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Abstract
We study flips in hypertriangulations of planar points sets. Here a level-k hypertriangulation of
n points in the planes is a subdivision induced by the projection of a k-hypersimplex, which is the
convex hull of the barycenters of the (k − 1)-dimensional faces of the standard (n− 1)-simplex.
In particular, we introduce four types of flips and prove that the level-2 hypertriangulations are
connected by these flips.

Keywords and phrases: Hypertriangulations, coherent hypertriangulations, order-k Delaunay
triangulations, flip-connectivity.

1 Introduction

Triangulations appear in many fields of pure and applied mathematics, and they go back to
the study of the Catalan numbers by Euler and Goldbach in the early 18th century [22], if not
further. Flips were introduced by Wagner [32] as a tool to study how triangulations change.
In particular, he proved that for a planar set, the family of triangulations is flip-connected.
This fact was later exploited by Lawson [16] to construct triangulations algorithmically for
the purpose of surface interpolation. Ever since, flip-connectivity has become a standard
topic in discrete and computational geometry. In the plane, flip-connectivity leads to efficient
algorithms for constructing Delaunay triangulations and to proofs of extremal properties, for
example that among all triangulations of a finite set the Delaunay triangulation maximizes
the minimum angle [31].

Beyond two dimensions, flip-connectivity is a more challenging concept. For example,
the greedy algorithm that flips a locally non-convex configuration succeeds in constructing
the Delaunay triangulation in the plane [16], but can get stuck in local minima in three
dimensions; see [14] for examples. However, a more limited protocol that inserts points
incrementally and repairs the Delaunay triangulation after every insertion also succeeds in
three dimensions [15] and extends to higher dimensions and to coherent triangulations [9].
Note that the latter are known in the literature under a variety of names, including Laguerre,
regular, and weighted Delaunay triangulations. While flip-connectivity in three dimensions
is still an open question, Santos [28] has exhibited a configuration in six dimensions whose
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2 Flips in Two-dimensional Hypertriangulations

family of triangulations is not flip-connected. We refer to [6, 13, 17, 18, 30, 33] and references
therein for a multitude of results on flip-connectivity in a variety of settings.

In this paper, we study flips in the family of hypertriangulations of a finite set of n
points in the plane. These are triangulations induced by projections of an (n−1)-dimensional
hypersimplex to the plane. To explain these concepts, we fix an integer k between 1 and n−1,
called the level, and we write ∆(k)

n for k-fold scaling of the convex hull of the barycenters of
the (k− 1)-dimensional faces of the standard (n− 1)-simplex, ∆n = ∆(1)

n . Correspondingly,
we write A(k) for the set of k-fold sums of the points in the given set of n points, A = A(1).
The projection fixes a bijection between the vertices of ∆n and the points of A and, by
construction, maps the vertices of ∆(k)

n to the points of A(k). The hypertriangulations
follow by selecting and projecting appropriate subsets of the 2-dimensional faces of ∆(k)

n .
The subclass of coherent level-k hypertriangulations are also known as weighted order-k
Delaunay triangulations, defined by generalizing order-k Delaunay triangulations [2] to the
weighted setting.

Hypertriangulations were introduced by Olarte and Santos [21] as a tool to study the
Baues problem for families of plabic graphs related to the totally positive Grassmannian
[24]. The case k = 1 corresponds to the family of usual triangulations of the set A. In the
general setting of subdivisions induced by projection between two polytopes, the notion of
flips comes from the Baues poset, see [27, 29]. We refer to these as combinatorial or Baues
flips as it seems difficult to give a geometric description in all possible cases, even for a
generic projection. Primarily in connection to the Baues problem, the connectivity of the
flip graph for various settings related to the subdivisions induced by projections of polytopes
has been studied in [1, 19, 26], where positive as well as negative results are described.

Noting that we restrict ourselves to generic point sets in the plane, here is the outline
of this paper: Section 2 follows Olarte and Santos [21] and introduces level-k hypertriangu-
lations of a point set of n points, A, as tight subdivisions induced by the projection of the
hypersimplex ∆k

n. In particular, we give a combinatorial description of such triangulations
without using the associated projection. We also define the more general hypersimplicial
subdivisions and sketch a connection to fiber polytopes [4]. Section 3 introduces the four
types of flips for level-k hypertriangulations. Notably, these flips are geometric, they do not
depend on the level k, and they include the classic flips for triangulations of planar point
sets [5].

Section 4 proves the main result of this paper: that the family of level-2 hypertriangula-
tions of every (generic) planar point set is flip-connected. The main tool in the proof is the
aging function for triangles of hypertriangulations defined in Section 4.1.

Section 5 discusses connections of flips in hypertriangulations to plabic graphs studied
by Postnikov [23, 24] and Galashin [10], and reformulates their results in the language of
flips. It also discusses flips within the family of coherent triangulations and the relation
to the fiber polytope. Section 6 concludes the paper with a discussion of possible further
research.

2 Introduction to Hypertriangulations

This section explains the main object of study: the hypertriangulations of a finite point set.
To begin, we give an informal introduction to the subject, drawing connections to the theory
of fiber polytopes along the way, and follow up with formal definitions thereafter.
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2.1 Level-k Hypertriangulations
Let A = {a1, a2, . . . , an} be a generic set of n points in R2. Write [n] = {1, 2, . . . , n}, and
for a subset I ⊆ [n], let aI =

∑
i∈I ai be the vector sum of the points with index in I.

