. We will see shortly, that this property crucially depends on the237

acyclicity of the associated diagraph.238

▶ Lemma 4.2 (Independence and Acyclicity). Let V be a combinatorial gradient on a Lefschetz239

complex, X, let (s, t) be a vector in V , and write X ′ for the quotient of X through canceling240

(s, t). Then V ′ = V \ {s, t} is a combinatorial gradient on X ′.241

Proof. We first prove that V ′ is a combinatorial vector field on X ′: if (u, v) ̸= (s, t) is a242

vector in V , then u is still a facet of v in X ′. To see this, observe that at least one of243

κ(v, s) and κ(t, u) is zero, for else s, t, u, v, s would be a non-trivial cycle in GV . Hence,244

κ′(v, u) = κ(v, u) by (2). Since (u, v) ∈ V , we have κ(v, u) = 1, so κ′(v, u) = 1, as claimed.245

We second show that canceling (s, t) preserves the acyclicity of the associated digraph. To246

derive a contradiction, assume that GV ′ has a non-trivial cycle and consider an arc (y, x) in this247
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cycle that is not arc in GV . All explicit arcs of GV ′ are also explicit arcs of GV , so (y, x) is an248

implicit arc of GV ′ and κ′(y, x) = 1 while κ(y, x) = 0. Since κ′(y, x) = κ(y, x) + κ(y, s)κ(t, x)249

by (2), this implies κ(y, s) = κ(t, x) = 1, so y, s, t, x is a path in GV . By replacing all such250

arcs (y, x) in GV ′ by the paths y, s, t, x in GV , we obtain a non-trivial cycle in GV , which251

contradicts V being a combinatorial gradient. ◀252

Lemma 4.2 implies that we can cancel all vectors in a combinatorial gradient, and this253

way obtain a Lefschetz complex in which only the critical cells remain. By Lemma 3.3, this254

Lefschetz complex is chain homotopic to X, and we will see shortly that it does not depend255

on the order in which the cancellations are applied. To this end, call a path in GV regular if256

the vertex at which two consecutive implicit arcs meet is necessarily critical. Write #(y, x)257

for the parity of regular paths from y to x in the associated digraph; that is: the number of258

such paths modulo 2.259

▶ Theorem 4.3 (Morse Complex). Let V be a combinatorial gradient on a Lefschetz complex,260

(X, dim, κ), and (X ′′, dim′′, κ′′) the Lefschetz complex obtained by canceling all vectors in V .261

Then X ′′ is the set of critical cells of V in X, and for any two cells, s, t ∈ X ′′, we have262

κ′′(t, s) = #(t, s). (17)263

So (X ′′, dim′′, κ′′) is independent of the order in which the vectors in V are cancelled.264

Proof. The only part of the theorem that still needs proof is equation (17). Let k =265

dim t − dim s, which is the surplus of implicit arcs on any path from t to s. Since t and s are266

critical, the first and last arcs are implicit, so the surplus is at least 1.267

We first consider the case k = 1. The arcs in a path with surplus 1 alternate between268

implicit and explicit, which implies that every such path is regular. To prove (17), we use269

induction over the number of vectors in V , which we denote n. For n = 0, we have X ′′ = X270

so every arc in GV is implicit. Hence, there is either no path from t to s or there is a path271

consisting of a single arc, in which case s is a facet of t. Equivalently, κ′′(t, s) = #(t, s),272

which establishes the induction basis.273

For the induction step, let V be a combinatorial gradient with n ≥ 1 vectors and assume274

that (17) holds for all combinatorial gradients with n − 1 vectors. Letting (u, v) be a vector275

in V , we set V ′ = V \ {(u, v)} and write (X ′, dim′, κ′) for the Lefschetz complex obtained by276

canceling the n − 1 vectors in V ′. By (2), we have277

κ′′(t, s) = κ′(t, s) + κ′(t, u) · κ′(v, s) (18)278

for all s, t ∈ X ′′. Writing #′(t, s) for the parity of the regular paths from t to s in GV ′ , we279

have κ′(t, s) = #′(t, s), κ′(t, u) = #′(t, u), and κ′(v, s) = #′(v, s) by induction. The only280

difference between the associated digraphs of V and V ′ is the arc connecting u and v, which281

is explicit from u to v in GV and implicit from v to u in GV ′ . Note that a path from t to s282

in GV ′ necessarily avoids this implicit arc. Indeed, if it used the arc from v to u, then the283

preceding and succeeding arcs would also be implicit, but then the surplus of implicit arcs284

would be at least 2. It follows that #′(t, s) is the parity of the paths from t to s in GV ′ as285

well as of the paths from t to s in GV that avoid the explicit arc from u to v. Furthermore,286

