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Abstract1

Given a finite set, A ⊆ R2, and a subset, B ⊆ A, the MST-ratio is the combined length of the2

minimum spanning trees of B and A \ B divided by the length of the minimum spanning tree of A.3

The question of the supremum, over all sets A, of the maximum, over all subsets B, is related to4

the Steiner ratio, and we prove this sup-max is between 2.154 and 2.427. Restricting ourselves to5

2-dimensional lattices, we prove that the sup-max is 2.0, while the inf-max is 1.25. By some margin6

the most difficult of these results is the upper bound for the inf-max, which we prove by showing7

that the hexagonal lattice cannot have MST-ratio larger than 1.25.8
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1 Introduction9

The recent development of measuring the interaction between two or more sets of points10

with methods from topological data analysis motivates the discrete geometric question about11

minimum spanning trees studied in this paper; see [2, 8] for background in this general area.12

We refer to the measured interaction as mingling, deliberately choosing an ambiguous term13

while leaving the concrete meaning to the geometric and algebraic constructions described in14

[6]. As explained in the appendix of the current paper, one of these measurements can be15

expressed in elementary terms:16

▶ Definition. Given a finite set, A ⊆ R2, we write MST(A) for the (Euclidean) minimum17

spanning tree of the complete graph on A, with edge weights equal to the distances between18

the points. For B ⊆ A, the MST-ratio of A and B is the combined length of the minimum19

spanning trees of B and A \B, divided by the length of the minimum spanning tree of A:20

µ(A,B) = |MST(B)| + |MST(A \B)|
|MST(A)| . (1)21

To make use of this measure for statistical or other purposes, we ought to know how small22

and how large the ratio can get (the extremal question), and how it behaves for random data.23

A first result in the latter direction can be found in [7], who prove that for points chosen24

uniformly at random in the unit square, the expected MST-ratio for a random partition into25

two subsets is at least
√

2 − ε, for any ε > 0.26

Given any set, A, the minimum MST-ratio is achieved by removing the longest edge27

from MST(A) and letting B and A \ B be the vertices of the resulting two trees, so it is28
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less than 1.0. More interestingly, the maximum MST-ratio is related to the Steiner ratio of29

the Euclidean plane [9, 10], and we exploit this connection to prove that the supremum is30

between 2.154 and 2.427 (Theorem 2.1 in Section 2). The infimum of the maximum is again31

less interesting: allowing ourselves to pick points arbitrarily close to each other, this infimum32

can be seen to be arbitrarily close to 1.0.33

This motivates us to study the MST-ratio for a restricted class of sets, and our choice are34

the (Euclidean) lattices, which are well studied objects with many applications in mathematics35

and beyond; see e.g. [12]. Taking a sequence of progressively larger but finite portions of36

such a lattice, we have well defined minimum spanning trees and can study the asymptotic37

behavior of the MST-ratio. Our main result is that the maximum MST-ratio of the hexagonal38

lattice is 1.25 (Theorem 4.2 in Section 4). Observe that this is an upper bound on the39

infimum, over all lattices, of the maximum MST-ratio. We complement this with a matching40

lower bound (Claim 3.5 in Section 3), and with matching lower and upper bounds for the41

supremum maximum MST-ratio, which we establish is 2.0 (Claims 3.2 and 3.4 in Section 3).42

2 The Maximum MST-ratio43

The main question we ask to what extent two minimum spanning trees can be longer than44

a single minimum spanning tree of the same points; see the definition of the MST-ratio of45

a set A ⊆ R2 and a subset B ⊆ A in the introduction. We are interested in the maximum46

MST-ratio, over all subsets B ⊆ A, and in the supremum and infimum of this maximum,47

over all finite sets A ⊆ R2.48

The supremum is related to the well-studied Steinter tree problem. Given a finite set,49

X ⊆ R2, the Steiner tree of X is the minimum spanning tree of X ∪B, in which B = B(X)50

is chosen to minimize the length of this tree. The Steiner ratio of the Euclidean plane is51

the infimum of the length ratio, |MST(X ∪B)|/|MST(X)|, over all finite sets in the plane.52