Fixing a parameter k ∈ [n − 1], we write A(k) = {aI | I ⊆ [n], |I| = k} for the k-fold sums
and consider all partial triangulations of A(k), by which we mean the decompositions of the
convex hull of A(k) into triangles, each formed by connecting a subset of the points with
straight edges. For the time being, assume that no three points of A(k) are collinear.

I Definition 2.1. A level-k hypertriangulation of A is a partial triangulation of A(k) so that
(V) every vertex is of the form aI , with |I| = k, and
(E) every edge connects two vertices, aI and aJ , that satisfy |I ∩ J | = k − 1.
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Figure 1: Left: n = 6 points in the plane. Right: the
(

n
3

)
= 20 triple sums of these points

together with a triangulation of 12 of the 20 points. The three vertices of every black triangle share
one point in their sums, and the three vertices of every white triangle share two.

See Figure 1 for a level-3 hypertriangulation of 6 points in R2 as an example. The labels
of the vertices indicate how they are obtained from the 6 points shown on the left. Note
that some of the 20 points in A(3) are not vertices of the displayed hypertriangulation. The
requirement on the endpoints of every edge implies a similar requirement on the vertices of
every triangle:

I Definition 2.2. Let ∆ = aIaJaK be a triangle whose vertices and edges satisfy conditions
(V) and (E). Then either |I ∩ J ∩K| = k − 1, in which case we call ∆ a white triangle, or
|I ∩ J ∩K| = k − 2, in which case we call ∆ a black triangle.

Note that white triangles exist for 1 ≤ k ≤ n− 2 and black triangles exist for 2 ≤ k ≤ n− 1.
For a given triangulation, T , we write W (T ) and B(T ) for the sets of white and black
triangles, respectively. In the example in Figure 1, there are 8 triangles of each color.

2.2 Hypersimplicial Subdivisions
The following interpretation of the above concepts gives an equivalent description within
the theory of fiber polytopes and induced subdivisions. We refer to [34, Chap. 9] and [5]
for a comprehensive introductions to this theory.
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Write ∆n = conv{e1, e2, . . . , en} ⊆ Rn for the standard (n − 1)-simplex, and more
generally ∆(k)

n = conv{eI | I ⊆ [n], |I| = k} for the k-th standard (n−1)-dimensional hyper-
simplex. Let π : ∆n → convA be the (linear) projection defined by π(ei) = ai, and following
Olarte and Santos [21], we extend this to the projection π : ∆(k)

n → convA(k). We get tilings
of A(k) by projecting subsets of the 2-dimensional faces of ∆(k)

n instead of the entire hyper-
simplex. By construction, the label of each vertex of ∆(k)

n is a subset of k integers in [n], the
endpoints of each edge have labels that differ in exactly one integer, and the 2-dimensional
faces are triangles and therefore satisfy the condition on the vertex labels given in Defini-
tion 2.2. Each such tiling is called a hypertriangulation in [21], and it agrees with our notion
of hypertriangulation given in Definition 2.1 in the generic setting.

I Remark. According to our current definition of a generic set, A, no three points of A(k)

are collinear, for any k ∈ [n − 1]. This implies that the projection of any 2-dimensional
face of ∆(k)

n is a triangle. This property also holds if we weaken our notion of genericity to
requiring that no three points of A are collinear, and this is the definition we will use from
now on. However, in this case, two or more points of A(k) may coincide, but since they have
different labels, we still treat them as different points. In the presence of coinciding points,
we require that at most one of these points is used in any one triangulation. Equivalently, we
require that the hypertriangulation remains a hypertriangulation if we perturb the points in
A by any sufficiently small amount. For an example see Figure 2, which shows two geomet-
rically identical projections of four 2-dimensional faces of the octahedron, ∆(2)

4 . Since the
respective central vertices have different labels (13 versus 24), the two hypertriangulations
are considered different.

34233423

12 14 12 14

13 24

Figure 2: Left: two hypertriangulations of four points arranged as the vertices of a diamond in
the plane. Right: one of the hypertriangulations as the projection of an octahedron.

I Definition 2.3. A level-k hypersimplicial subdivision of A is a tiling of convA(k) with
projected faces of ∆(k)

n that remains a tiling under any sufficiently small perturbation of A.

Note that Definition 2.3 allows for projections of faces of dimension larger than 2, which
are convex polygons with possibly more than three edges. In contrast to hypertriangula-
tions, Conditions (V) and (E) of Definition 2.1 do not suffice to distinguish hypersimplicial
subdivisions from other tilings of A. Take for example a set A of four points whose convex
hull is a triangle. Then convA(2) is a convex hexagon, which we may tile as shown in the
left panel of Figure 3. All edges satisfy Condition (E), but this tiling cannot be obtained as
projection of faces of the octahedron ∆(2)

4 .
Similarly, two different hypersimplicial subdivisions may lead to geometrically identical

tilings. See the right panel in Figure 3, in which we cannot distinguish between the lower
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Figure 3: Left: a subdivision of the 2-fold sums of four points that is not a hypersimplicial
subdivision of the six points. Right: a subdivision of the 2-fold sums of the six points in Figure 1
that can be interpreted as hypersimplicial in more than one way.

right triangle being the projection of a tetrahedron or of its 2-dimensional face whose pro-
jected image (which is the triangle) contains the projected fourth vertex. These two choices
are treated as different subdivisions, with the latter being a refinement of the former. To
disambiguate the situation, we will draw the projection of the fourth vertex only if the tri-
angle is the projection of the tetrahedron but not if it is the projection of a 2-dimensional
face of the tetrahedron.