#′(t, u) · #′(v, s) is the parity of the paths from t to s in GV that use this explicit arc. Hence,287

#(t, s) = #′(t, s) + #′(t, u) · #′(v, s). (19)288

Comparing (18) with (19), we see that this implies κ′′(t, s) = #(t, s), as desired. To finally289

prove (17) in the general case, we proceed by induction in k. The case k = 1 has already290
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been established, so we fix k ≥ 2 and assume (17) holds for all regular paths with surplus291

less than k. We have 0 = κ′′(t, s) =
∑

x κ′′(t, x)κ′′(x, s) by definition. We restrict ourselves292

to vertices x ∈ X ′′ that satisfy dim x = dim t − 1, because otherwise κ′′(t, x)κ′′(x, s) = 0. By293

inductive assumption, we have κ′′(t, x) = #(t, x) and κ′′(x, s) = #(x, s). To complete the294

argument, we just need to ascertain that
∑

x #(t, x)#(x, s) = #(t, s). This is indeed the295

case because every regular path from t to s is the concatenation of a regular path from t to296

x and a regular path from x to s, with x being the first critical cell along the path different297

from t. This vertex, x, is different from s because k ≥ 2. ◀298

Formula (17) in Theorem 4.3 shows that the quotient complex, (X ′′, dim′′, κ′′), is isomorphic299

to the Morse complex as constructed in [9, Section 8]. If κ′′(t, s) = 1, then this implies a300

path from t to s in GV such that t and s are critical and all other cells along the path are301

non-critical. We refer to such paths as connections.302

5 Shallow Pairs in Persistent Homology303

We can simplify the Lefschetz complex beyond the Morse complex of the combinatorial304

gradient, but for this purpose, a different algebraic structure is needed as a guide. We use305

what we call the depth poset of the birth-death pairs. In a nutshell, it organizes the pairs306

such that any linear extension of the poset gives a valid sequence of cancellations. We begin307

with a brief introduction of persistent homology and refer to [7] for a more comprehensive308

treatment of the background.309

By a filter of a Lefschetz complex, X, we mean an injection ϕ : X → R such that310

ϕ(x) < ϕ(y) whenever x is a proper face of y. Write Xb = ϕ−1(∞, b] for the sublevel set311

at b ∈ R. By construction, every sublevel set of ϕ is a Lefschetz subcomplex of X. The312

increasing sequence of distinct sublevel sets is the filtration induced by ϕ. To describe how313

the homology changes as we move from one sublevel set to the next, we write [d]b for the314

homology class of a cycle d ∈ Z(Xb). Let a < b be consecutive values of ϕ; that is: there are315

cells x, y ∈ X such that a = ϕ(x), b = ϕ(y), and Xa = Xb \ {y}. Since ∂y is a boundary in316

Xb, [∂y]b = 0. We say y gives death to a homology class if [∂y]a ≠ 0. Otherwise, there is a317

chain c ∈ C(Xa) such that ∂c = ∂y. It follows that c + y is a cycle, and [c + y]b ≠ 0 because318

c + y cannot be a boundary in Xb. In this case, we say y gives birth to [c + y]b. We write319

X∗ and X× for the cells in X that give birth and death of homology classes, respectively.320

Every cell does either, so X∗ ∩ X× = ∅ and X∗ ∪ X× = X. If X is a boundaryless Lefschetz321

complex, then X∗ = X and X× = ∅.322

Note that the homology class [c + y]b given birth to by y is not uniquely determined.323

To fix this inconvenience, we observe that there is a unique chain cy ∈ C(Xa) such that324

∂cy = ∂y and cy ⊆ X×. Clearly, y gives birth to the homology class of dy = cy + y. By325

construction, dy ∩ X∗ = {y}, and we call dy the canonical cycle associated with y.326

▶ Lemma 5.1 (Canonical Cycle Basis). Let ϕ : X → R be a filter on a Lefschetz complex, and327

t ∈ R a value of ϕ. Then the canonical cycles dy, with y ∈ X∗ ∩ Xt, form a basis of Z(Xt).328

Proof. Let d be a cycle in Xt, let y1, y2, . . . , yk be the cells in d that give birth in ϕ, denote329

their canonical cycles by d1, d2, . . . , dk, and consider d′ = d1 + d2 + . . . + dk. By construction,330

d′ ∩ X∗ = d ∩ X∗. To see d′ ∩ X× = d ∩ X×, note that d + d′ is a cycle that contains no331

birth-giving cells. By construction, the death-giving cells do not form cycles, which leaves332

d + d′ = 0 as the only possibility. Hence, d = d′, which implies that d is a combination of the333

canonical cycles. ◀334
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To get a basis of H(Xt), we need to identify the cells y ∈ X∗ ∩ Xt whose canonical335

cycles have not been given death by any cell in Xt yet. To do this, we construct a subset336