There are sets X ⊆ R2 for which the ratio is only
√

3/2 = 0.866 . . .; take for example the53

vertices of an equilateral triangle as X and the barycenter of this triangle as the sole point54

in B. It is conjectured that
√

3/2 is the Steiner ratio of the Euclidean plane [9], but the55

current best lower bound proved in [3] is only 0.824 . . .. We use this bound to prove upper56

and lower bounds for the supremum maximum MST-ratio:57

▶ Theorem 2.1. The supremum, over all finite A ⊆ R2, of the maximum, over all subsets58

B ⊆ A, of the MST-ratio satisfies 2.154 ≤ supA maxB µ(A,B) ≤ 2.427.59

Proof. We first prove the upper bound. Since B is a subset of A, the MST of A cannot60

be shorter than the Steiner tree of B. Similarly, the MST of A cannot be shorter than61

the Steiner tree of A \ B. Hence, |MST(A)| ≥ 0.824 . . . · |MST(B)| and |MST(A)| ≥62

0.824 . . . · |MST(A \B)|. It follows that the ratio satisfies63

µ(A,B) ≤ 2 · [|MST(B)| + |MST(A \B)|]
0.824 . . . · [|MST(B)| + |MST(A \B)|] = 2.426 . . . . (2)64

This inequality holds for every B ⊆ A. We second prove the lower bound for the sup-65

max by constructing a set A of seven points that implies the inequality. Let B ⊆ A be66

the three vertices of an equilateral triangle with unit length edges, and let A \ B be the67

vertices of another equilateral triangle with unit length edges, but this time together with68

the barycenter. Hence, |MST(B)| = 2 and |MST(A \B)| =
√

3. Assuming the distance69

between corresponding vertices of the two equilateral triangles is less than ε > 0, we have70
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|MST(A)| <
√

3 + 3ε. This implies71

µ(A,B) > 2 +
√

3√
3 + 3ε

> 2.154 . . .− 4ε. (3)72

Since we can make ε > 0 arbitrarily small, this implies the claimed lower bound. ◀73

The example used to establish the lower bound can be extended to larger numbers of74

points, e.g. the following disjoint union of three lattices: B is the hexagonal lattice (to be75

defined shortly), and A \B is a slightly shifted copy of the hexagonal lattice, together with76

the barycenters of the triangles in every fourth row, which is a rectangular lattice with77

distances 1 and
√

3 between consecutive rows and columns.78

The question about the infimum of the maximum MST-ratio turns out to be less interesting,79

with 1.0 as answer. To see the lower bound, set B = A, in which case |MST(B)| = |MST(A)|80

and |MST(A \B)| = 0. The ratio is therefore equal to 1. We get the upper bound by81

constructing a set A of n ≥ 2 points. It contains the origin, n− 2 points each at distance82

at most ε > 0 from the origin, and another point at unit distance from the origin. Call the83

latter point b, assume b ∈ B, and consider the case in which B contains at least one other84

point of A. Then85

1 ≤ |MST(A)| ≤ 1 + 2(n− 2)ε, (4)86

1 − ε ≤ |MST(B)| ≤ 1 + 2(n− 2)ε, (5)87

0 ≤ |MST(A \B)| ≤ 2(n− 3)ε. (6)88

For any given δ > 0, we can choose ε > 0 sufficiently small such that the ratio is smaller89

than 1 + δ. In the other case, in which B = {b}, we have |MST(B)| = 0 and |MST(A \B)| ≤90

2(n− 2)ε, so we can make the ratio arbitrarily small and certainly smaller than 1.0.91

3 Two-dimensional Lattices92

Motivated by the triviality of the infimum maximum MST-ratio for general finite sets, we93

aim for a restriction that disallows extremely unbalanced distributions. There are many94

choices, and we opt for a maximally restricted setting in which the MST-ratio is still an95

interesting question. Specifically, we focus on 2-dimensional lattices.96

▶ Definition. The (Euclidean) lattice spanned by two linearly independent vectors, u,v ∈ R2,97

consists of all integer combinations of these vectors: Λ(u,v) = {iu + jv | i, j ∈ Z}.98