2.3 Coherent Hypersimplicial Subdivisions and Fiber Polytopes
Within all hypersimplicial subdivisions of a finite set, A ⊆ R2, the coherent hypersimplicial
subdivisions form a privileged subfamily. These subdivisions are constructed as lower bound-
aries of convex polytopes obtained by lifting the points of A(k) according to a linear function
on Rn. Let h : Rn → R be such a linear function, and write hi = h(π−1(ai)) for the value at
the preimage of a point ai ∈ A. For every k, the value at a vertex of ∆(k)

n is the sum of the
values of the corresponding k vertices of ∆n. We therefore write hI = h(π−1(aI)) =

∑
i∈I hi

for every I ⊆ [n].

I Definition 2.4. Let A(k)
h = {(aI , hI) | |I| = k} be the h-lifted points at level k and note

that these are points in R3. The associated coherent hypersimplicial subdivision, denoted
T (k)(A, h), is the natural projection (which removes the last coordinate) of the lower bound-
ary of convA(k)

h to convA(k). In the particular case in which the lower boundary has only
triangular faces, we call its projection a coherent hypertriangulation of A.

The corresponding fiber polytope, denoted F(∆(k)
n → A(k)), is the set of points

1
area(convA(k))

∫
convA(k)

f(x) dx,

over all continuous functions f : convA(k) → ∆(k)
n such that π(f(x)) = x for all x ∈ convA(k).

Note that this is a subset of ∆(k)
n ⊆ Rn. The vertices of the fiber polytope correspond to
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coherent hypertriangulations, and the faces correspond to all coherent subdivisions; see [21]
and [4] for more details.

Because ∆(k)
n is a complex of hypersimplices, we can use the following equivalent defin-

ition, which resembles the one of the secondary polytope associated with the point set A;
see [12].

I Definition 2.5. Set eI =
∑

i∈I ei for each I ⊆ [n], and write GKZ(∆) = area(∆) · 1
3 (eI +

eJ + eK) for every triangle ∆ = aIaJaK . Then the corresponding fiber polytope, or level-k
hypersecondary polytope of A, denoted F (k)(A), is the convex hull of the points

GKZ(T ) = 1
area(convA(k))

∑
∆∈T

GKZ(∆),

where the points are constructed for all level-k hypertriangulations T of A.

3 Flips in Hypertriangulations

The level-1 hypertriangulations of a finite set, A ⊆ R2, are commonly called the (partial)
triangulations of A. Flips are the elementary operations that transform one triangulation
of A to another. In the generic situation, there are two types: the first substitutes one
diagonal of a convex quadrangle by the other, and the second subdivides a triangle into
three by adding a vertex or coarsens by removing a degree-3 vertex; see the Type-I and
Type-II flips in Figure 5. For just four points the flips provide transitions between the only
triangulations on these points. As shown in [13], these two operations suffice to transform
any triangulation to any other triangulation of A.

This section introduces similar operations for level-k hypertriangulations in R2. Before
giving the formal definitions, we take a look at configurations of just four points, for which
our flips appear naturally.

3.1 Hypertriangulations of Four Points
For n = 4 points in R2, we have level-k hypertriangulations for k = 1, 2, 3. In the generic
case, there are only two combinatorially different configurations of four points: the vertices
of a convex quadrangle, or the vertices of a triangle with the fourth point inside the triangle.
We refer to them as the convex configuration and the non-convex configuration, respectively.
As illustrated in Figure 4, we have two hypertriangulations for each k and each of the two
configurations, so twelve hypertriangulations altogether.

For k = 1, the vertices are the original points, and all triangles are white.
For k = 2, there are six points, each the sum of two points in A. If A is a convex
configuration, the convex hull of A(2) is a parallelogram and the remaining two points
lie inside the parallelogram. There are only two hypertriangulations, each choosing
one of the two extra points as a vertex and decomposing the parallelogram into two
white and two black triangles. If A is a non-convex configuration, the points in A(2)

are the vertices of a centrally symmetric convex hexagon, and there are again only two
hypertriangulations.
For k = 3, the situation is similar to the case k = 1, except that all triangles are black.

The six pairs of hypertriangulations of four points inspire our definition of flips for hyper-
triangulations in R2.
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Figure 4: The two configurations of four points in R2 and their hypertriangulations: convex
configuration in top row and non-convex configuration in bottom row. From left to right: the two
level-1, level-2, and level-3 hypertriangulations for each configuration. Observe that the squares in
the upper middle can be more general parallelograms so that the respective central fifth vertices
are not at the same geometric location. Similarly, the convex hexagons in the lower middle are not
necessarily regular but are necessarily centrally symmetric.