Yb ⊆ X∗ ∩ Xb such that the [dy]b, with y ∈ Yb, form a basis of H(Xb). The construction337

is inductive and paraphrases the original algorithm for computing persistent homology [8].338

The induction proceeds along the linear ordering of the cells induced by the filter. Letting b339

be the value of the first cell, y, we have y ∈ X∗ and set Yb = {y}. For the inductive step,340

let a < b be the values of two consecutive cells in the ordering, and let y be the second cell,341

so b = ϕ(y). If y ∈ X∗, then Yb = Ya ∪ {y}. Otherwise, y ∈ X×, which implies [∂y]a ≠ 0.342

Since Ya defines a basis of H(Xa), there is a unique subset A ⊆ Ya such that d′ =
∑

x∈A dx343

satisfies [d′]a = [∂y]a. We let z ∈ A be the cell with maximum value, write birth(y) = z, and344

set Yb = Ya \ {birth(y)}. We summarize for later reference.345

▶ Lemma 5.2 (Canonical Homology Basis). Let ϕ : X → R be a filter on a Lefschetz complex,346

and b ∈ R a value of ϕ. Then the [dy]b, with y ∈ Yb, form a basis of H(Xb).347

For every y ∈ X×, we call (birth(y), y) a birth-death pair of ϕ, and we write BD(ϕ) for348

the collection of birth-death pairs of the filter. It is easy to see that the thus constructed349

map, birth : X× → X∗, is injective. This implies that two birth-death pairs are either equal350

or they do not share any cell. Note however that birth is generally not bijective: cells in X∗351

that are not in the image represent homology classes that never die, i.e. classes in H(X).352

As an example, consider the Lefschetz complex drawn in Figure 3 on the right, with cells353

X = {a,b,e,f,g,u,v,w}. Assuming the filter induces the alphabetic ordering of the cells,354

the birth- and death-giving cells are X∗ = {a,b,f,g,w} and X× = {e,u,v}, respectively.355

Correspondingly, we have three birth-death pairs: (b,e), (g,u), (f,v). The first two are356

reducible, while the third is not. This suggests we first cancel the two reducible pairs, hoping357

that these operations make the third pair reducible, and then cancel the third pair. This358

works in this particular example, but there are obstacles in the general case that require a359

finer distinction of the birth-death pairs, which we introduce next.360

▶ Definition 5.3 (Shallow Pairs). Let ϕ : X → R be a filter on a Lefschetz complex. A pair361

of cells, (s, t) ∈ X × X, is shallow if s is a facet of t, ϕ(x) ≤ ϕ(s) for all facets x of t, and362

ϕ(y) ≥ ϕ(t) for all cells y that have s as a facet.363

Equivalently, (s, t) is a shallow pair if s is the last facet of t in the ordering induced by the364

filter, and t is the first cell with facet s in this ordering. We write SH(ϕ) for the set of shallow365

pairs of the filter. Shallow pairs have been introduced in [5] under the name apparent pairs.366

They are more special than reducible birth-death pairs.367

▶ Lemma 5.4 (Shallow Pairs are Special). Let ϕ : X → R be a filter on a Lefschetz complex.368

Every shallow pair of ϕ is a reducible birth-death pair, but not every reducible birth-death369

pair is necessarily a shallow pair of ϕ.370

Proof. We first show that there are reducible birth-death pairs that are not shallow. Consider371

the Lefschetz complex in Figure 3, with a filter that induces the alphabetic order except that372

v precedes u. The birth-death pairs are (b,e), (g,v), (f,u), which are all reducible, but the373

third pair is not shallow because f is a facet of u as well as v, which precedes u.374

We second prove that a shallow pair, (s, t), is necessarily a reducible birth-death pair.375

Reducibility is immediate. To see that (s, t) is a birth-death pair, set a = ϕ(s), b = ϕ(t),376

and recall that [∂t]a ̸= 0. We have s ∈ ∂t, and since it is the last cell before t in the linear377

ordering, s ∈ Ya. Furthermore, s belongs to the subset A ⊆ Ya for which d′ =
∑

x∈A dx378

satisfies [d′]a = [∂t]a. Hence, birth(t) = s, as claimed. ◀379
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A boundaryless Lefschetz complex has no shallow pair by definition. To see that every380

other filter has at least one shallow pair, let t be the first cell in the linear ordering with381

∂t ̸= 0, and let s ∈ ∂t be the last facet in this ordering. Clearly, (s, t) is a shallow pair.382

The remainder of this section justifies the introduction of shallow pairs by showing that383

their cancellation does not alter the persistent homology of the filtration other than in the384

obvious way. To state this in more technical terms, we use primes for all concepts that385

pertain to the quotient obtained by canceling a shallow pair.386

▶ Theorem 5.5 (Canceling a Shallow Pair). Let ϕ : X → R be a filter on a Lefschetz complex,387