By definition, lattices are infinite. To cope with the difficulty of constructing the minimum99

spanning tree of infinitely many points, we take progressively larger but finite portions of a100

lattice and monitor the sequence of MST-ratios. Specifically, we consider squares centered101

at the origin and rhombi spanned by the shortest basis of the lattice to generate such102

neighborhoods.103

If this sequence converges, we call the limit the MST-ratio of the lattice. A particularly104

interesting lattice is the hexagonal or hexagonal lattice, which is spanned by u = (1, 0) and105

v = 1
2 (1,

√
3); see the left panel in Figure 1. The minimum distance between its points is 1,106

so all edges of the MST have length 1. The two partitions illustrated in the middle and right107

panels of Figure 1 have MST-ratios 1.245 . . . and 1.25, respectively. In one way or another,108

we use this lattice to prove all four bounds claimed in the following theorem.109
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Figure 1: Left: a portion of the hexagonal lattice and all its shortest edges. Middle: a partition
into one and two thirds of the points, with MST-ratio converging to (2 +

√
3)/3 = 1.245 . . .. Right:

a partition into one and three quarters of the points, with MST-ratio converging to 1.25.

▶ Theorem 3.1. The supremum and infimum, over all 2-dimensional lattices, Λ, of the110

maximum, over all subsets, B ⊆ Λ, of the MST-ratio are C0 = supΛ maxB µ(Λ, B) = 2.0 and111

c0 = infΛ maxB µ(Λ, B) = 1.25.112

Each of the subsequent subsections restates and proves one of the four bounds, except for the113

last subsection, which only sketches the proof strategy, with the proof presented in Section 4.114

3.1 Lower Bound for Sup-Max115

This subsection exhibits a lattice, and a partition of this lattice into two sets, such that the116

MST-ratio of progressively larger finite portions of the lattice approaches the supremum of117

the maximum MST-ratio claimed in Theorem 3.1 from below.118

▷ Claim 3.2. C0 ≥ 2.0.119

Proof. Let Λ be the hexagonal lattice horizontally stretched by a factor 9, and let B ⊆ Λ120

be the one third of the points drawn blue in Figure 2. The (vertical) distance between121

neighboring points in a column of Λ is
√

3, and the (horizontal) distance between two122

neighboring columns is 9
2 . For each r ≥ 0, let Λr ⊆ Λ and Br ⊆ B be the points in

Figure 2: The portion of the horizontally stretched hexagonal lattice, Λ, and the subset of blue
points, B, inside a square centered at the origin. The edges show the union of all possible minimum
spanning trees of the blue points.

123

[−r, r]2. Hence, Λr consists of pr = 2⌊2r/9⌋ + 1 vertical columns, which alternate between124

qr = 2⌊r/
√

3⌋ + 1 and qr − 1 or qr + 1 points. Observe that pr and qr are both odd, and that125

nr = qrpr ± (pr − 1)/2 is the cardinality of Λr. The number of points of Br in the columns126
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alternates between br = 2⌊r/(3
√

3)⌋ + 1 and br − 1 or br + 1, so mr = brpr ± (pr − 1) is the127

cardinality of Br. It is easy to see that nr − 2pr ≤ 3mr ≤ nr + 2pr.128

By choice of the stretch factor, B is a hexagonal lattice with distance 3
√

3 between closest129

points. Hence, |MST(Br)| = 3
√

3(mr − 1). Compare this with a minimum spanning tree of130

Λr, which first connects the points in each column and second connects neighboring columns131

with one edge for each pair. Hence,132

|MST(Λr)| =
√

3(nr − pr) +
√

21(pr − 1), (7)133

because every point, except the last in each column, has a neighbor at distance
√

3 below,134

and any two neighboring columns have points at distance
√

21 from each other. Similarly,135

any minimum spanning tree of Λr \Br first connects the points in each column and second136

connects neighboring columns with one edge for each pair. Its length is therefore the same137

as that of MST(Λr). Using 3mr = nr + o(nr), this implies138

|MST(Br)| + |MST(Λr \Br)|
|MST(Λr)| = 3

√
3(mr − 1) +

√
3(nr − pr) +

√
21(pr − 1)√

3(nr − pr) +
√

21(pr − 1)
(8)139

= 2
√

3nr + o(nr)√
3nr + o(nr)

r→∞−→ 2.0. (9)140

For any ε > 0, we can choose r sufficiently large such that the MST-ratio exceeds 2.0 − ε,141

which implies the claimed lower bound. ◀142

3.2 Upper Bound for Sup-Max143

This subsection proves the upper that matched the lower bound on the supremum maximum144