3.2 Flips
We introduce four types of flips in hypertriangulations; all illustrated in Figure 5. A flip
preserves the level of the hypertriangulation, so the vertices and edges it introduces must
satisfy Conditions (V) and (E) of Definition 2.1.

Type I

Type II

Type III

Type IV

Figure 5: The four types of flips in hypertriangulations. Type-I and Type-II flips apply to all
white or all black triangles, while Type-III and Type-IV flips involve white and black triangles
before and also after the flip.

I Definition 3.1. A Type-I flip removes two triangles that share an edge and whose union is
a convex quadrangle, and it adds the other two triangles whose union is the same quadrangle.
The four triangles, two before and two after the flip, are either all white or all black.

A Type-II flip replaces a triangle by three triangles sharing a vertex inside the removed
triangle or, in the other direction, replaces the three triangles sharing a degree-3 vertex with
a single triangle. The four triangles, before and after the flip, are either all white or all
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black.
A Type-III flip applies to a parallelogram decomposed into four triangles, which alternate

between white and black around the shared vertex, and replaces these triangles by their
reflections through the center of the parallelogram. The reflection also switches the colors.

A Type-IV flip applies to a centrally symmetric convex hexagon decomposed into four
triangles, one in the middle with a color that is different from the shared color of the
surrounding three triangles. The flip replaces the four triangles by their reflections through
the center of the hexagon, and the reflection switches the colors, as before.

I Remark. Explicitly requiring colors of triangles and Condition (E) of edges is sometimes
excessive. For example, if two triangles have the same color, share an edge, and form a
convex quadrangle, then Condition (E) is necessarily satisfied by the new edge. Similarly,
if a vertex is shared by a cycle of four triangles with alternating colors, then these four
triangles can be replaced by a Type-III flip. On the other hand, for Type-II and Type-IV
flips, Condition (E) needs to be taken into account at least in one direction.

I Example 3.2. Take another look at Figure 1, which shows a level-3 hypertriangulation
of six points in R2. It is chosen so that all different types of flips can be applied. On the
upper left, we see three white triangles that can be replaced by a single white triangle in
a Type-II flip. Below them, we see three black triangles that can be replaced by a single
black triangle in another Type-II flip. In the upper middle, we see a hexagonal region with
a black triangle surrounded by three white triangles, which can be replaced by a white
triangle surrounded by three black triangles in a Type-IV flip. After applying this flip, we
get a convex quadrangle decomposed into two black triangles, which can be replaced by two
other black triangles in a Type-I flip. Below that hexagonal region, we see another with
a white triangle surrounded by three black triangles, and after applying a Type-IV flip,
we get an elongated convex quadrangle decomposed into two white triangles, which can be
replace by two other white triangles in another Type-I flip. Finally on the right, we see a
parallelogram whose triangles alternate between black and white, which can be replaced by
four other triangles in a Type-III flip.

4 Level-2 Hypertriangulations

This section proves that for every generic point set, A ⊆ R2, the collection of level-2 hyper-
triangulations is flip-connected. The main tool used for this purpose is the aging function
and its inverse. This function appeared under different names in the work of Olarte and
Santos [21] on hypertriangulations, of Galashin [10] and Balitskiy, Wellman [3] on plabic
graphs, and of Edelsbrunner, Osang [8] on a fast algorithm for level-k Delaunay mosaics.

4.1 Aging Function
The aging function, F , maps a white triangle with vertices in A(k) to a black triangle with
vertices in A(k+1). Specifically, if |I| = |J | = |K| = k and |I ∩ J ∩K| = k − 1, then

F (aIaJaK) = aI∪JaJ∪KaK∪I .

Indeed, we have |I ∪ J | = |J ∪K| = |K ∪ I| = k + 1 and |(I ∪ J) ∩ (J ∪K) ∩ (K ∪ I)| =
k − 1, so the image of aIaJaK under F is black. The inverse of the aging function is well
defined on the black triangles: if |I| = |J | = |K| = k and |I ∩ J ∩K| = k − 2, then

F−1(aIaJaK) = aI∩JaJ∩KaK∩I .
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Recall that W (T ) and B(T ) are the white and black triangles in T . Accordingly, we write
F (W (T )) and F−1(B(T )) for the images under the aging function and its inverse. With
this notation, we have the following property.

I Lemma 4.1. For every level-1 hypertriangulation, T , of a generic set A ⊆ R2, there exists
a level-2 hypertriangulation, U , of A such that B(U) = F (W (T )).

Proof. Since T is level-1, all its triangles are white. To get F (W (T )), we take the midpoints
of all edges in T and for every triangle in T draw a (black) triangle that connects the
midpoints within this triangle. After inflating the configuration by a factor 2, we get a
subset of A(2) together with a collection of black triangles; see Figure 6, which suppresses
the inflation for better visualization. The part of the convex hull of A(2) not covered by
black trianlges is thus split into regions, and it remains to show that all these regions can
be triangulated using white triangles only.

Figure 6: A level-1 hypertriangulation of 7 points on the left, and the (shrunken) image of the
aging function applied to its 8 white triangles on the right. The area left out by the black triangles
are (shrunken) copies of the vertex stars in the level-1 hypertriangulation.