(s, t) a shallow pair of ϕ, and ϕ′ : X ′ → R the filter on the quotient after canceling (s, t).388

Then SH(ϕ) ⊆ SH(ϕ′) ∪ {(s, t)} and BD(ϕ) = BD(ϕ′) ∪ {(s, t)}.389

The first claim is easily established, while the second is more demanding. In the interest390

of keeping with the flow of the current discussion, we move the proof of Theorem 5.5 to391

Appendix A, where the theorem is restated as two claims with separate arguments.392

Theorem 5.5 exposes a weakness of the Lefschetz complex, which may alternatively393

be considered a strength, namely in overcoming limitations in simplifying functions on394

non-trivial spaces reported in [2]; see also [4]. Examples are the dunce hat—which has the395

homology of the disk but is not collapsible—and the Poincaré homology sphere—which is396

a 3-manifold that has the homology of the ordinary 3-sphere but is not homeomorphic to397

it. After canceling all birth-death pairs, the Lefschetz complex can no longer distinguish398

between the disk and the dunce hat, or between the ordinary 3-sphere and the Poincaré399

homology sphere, and this inability is crucial to cancel all birth-death pairs.400

6 The Depth Poset401

While Theorem 5.5 characterizes the impact of canceling a shallow pair on the persistent402

homology, we still need to understand the impact on the Lefschetz complex. To this end,403

we show that the collection of shallow pairs is a combinatorial gradient on the Lefschetz404

complex, so the quotient is well defined.405

▶ Lemma 6.1 (Shallow Pairs as Vectors). Let ϕ : X → R be a filter on a Lefschetz complex.406

Then the set of shallow pairs, SH(ϕ) ⊆ X × X, is a combinatorial gradient on X.407

Proof. We introduce f : X → R, which assigns the same values as the filter, except if the408

cell is in a shallow pair, in which case it assigns the smaller of the two values:409

f(y) =
{

ϕ(s) if ∃(s, t) ∈ SH(ϕ) with y = t,

ϕ(y) otherwise. (20)410

According to Lemma 4.1, if f is a Lyapunov function, then V = SH(ϕ) is a combinatorial411

gradient. To prove that f is indeed such a function, we consider the associated digraph, GV .412

Letting x be a facet of y, the two cells are either connected by an explicit arc from x to y, or413

by an implicit arc from y to x. In the former case, (x, y) is a shallow pair of SH(ϕ), so we get414

f(x) = f(y) by definition of f in (20). In the latter case, we need to show that f(x) < f(y).415

Since f(x) ≤ ϕ(x) and ϕ(x) < ϕ(y), by definition of filter, there is something to check only416

when f(y) < ϕ(y). In this case, there is a shallow pair, (s, t), with y = t. Then ϕ(x) < ϕ(s)417

because x is a facet of t but not the last one in the linear ordering induced by ϕ, which is s.418

Since f(x) = ϕ(x) and f(y) = ϕ(s), this implies the required inequality. ◀419
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According to Lemma 6.1, we can cancel all shallow pairs, and then repeat for the quotient.420

By Theorem 5.5, the number of birth-death pairs decreases by the number of canceled421

shallow pairs. As mentioned earlier, the number of shallow pairs is strictly positive unless422

the Lefschetz complex is boundaryless. Hence, the number of birth-death points decreases423

from one iteration to the next, so the process ends after a finite number of iterations. Letting424

k be this number, the iteration yields a sequence of Lefschetz complexes and filters on them:425

ϕj : Xj → R, for 0 ≤ j ≤ k, (21)426

in which ϕ0 : X0 → R is ϕ : X → R, and ϕj : Xj → R is the restriction of ϕj−1 on the quotient427

of Xj−1 obtained after canceling all shallow pairs, for j > 0. We call ϕj the j-th derived428

filter of ϕ. Correspondingly, we get a partition of the birth-death pairs of the initial filter429

into shallow pairs of the filters that arise during the iteration:430

BD(ϕ) = SH(ϕ0) ⊔ SH(ϕ1) ⊔ . . . ⊔ SH(ϕk−1). (22)431

This sequence is a hiearchy of simplifications of the original filter on a Lefschetz complex. A432

more refined hierarchy is obtained by identifying the subsets of shallow pairs that change433

the status of another birth-death pair from non-shallow to shallow. To define it, call a434

linear ordering of the birth-death pairs cancelable if each pair is shallow after canceling all435

its predecessors in the ordering. For example, every linear ordering in which all pairs in436

SH(ϕj−1) precede the pairs in SH(ϕj), for 1 ≤ j ≤ k, is cancelable. However, in general there437

are cancelable orderings that are not of this type. To cast list on them, we show that for438

each birth-death pair (u, v) of ϕj , there is a unique subset of shallow pairs of ϕj−1, such that439

(u, v) becomes shallow precisely at the moment all shallow pairs in this subset have been440

canceled. For any S ⊆ SH(ϕj−1), we write ϕS
j−1 : XS

j → R for the restriction of the filter to441

the quotient obtained by canceling the pairs in S.442

▶ Lemma 6.2 (Turning Shallow). Let ϕj−1 be the (j − 1)-st derived filter of ϕ : X → R, and443

(u, v) ∈ SH(ϕj) a non-shallow birth-death pair of ϕj−1. There is a unique S(u,v) ⊆ SH(ϕj−1)444

such that for every S ⊆ SH(ϕj−1), (u, v) is a shallow pair of ϕS
j−1 iff S(u,v) ⊆ S.445

Proof. By construction of the derived filters of ϕ, (u, v) is a shallow pair of ϕS
j−1 if S =446

SH(ϕj−1); that is: when ϕS
j−1 = ϕj . Write V = SH(ϕj−1), and consider what this means for447

the paths from v to u in the associated digraph, GV . Since dim v = dim u + 1, each such448

path is an alternating sequence of implicit and explicit arcs, which are shallow pairs of ϕj−1.449

Let S(u,v) be the subset of shallow pairs that belong to at least one path from v to u.450

Let S ⊆ V and recall that canceling a pair (s, t) ∈ S corresponds to replacing the explicit451

arc from s to t by the implicit arc from t to s, and connecting any predecessor of s directly to452

any successor of t. This shortens any path that contains (s, t) by two arcs. If S(u,v) ⊆ S, then453

canceling all pairs in S shortens all paths from v to u to a single implicit arc. Equivalently,454

(u, v) is a shallow pair of ϕS
j−1. On the other hand, if S(u,v) ̸⊆ S, then canceling the pairs455

in S leaves at least one path of length at least 3 from v to u. This path together with the456

arc from u back to v is a non-trivial cycle, which by Lemma 6.1 implies that (u, v) is not a457

shallow pair of ϕS
j−1. ◀458

We return to the collection of cancelable linear orderings of the birth-death pairs of ϕ.459

Each such ordering is a set of pairs, so taking the intersection is well defined.460

▶ Definition 6.3 (Depth Poset). The depth poset of ϕ : X → R, denoted Depth(ϕ), is the461

intersection of all cancelable linear orderings of BD(ϕ).462
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By definition, Depth(ϕ) is the largest partial order such that every cancelable linear ordering463

is a linear extension of this poset. We claim that it is also the smallest partial order such464

that every one of its linear extensions is cancelable.465

▶ Theorem 6.4 (Cancelable Linear Orders). Let ϕ : X → R be a filter on a Lefschetz complex.466

A linear ordering of BD(ϕ) is cancelable iff it is a linear extension of Depth(ϕ).467

Proof. By definition of the depth poset, every cancelable linear ordering of BD(ϕ) is a linear468

extension of Depth(ϕ). It thus suffices to the prove the converse.469

To see that every linear extension of Depth(ϕ) is cancelable, consider pairs (s, t) ∈470

SH(ϕj−1) and (u, v) ∈ SH(ϕj). By Lemma 6.2, they form a relation in the depth poset iff471

(s, t) ∈ S(u,v). Hence, (s, t) precedes (u, v) in every linear extension of Depth(ϕ). This is472

true for any two birth-death pairs of consecutive derived filters. It is therefore easy to show473

inductively that every birth-death pair is shallow after all predecessors have been canceled.474

Equivalently, the linear extension is cancelable. ◀475

To give an example, we return to the graph of the 1-dimensional function in Figure 1,476

which we interpret as a mountain range in winter. There are eight minima and eight maxima,477

and since all but the global minimum and the global maximum form pairs, we have seven478

birth-death pairs. Figure 6 shows the depth poset of these pairs, which in this case is a tree.479

Most of the cancellation sequences of shallow pairs produce partially simplified versions of

(B,BD) (D,CD) (F,FG) (E,EF) (H,GH)

(C,DE)

(G,HI)

Figure 6: The transitive reduction of the poset on the birth-death pairs of the function whose
graph is shown in the upper left panel of Figure 1.