The gaps between the black triangles are of two types. Each gap that is completely
surrounded by black triangles is in the shape of the star of an internal vertex of T . Indeed,
for every internal vertex, ai of T , the black triangles within the star of ai cut out a scaled
copy of the said star, which inflates into a copy of the star. This star can be triangulated
using the vertices in its boundary, and since these vertices share i as one of their labels, all
resulting triangles are white.

Each gap that is not completely surrounded by black triangles is obtained from the
star of a boundary vertex of T . Specifically, for every boundary vertex, aj of T , the black
triangles in its star cut out a scaled copy of the star, which, after inflation, is intersected
with convA(2). This intersection consists of one or more possibly non-convex polygons. The
vertices of these polygons are the vertices of the star (other than aj), as well as vertices
of convA(2). The former share j as one of their labels. To see that this is also true for
the latter, we rotate two parallel supporting lines, one around convA and the other around
convA(2). Whenever the second supporting line passes through a boundary vertex that is
also a vertex of one of the polygons, the first supporting line passes through aj . It follows
that j is a label of the boundary vertex. Hence, all vertices of the polygons share j as one
of their labels, and any triangulation obtained by connecting these vertices produces only
white triangles. J
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4.2 Inverse of Aging Function
The aging function can be reversed to construct the level-1 hypertriangulation that gives
rise to a given level-2 hypertriangulation. To prepare this construction, we let U be a level-2
hypertriangulation of A, and for each ai ∈ A, we writeWi(U) for the set of white triangles in
U , whose three vertices share the label i. In the forward construction of Lemma 4.1, Wi(U)
would be the triangles re-triangulating (part of) the star of ai, but a priori it is not clear
that U can be constructed this way. We will sometimes abuse notation and write Wi(U) for
the union of its triangles.

I Lemma 4.2. Let U be a level-2 hypertriangulation of a generic set A ⊆ R2, let ai ∈ A.
Assume Wi(u) is non-empty, and let x be a point in its interior. Then all triangles in U

that have a non-empty intersection with the line segment from x to 2ai belong to Wi(U),
and if ai lies in the interior of convA, then Wi(U) contains the entire line segment.

Proof. We prove the case in which ai lies in the interior of convA. The case of a boundary
point is easier and omitted. To get a contradiction, we assume there is a point x ∈ Wi(U)
such that Wi(U) does not contain the entire line segment from x to 2ai. Hence, the line
segment crosses the boundary of Wi(U), and we let aij and aik be the endpoints of the
boundary edge that crosses the line segment closest to x. Let L be the line that passes
through aij and aik. Since x and 2ai lie on opposite sides of L, the points 2aj and 2ak lie on
the same side of L as x. It follows that the entire black triangle with vertices aij , aik, ajk

lies on this side of L. But then there are points on the line segment from x to 2ai outside
Wi(U) that are closer to x than the crossing with L, which is a contradiction. Hence, Wi(U)
is star-convex and contains the entire line segment from x to ai. J

We use Lemma 4.2 to prove that the aging function allows us to go back and forth
between level-1 and level-2 hypertriangulations.

I Lemma 4.3. Let U be a level-2 hypertriangulation of a generic set A ⊆ R2. Then
F−1(B(U)) is a well defined level-1 hypertriangulation of A.

Proof. First we prove that if ai and aj are the endpoints of a side of convA, then there
is exactly one triangle in B(U) with vertex aij . Observe that aij is necessarily a vertex of
convA(2), let aik and aj` be the neighboring boundary vertices, and note that U contains
the two edges that connect aij to these vertices. Traverse the sequence of triangles aiuv

incident to aij and note that there is necessarily an edge, uv, such that u and v neither
share i nor j as a label. Hence, aijuv is a black triangle incident to aij . If there are two such
black triangles, then there is a white triangle between them. This white triangle is incident
to aij but neither belongs to Wi(U) nor to Wj(U), which is not possible.

Next let ∆ = aijaikajk be any black triangle in U , and suppose that the edge from ai

to aj is not a side of convA. We prove that there is exactly one other black triangle, ∆′, in
U that shares aij , and that ∆ and ∆′ lie on opposite sides of the line that passes through
2ai and 2aj . We consider the case in which both ai and aj lie in the interior of convA.
In all other cases, the argument is similar and omitted. In the assumed case, Wi(U) and
Wj(U) are both star-convex and meet at aij . Traversing the triangles aijuv incident to
aij—starting at u = aik and ending at v = aj` while avoiding ∆—we observe that there
must be a second black triangle, ∆′. Furthermore, there cannot be three black triangles
because aij has only two labels and can therefore not belong to three white regions. The
property that ∆ and ∆′ lie on opposite sides of the line passing through 2ai and 2aj follows
from the star-convexity of Wi(U) and Wj(U) and the fact that these two regions touch at
aij , which lies on this line and between ai and aj .
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When we construct F−1(B(U)), we get one white triangle next to every boundary edge
of convA and two non-overlapping white triangles on opposite sides of every non-boundary
edge. A point in the interior of convA and sufficiently close to a boundary edge is covered
by exactly one triangle in F−1(B(U)). To move to any other point in convA, we walk from
triangle to triangle, and each time we leave a triangle we enter another. This implies that
almost all points in convA are covered by exactly one triangle in F−1(B(U)). It follows that
F−1(B(U)) is a level-1 hypertriangulation of A. It is unique because the construction via
the inverse of the aging function is deterministic. J

4.3 Flip-connectivity

We are now ready to prove the main result of this section. Given a generic set A ⊆ R2,
consider the graph whose nodes are the level-k hypertriangulations of A, with an arc con-
necting two nodes if there is a flip that transforms one hypertriangulation to the other. We
call the level-k hypertriangulations flip-connected if this graph is connected.