480

the four derived filters. The exception is when (C, DE) precedes (H, GH). After canceling481

(C, DE) and before canceling (H, GH), the graph looks like the second derived filter to the left482

of G and the original filter to the right of G.483

Define the persistence of a birth-death pair, (u, v), as the absolute difference between484

their values: ϕ(v) − ϕ(u). The persistence of a birth-death pair that is shallow during the485

first interation of constructing Depth(ϕ) is not necessarily smaller than that of a birth-death486

pair that becomes shallow in later iterations. On the other hand, we will show that the pair487

with minimum persistence is shallow already in the first iteration. This implies that the488

ordering of the birth-death pairs by persistence is cancelable.489

▶ Theorem 6.5 (Ordering by Persistence). Let ϕ : X → R be a filter on a Lefschetz. Then490

the ordering of the birth-death pairs by persistence is a linear extension of Depth(ϕ).491

Proof. Assuming the minimum persistence birth-death pair is shallow, we can cancel it492

and iterate. This way we cancel the birth-death pairs in the order of their persistence, and493

since every cancelable ordering is a linear extension of the depth poset, Depth(ϕ), so is the494

ordering by persistence.495

To see that a minimum persistence birth-death pair is shallow we prove the contraposition;496

that is: a birth-death pair that is not shallow does not minimize persistence. Suppose497
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(s, t) ∈ BD(ϕ) is not shallow, and fix a cancelable linear ordering in which (s, t) comes498

immediately after the pair (u, v) ∈ BD(ϕ), whose cancellation changes the status of (s, t)499

from non-shallow to shallow. Let X be the cells before canceling (u, v), and set V = {(u, v)},500

so the associated digraph, GV has a single explicit arc. The pair (s, t) may or may not be501

reducible before canceling (u, v). In the latter case, there is no arc connecting the two nodes,502

and because (s, t) is reducible afterwards, we know from (17) that there is a path from t to503

s in GV . Since there is only one explicit arc in GV , the path must be t, u, v, s. Since (u, v)504

is shallow at the time it is canceled, we have ϕ(s) < ϕ(u) < ϕ(v) < ϕ(t), which shows that505

(u, v) is a birth-death pair with smaller persistence than (s, t).506

There remains the case when (s, t) is reducible before canceling (u, v). Since (s, t) is not507

yet shallow, there is a cell, y, with ϕ(y) < ϕ(t) that has s as a facet, or there is a facet, w,508

of t with ϕ(s) < ϕ(w). The two cases are symmetric. We therefore consider only the latter509

and assume that w is the last facet of t in the fixed linear ordering. We know that (s, t) gets510

shallow eventually, so w must be canceled prior to that event. Since w is the last facet of t, it511

gives birth, so there exists a cell z such that (w, z) is a birth-death pair that becomes shallow512

before (s, t). Hence, ϕ(s) < ϕ(w) < ϕ(z) < ϕ(t), which implies that (w, z) is a birth-death513

pair with strictly smaller persistence than (s, t). ◀514

7 Discussion515

This paper introduces tools for the study of the dynamics under changing vector fields from516

a combinatorial viewpoint. Starting with the simpler case of a combinatorial gradient, it517

would be interesting to develop a combinatorial Cerf theory that classifies the non-generic518

critical cases, which necessarily arise when a vector field changes continuously. Perhaps the519

non-generic cases require multi-vectors consisting of more than two cells, which would go520

beyond the theory as introduced in [9]. This general topic is related to computing vineyards,521

as studied in [6]. At this time, the details of this relationship are unclear, primarily because522

of the different constraints imposed by the data structures representing the data, which are523

Lefschetz complexes in this paper and simplicial complexes in [6].524

When we go to continuous vector fields more general than gradients, we observe recurring525

patterns that are more complicated than critical points, such as attractive or repulsive closed526

curves and more. The study of such phenomena may benefit from the ability to cancel a cell527

with one of its facets even if this creates a cell whose homology is different from that of a528

pointed sphere. Similarly, in the simplification of a smooth map, the restriction to cells with529

simple homology seems artificial and can sometimes be inconvenient.530

We finally address the algorithmic aspects of the work described in this paper. From a531

computational point of view, the Lefschetz complex is an abstract data type that supports532

the cancellation of a reducible pair of cells. The repeated application of this operation533

shortens paths in the associated digraph, and the original paths between critical cells can534

be recovered by following the cancellations backward in time. All these operations reduce535

to the manipulation of lists and graphs, which are likely to have very fast implementations.536

It would be worthwhile to develop the details of these algorithms and to experiment with537

different data structures implementing them.538
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A Proof of Theorem 5.5580

Theorem 5.5 makes two claims, one about the shallow pairs and the other about the birth-581

death pairs after the cancellation. We re-state and prove them separately in this appendix.582

▷ Claim A.1 (Impact on Shallow Pairs). Let ϕ : X → R be a filter on a Lefschetz complex,583

(s, t) a shallow pair of ϕ, and ϕ′ : X ′ → R the filter on the quotient after canceling (s, t).584