I Theorem 4.4. For every generic point set A ⊆ R2, the level-2 hypertriangulations of A
are flip-connected.

Proof. Let U and U ′ be two level-2 hypertriangulations of A, and let T = F−1(B(U))
and T ′ = F−1(B(U ′)) be the corresponding level-1 hypertriangulations, which are possibly
partial triangulations of A. If T = T ′, then U and U ′ agree on their black triangles. Similarly,
the regions of white triangles are the same, but they may be differently triangulated. Each
such region is a convex or non-convex polygon, and it is known that any two triangulations
of a polygon are connected by Type-I and Type-II flips; see [13].

So suppose T 6= T ′. It is also well known that possibly partial triangulations of A are
connected by Type-I and Type-II flips; see Figure 5. We will show that each Type-I flip on
level 1 corresponds to a Type-III flip on level 2, and each Type-II flip on level 1 corresponds
to a Type-IV flip on level 2. So we can perform the flips on the two levels in parallel, but
note that Type-I and Type-II flips on level 2 are sometimes necessary to enable the Type-III
and Type-IV flips.

Figure 7: Left: a Type-III flip on level 2 superimposed on the corresponding Type-I flip on
level 1. Right: a Type-IV flip on level 2 superimposed on the corresponding Type-II flip on level 1.

In the case of a Type-I flip on level 1, we need to retriangulate the white regions on
level 2 as in Figure 7 on the left, so a Type-III flip can be performed. Such a retriangulation
with Type-I flips on level 2 is always possible. The case of a Type-II flip on level 1 is similar,
except that we need Type-I as well as Tyle-II flips on level 2 to retriangulate the three white
regions around the central black triangle to enable the Type-IV flip; see Figure 7 on the
right. Again, such a retriangulation is always possible. J
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We observe that mapping aI to a[n]\I induces a bijection between the level-k and the
level-(n − k) hypertriangulations and their respective flips. Hence, the flip-connectivity on
level 1 implies the flip-connectivity on level n− 1. More interestingly, Theorem 4.4 implies
that also the level-(n− 2) hypertriangulations of a generic set A ⊆ R2 are flip-connected.

4.4 Obstacle for Generalization
To summarize, we used the aging function from level 1 to level 2 to prove the flip-connectivity
of level-2 hypertriangulations. It is not difficult to generalize the aging function to higher
levels, but Lemma 4.1 fails to generalize, which is the reason the authors of this paper were
not able to prove flip-connectivity in full generality beyond level 2. Indeed, it is known that
the extension of Lemma 4.1 to the aging function that maps white triangles on level 2 to black
triangles on level 3 fails already for five points. In particular, the level-2 hypertriangulation
in [21, Example 5.1] contains three triangles, ∆1,∆2,∆3, whose images under the aging
function overlap; see Figure 8.
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Figure 8: From left to right: a partial triangulation of five points with two white triangles, a
level-2 hypertriangulation with corresponding two black triangles and six additional white triangles,
and the corresponding six aged black triangles, some of which overlap. The construction is based
on Example 5.1 by Olarte and Santos [21].

5 Flips beyond Level 2

Because of the breakdown of Lemma 4.1 beyond level 2, we restrict our attention to special
configurations for which the aging functions lemmas hold even beyond level 2. Most prom-
inently, these are points in convex position and coherent hypertriangulations. Before that,
we review the more general definition of flips in Baues posets and reformulate some results
in our language.

5.1 Baues Flips
We mention that all four types of flips studied in this paper are geometric as they arise
from geometric configurations of black and white triangles. An alternative combinatorial
approach to flips originates from the Baues poset of a fixed projection, π : ∆(k)

n → A(k).
It adopts the combinatorial interpretation of ∆(k)

n as a finite point set (with implicit face
structure), so that there is no need to take the convex hull of A(k) in the projection. We give a
short description here and refer to [27, 29] for details and a discussion of the flip-connectivity
for general Baues posets.
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Figure 9: Left and middle: moves (M1) and (M2) in plabic graphs superimposed on the corres-
ponding Type-I flips applied to white and black triangles, respectively. Right: move (M3) in plabic
graphs superimposed on the corresponding Type-III flip in hypertriangulations.

I Definition 5.1. The Baues poset B(∆(k)
n → A(k)) of the projection π : ∆(k)

n → A(k) is the
poset of hypersimplicial subdivisions of A(k) ordered by refinement.

In this setting, the hypertriangulations are the rank-0 elements of the Baues poset. The
rank-1 elements are directly above the rank-0 elements, and the (combinatorial) flips are
swaps between two rank-0 elements with common rank-1 element right above them.