Then SH(ϕ) ⊆ SH(ϕ′) ∪ {(s, t)}.585

Proof. Let (u, v) ∈ SH(ϕ) different from (s, t). By Lemma 5.4 and the injectivity of the586

map birth : X× → X∗, u is different from s and t and so is v. Thus, u is still a facet of v in587

X ′. It is possible that v inherits additional facets from t, but only if s is a facet of v, in588

which case all these new facets precede s and therefore also u in the linear ordering induced589

by ϕ. Symmetrically, u may inherit additional cells it is a facet of from s, but only if u is590

a facet of t, in which case all these new cells succeed t and therefore also v in the linear591

ordering induced by ϕ. Restricting this ordering to X ′, we get the linear ordering induced by592

ϕ′, which implies that u is still the last facet of v, and v is still the first cell u is a facet of.593

Equivalently, (u, v) ∈ SH(ϕ′). ◀594

▷ Claim A.2 (Impact on Birth-death Pairs). Let ϕ : X → R be a filter on a Lefschetz complex,595

(s, t) a shallow pair of ϕ, and ϕ′ : X ′ → R the filter on the quotient after canceling (s, t).596

Then BD(ϕ) = BD(ϕ′) ∪ {(s, t)}.597

Proof. We write y1, y2, . . . , yn for the linear ordering of the cells in X induced by ϕ. Let598

k < ℓ be the indices such that s = yk and t = yℓ, and recall that removing s and t from this599

list gives the linear ordering of the cells in X ′ = X \ {s, t} induced by ϕ′. Let c ∈ C(X) and600

recall that π(c) ∈ C(X ′) is obtained by dropping t and substituting the cells in ∂t \ {s} for s;601

see the definition of this homomorphism in (8). The transition from c to π(c) is implicit in602

the operation that turns the Lefschetz complex of X into the quotient, which is the Lefschetz603

complex of X ′; see Definition 3.1. Since (s, t) is a shallow pair, s is the last facet of t in the604

linear ordering or, equivalently, the other facets of t precede s. It follows that the last cell of605

c is also the last cell of π(c) ∪ {s, t} in the ordering. Hence,606

c ∈ C(Xb) =⇒ π(c) ∈ C(X ′
b) (23)607

for any value b ∈ R, in which we recall that Xb ⊆ X and X ′
b ⊆ X ′ consist of all cells with608

value at most b. Following the original algorithm for computing persistent homology in [8],609

the remainder of this proof is inductive and establishes four hypotheses simultaneously. To610

formulate them, let b = ϕ(yj) and write dj , d′
j for the canonical cycles associated with yj ,611

and Yj ⊆ X∗ ∩ Xb, Y ′
j ⊆ X ′

∗ ∩ X ′
b for the subsets of birth-giving cells such that the homology612

classes of their canonical cycles form bases of H(Xb) and H(X ′
b), respectively; see Lemma 5.2.613

The hypotheses are614

A. d′
j = π(dj) whenever yj ∈ X ′

∗;615

B. yj ∈ X∗ ⇒ yj ∈ X ′
∗ and yj ∈ X× ⇒ yj ∈ X ′

× whenever yj ∈ X ′;616

C. Y ′
j = Yj whenever j < k or ℓ < j, and Y ′

j = Yj \ {s} whenever k < j < ℓ;617

D. birth′(yj) = birth(yj) whenever yj ∈ X ′
×.618

By construction, dj \ {yj} ⊆ X×, which implies s ̸∈ dj unless s = yj . Hence, Hypothesis A is619

equivalent to d′
j = dj \ {t}. Hypothesis B is equivalent to X ′

∗ = X∗ ∩ X ′ and X ′
× = X× ∩ X ′.620

By Lemma 5.4, we have s ∈ Yj iff k ≤ i < ℓ, which implies that Hypothesis C is equivalent621
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to Y ′
j = Yj \ {s} for all indices j ̸= k, ℓ. Hypothesis D readily implies that with the exception622

of (s, t), the birth-death pairs are the same before and after the cancellation.623

The four hypotheses are void and thus trivially true for j = 0, which serves as the624

induction basis. For the inductive step, consider a cell yj , with value b = ϕ(yj), and assume625

the four hypotheses are true for all indices i ≤ j − 1. Let a = ϕ(yj−1), and assume yj ̸= s, t,626

else there is nothing to prove.627

Consider first the case yj ∈ X∗, so the canonical cycle associated to yj , denoted dj ⊆628

(X× ∩ Xa) ∪ {yj}, is well defined. Let d′
j = π(dj). By construction, yj belongs to d′

j , and by629

(23) and the inductive assumption, all other cells in d′
j belong to X ′

× ∩ X ′
a. Indeed, s ̸∈ dj630

because it gives birth, so d′
j ⊆ dj because the cancellation of (s, t) does not add any new cells631

to the cycle. Hence, d′
j is the canonical cycle of yj in X ′, which establishes Hypothesis A.632