It is easy to see that flips of types I through IV defined in Section 3 are flips in the
Baues poset as well. Indeed, every such flip swaps one collection of boundary triangles of
a 3-dimensional face of ∆(k)

n for another, while keeping the remaining triangles untouched.
Using π(F ) and all other triangles in the hypersimplicial subdivision gives a rank-1 element
in the Baues poset. The converse inclusion of Baues flips into our family of flips of types I
through IV is not straightforward and may not hold in general.

5.2 Points in Convex Position
If A is in convex position, then the flip-connectivity of the family of hypertriangulations using
Baues flips was established by Postnikov [23, 24] using the language of plabic graphs. More
specifically, Postnikov introduced plabic moves (M1)-(M3) and proved that these moves
correspond to Baues flips in the hypertriangulations, and that every two plabic graphs
originating from level-k hypertriangulations of a set A in convex position can be connected
by a sequence of plabic moves.

Combinatorially, moves (M1)-(M3) correspond to flips of Types I and III; see Figure 9.
Using Remark 3.2, we can see that every plabic move can be realized as a (geometric) flip.
This allows us to reformulate Postnikov’s result in our language.

I Theorem 5.2 (Postnikov [24, Corollary 11.2]). If A ⊆ R2 is a finite set of points in convex
position, then the family of level-k hypertriangulations of A is flip-connected using flips of
Types I and III.

Also, if A is in convex position, then extensions of Lemmas 4.1 and 4.3 for the aging
function F hold for every k; see [21, Section 6]. Here we reformulate the result in our
language and refer to [10, Corollary 4.4] and [3, Lemma 3.6] for more details.

I Theorem 5.3 (Galashin [10]). Let T be a level-k hypertriangulation of a set A ⊆ R2 of n
points in convex position. For 1 ≤ k ≤ n−1, there exist possibly empty level-(k−1) and level-
(k+1) hypertriangulations S and U of A such that B(U) = F (W (T )) and B(T ) = F (W (S).

This theorem can be used to get an alternative proof of Theorem 5.2 on flip-connectivity
of level-k hypertriangulations for convex sets. Such an alternative proof follows the ideas
we used in Theorem 4.4. In the language of plabic graphs this approach was implemented
by Oh and Speyer [20].
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5.3 Coherent Hypertriangulations
The flip-connectivity of the family of coherent hypertriangulations relates to properties of
the corresponding fiber polytope, F (k)(A). In the simplest case, for k = 1, the edges of
the secondary polytope, F (1)(A), correspond to bi-stellar flips, and in the generic case,
the flips between coherent triangulations result in edges of the secondary polytope; see [5,
Section 5.3], where coherent triangulations are called regular.

As suggested in [24, Section 8], a similar property should hold for all Baues posets (for
generic projections) when we use Baues flips instead of bi-stellar flips, but we did not find a
precise statement to this effect in the literature. We therefore include a short sketch of this
property for hypertriangulations using the more restrictive family of flips of Types I through
IV. We also refer to [5, Theorem 5.3.1] for a similar result on usual triangulations (the case
k = 1), which inspired our proof.

I Proposition 5.4. If GKZ(T0) and GKZ(T1) are two vertices of F (k)(A) connected by an
edge, then the coherent hypertriangulations T0 and T1 differ by a flip of type I, II, III, or IV
(and thus also by a Baues flip).

Sketch of proof. Let T be the coherent subdivision that corresponds to the edge connecting
GKZ(T0) and GKZ(T1). Since T is not a hypertriangulation, it contains the projection of
a face, F , of dimension 3 or larger. If dimF ≥ 4, then F is a hypersimplex, and the
corresponding coherent hypertriangulations give a fiber polytope of dimension at least 2
and hence cannot be the edge of F (k)(A).

If T contains projections of at least two faces F and F ′ with dimF = dimF ′ = 3, then
lifting the points of A(k) according to any height function, h, from the normal cone of the
edge corresponding to T gives two non-triangular faces of the lower boundary of convA(k)

h .
Each such face results in a linear equation for the heights, {hi}i∈[n], and since the edge has
codimension 1, the equations for F and F ′ must be proportional. This is possible only if
their lifting are parallel, which is impossible for the lower boundary of convA(k)

h .
To summarize: the projection of F is the only polygon where T0 differs from T1, and

since dimF = 3, this results in a flip from T0 to T1. J

Since all coherent level-k hypertriangulations correspond to vertices of the corresponding
fiber polytope, the following corollary is immediate.

I Corollary 5.5. For every point set A, the family of all coherent level-k hypertriangulations
is flip-connected.

The converse property: that every flip between coherent hypertriangulations corresponds
to an edge of the fiber polytope, is worth considering as well. We refer to [5, Theorem 5.3.3]
for the treatment of triangulations of generic point sets (the case k = 1), and to [5, Ex-
ample 5.3.4] for the non-generic case. Below we prove the property for flips of Types III and
IV.

I Proposition 5.6. If T0 and T1 are coherent level-k hypertriangulations of A that differ by
a flip of Type III or IV, then the vertices GKZ(T0) and GKZ(T1) of F (k)(A) are connected
by an edge.