But this also shows yj ∈ X∗ ⇒ yj ∈ X ′
∗, which is Hypothesis B for birth-giving cells. In633

addition, it shows Yj = Yj−1 ∪ {yj} and Y ′
j = Y ′

j−1 ∪ {yj}, which together with the inductive634

assumption implies Hypothesis C for birth-giving cells.635

Consider second the case yj ∈ X×. Then ∂yj is a non-trivial cycle in Xa. By (23),636

∂′yj = π(∂yj) is a cycle in X ′
a. To establish that it is non-trivial, assume there is a chain,637

cj ⊆ X ′
a with ∂′cj = ∂′yj . We distinguish a few cases and conclude that ∂yj is trivial in638

each, which is a contradiction to the assumption and thus implies that ∂′yj is non-trivial.639

1. j < k. Then ∂′yj = ∂yj and ∂′cj = ∂cj . Hence, ∂yj is trivial, contradiction.640

2. k < j < ℓ. Then there cannot be any cycle homologous to ∂yj that contains s. Indeed, if641

there is such a cycle, then s is a facet of a cell in Xb, which contradicts that t is the first642

cell that has s as a facet in the linear ordering. Hence, ∂′yj = ∂yj , and since cj ⊆ Xa, we643

also have ∂cj = ∂yj , so again ∂yj is trivial, contradiction.644

3. ℓ < j. If s, t ̸∈ ∂yj , then we use the same argument as above to show that ∂yj is trivial,645

contradiction. This leaves two subcases.646

3.1 s ∈ ∂yj . Then ∂′yj = ∂yj + ∂t. Hence, ∂yj = ∂′cj + ∂t = ∂(cj ∪ {t}), which implies647

that ∂yj is trivial, contradiction.648

3.2 t ∈ ∂yj . Then ∂′yj = ∂yj \ {t}, and similarly, ∂′cj = ∂cj \ {t}. But then ∂yj = ∂cj , so649

∂yj is trivial, contradiction.650

In all cases, we get yj ∈ X ′
×, which establishes Hypothesis B for death-giving cells. Next, we651

show that yj is paired with the same birth-giving cell before and after the cancellation; that652

is: birth′(yj) = birth(yj). This will establish Hypothesis D, which then together with the653

inductive assumption establishes Hypothesis C. Let A ⊆ Yj be the birth-giving cells such654

that d =
∑

x∈A dx satisfies [d]a = [∂yj ]a, and similarly let A′ ⊆ Y ′
j be the birth-giving cells655

such that d′ =
∑

x∈A′ d′
x satisfies [d′]a = [∂′yj ]a. In Case 1, we have Y ′

j = Yj and d′
i = di656

for every yi ∈ Y ′
j , so A′ = A. In Case 2, we have Y ′

j = Yj \ {s}, but as argued there, s ̸∈ A,657

which again implies A′ = A. In Case 3, we have Y ′
j = Yj and d′

i = di \ {A} for every yi ∈ Y ′
j ,658

so we get A′ = A in all subcases. We thus get birth′(yj) = birth(yj) in all three cases.659

This completes the inductive argument, which implies BD(ϕ′) = BD(ϕ) \ {(s, t)}, as660

required to establish the claimed relation. ◀661



Edelsbrunner, Mrozek XX:19

B Notation662

663 (X, dim, κ), (Y, dim|Y , κ|Y ×Y ) Lefschetz complex, subcomplex
664 ∂ : C(X) → C(X) boundary homomorphism
665 C(X), Z(X), B(X), H(X) chains, cycles, boundaries, homologies
666 c, d chains
667

668 (X ′, dim′, κ′) quotient Lefschetz complex
669 s, t; u, v reducible pairs
670 w, x, y, z cells
671 V, GV combinatorial gradient, associated digraph
672 x0, x1, . . . , xn path, connection, cycle
673 f : X → R Lyapunov function
674

675 ϕ : X → R filter
676 X∗, X× birth-giving, death-giving cells
677 Xb = ϕ−1(−∞, b] sublevel set
678 Y ′

b ⊆ Yb birth-giving cells alive at b

679 b = ϕ(y); dy; [dy]b value; canonical cycle; homology class
680

681 birth : X× → X∗ birth function
682 BD(ϕ) = {(birth(y), y)} birth-death pairs
683 SH(ϕ) shallow pairs
684 Depth(ϕ) depth poset
685 S, S(u,v) ⊆ SH(ϕj−1) subsets of shallow pairs
686 ϕj : Xj → R, ϕS

j : XS
j → R j-th derived filter, after canceling pairs

Table 1: Notation used in the paper.
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