Sketch of proof. Let C0 and C1 be the sets of height functions that induce coherent hyper-
triangulations T0 and T1, respectively. These sets are full-dimensional convex cones.

Considering convex combinations of height functions from two different cones, we get
coherent subdivisions that coincide with T0 and T1 on all common triangles. If the flip
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between T0 and T1 is of Type III or IV (so it involves both black and white triangles), then
one can show that the edge between a black and a white triangle can disappear only if the
change in the coherent subdivision is a common coarsening of T0 and T1. Since T0 and T1
differ only in the support of the flip, the two cones intersect in a face of codimension 1. This
implies only one linear condition on the heights. Thus, the common coarsening of T1 and
T2 corresponds to an edge of the fiber polytope. J

For flips of Types I and II (which preserve the coloring of the manipulated region), it
is tempting to use the approach from [5, Theorem 5.3.3] and remove the points that are
not involved in the flip. However, it does not work in the case of hypertriangulations as it
could be impossible to remove the points inside the quadrilateral or triangle where the flip
happens without altering the remaining coherent hypertriangulation. We thus conjecture
that Proposition 5.6 does not extends to flips of Types I and II.

As the final remark on the topic, we notice that the aging function is also applicable to
coherent hypertriangulations.

I Proposition 5.7. Let T be a coherent level-k hypertriangulation of a finite set A ⊆ R2.
For 1 ≤ k ≤ n − 1, there exist possibly empty coherent level-(k − 1) and level-(k + 1)
hypertriangulations S and U of A such that B(U) = F (W (T )) and B(T ) = F (W (S)).

Proof. We can use the height function that generates T to also construct S and U . J

6 Concluding Remarks

This section mentions avenues for further research on hypertriangulations and their flips. In
dimension d = 2, there is of course the open question of flip-connectivity for levels k between
3 and n− 3, in which n is the number of points.

Beyond 2 dimensions. In dimension d ≥ 3, the question of flip-connectivity for hypertri-
angulations has yet to be formalized. Even for generic sets of n points, hypertriangulations
beyond level 1 are generally not simplicial because generic hypersimplices are not necessarily
simplices. The aging function can still be defined and goes through d generations of a d-
simplex: for 1 ≤ j ≤ d− 1 from the convex hull of the barycenters of the (j− 1)-faces to the
convex hull of the barycenters of the j-faces. For example in dimension d = 3, it goes from
a tetrahedron (convex hull of its vertices) to an octahedron (convex hull of the midpoints
of its edges) to another tetrahedron (convex hull of the barycenters of its triangles). Flips
would be defined as in Section 3, which is best described in terms of projections from d+ 1
dimensions. According to Radon’s theorem, there are d+ 1 combinatorially different projec-
tions of a (d+ 1)-simplex to Rd [25]. The types are paired up, giving d(d+ 1)/2e flips. The
(d + 1)-simplex has d + 1 generations, but there is a symmetry between the barycenters of
the (j−1)-faces and the (d+1− j)-faces, giving d(d+ 1)/2e cases. We thus get d(d+ 1)/2e2

flips, namely four in R2, also only four in R3, but nine in R4.

Moves in plabic graphs. Section 5.2 relates flips of Types I and III to moves (M1)-(M3)
in plabic graphs, as introduced by Postnikov [23]. The other two types of flips can be used
to create additional moves in plabic graphs as every hypertriangulation has an underlying
trivalent plabic graphs with black and white vertices. Notably, moves (M1)-(M3) keep the
reducibility of plabic graphs and preserve the strand permutation, while the moves defined
using flips of Types II and IV do not have these invariants; see [3, 23] for precise definitions
of the notions related to plabic graphs.
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It is unclear whether the two additional moves can be used to reduce every plabic graph,
or at least every plabic graph originating from a hypertriangulation. Indeed, this question
is related to the flip-connectivity of hypertriangulations, as for every finite A and level k,
there exists a level-k hypertriangulation of A that results in a reduced plabic graph. This
fact can be proved by an induction on n = |A|, removing a point on the boundary of the
convex hull of A and adding it back while tracking how the convex hull of A(k) changes. It
is also conceivable that the higher-dimensional flips described earlier are related to higher-
dimensional plabic graphs and associated moves, as described in [11].

Generalized Baues problem. One of the main questions in the theory of induced subdi-
visions is the generalized Baues problem. Roughly, the question asks how well the family of
all induced subdivisions embeds the family of coherent subdivisions. A more specific ques-
tion asks whether the order complex of the poset of all induced subdivisions is homotopy
equivalent to the order complex of the poset of coherent subdivisions. We refer to the survey
of Reiner [27] for precise definitions and details.

In the setting of (2-dimensional) hypertriangulations, the generalized Baues problem has
a positive answer for k = 1, the case of usual triangulations, as shown by Edelman and
Reiner [7]. Consequently, the problem has also a positive answer for k = n− 1. In addition,
Olarte and Santos [21] proved that the generalized Baues problem has a positive answer if
the points are in convex position. For an arbitrary generic set in R2, the generalized Baues
question for level-k hypertriangulations remains open for all 2 ≤ k ≤ n− 2.
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