MST-ratio established in the preceding subsection. Given any lattice and any partition of145

this lattice into two sets, we show that for any ε > 0, the MST-ratio cannot exceed 2 + ε. We146

begin with a bound for the length of the minimum spanning tree of any finite set in a square.147

▶ Lemma 3.3. The length of the minimum spanning tree of any n or fewer points in [0, n]2148

is at most 2n
√
n.149

Proof. Assuming the number of points is n, the minimum spanning tree has n− 1 edges, and150

we write ℓ1, ℓ2, . . . , ℓn−1 for their lengths The sum of the squares of these lengths is at most151

4n2, as proved in [9]. By the Cauchy–Schwarz inequality, the sum of the ℓi is maximized152

when all terms are the same, namely ℓ2
i = 4n2/(n− 1) for all i. This implies153 ∑n−1

i=1
ℓi ≤ (n− 1)

√
4n2/(n− 1) = 2n

√
n− 1, (10)154

from which the claimed bound follows. ◀155

Lemma 3.3 will provide a crucial step in the proof of the upper bound for the supremum156

maximum MST-ratio, which we present next.157

▷ Claim 3.4. C0 ≤ 2.0.158

Proof. We show that the MST-ratio of any lattice Λ ⊆ R2 and any subset B ⊆ Λ is at most159

the claimed upper bound. Let u and v be the shortest two vectors that span Λ, breaking160

ties arbitrarily if necessary. Suppose their lengths satisfy 1 = ∥u∥ ≤ ∥v∥ = ν. To simplify161

language, we call the points on a line parallel to u a row of Λ. For every positive integer, n,162
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let Λn ⊆ Λ contain all points αu + βv, with 0 ≤ α, β ≤ n. The minimum spanning tree of163

Λn first connects the points in each row and then the neighboring rows, so164

|MST(Λn)| = (n+ 1)n+ nν. (11)165

Set Bn = B∩ Λn. We construct a spanning tree, T (Bn), by first connecting the points within166

the rows. This allows for the possibility that some rows do not contain any points of Bn.167

In each of the other rows, we choose an arbitrary but fixed point of Bn, write B′
n ⊆ Bn for168

the chosen points, construct MST(B′
n), and add its edges to T (Bn). Since T (Bn) spans Bn169

but is not necessarily the shortest such tree, so |MST(Bn)| ≤ |T (Bn)|. To bound the latter,170

recall that there are n+ 1 rows, each of length at most n. Furthermore, B′
n consists of at171

most n+ 1 points that fit inside a square of side length n(ν + 1), in which ν is independent172

of n. Lemma 3.3 implies |MST(B′
n)| ≤ 2(ν + 1)

√
ν + 1 · n

√
n. Hence,173

|MST(Bn)| ≤ (n+ 1)n+ 2(ν + 1)
√
ν + 1 · n

√
n. (12)174

By symmetry, we have the same upper bound for the length of MST(Λn \Bn). Comparing175

this with the minimum spanning tree of Λn, we get176

|MST(Bn)| + |MST(Λn \Bn)|
|MST(Λn)| ≤ 2n2 + 2n+ 4(ν + 1)3/2 · n

√
n

n2 + n+ νn

n→∞−→ 2.0. (13)177

For every ε > 0, we can choose n large enough so that the MST-ratio is less than 2.0 + ε.178

This works for every lattice and partition, which implies the claimed upper bound. ◀179

3.3 Lower Bound for Inf-Max180

This subsection establishes the lower bound for the infimum maximum MST-ratio. We do181

this by establishing a partition into one and three quarters that can be defined for any lattice182

and has MST-ratio at least the infimum of the maximum MST-ratio claimed in Theorem 3.1.183

▷ Claim 3.5. c0 ≥ 1.25.184

Proof. Let u and v be two vectors spanning Λ, and let B be the sublattice spanned by 2u185

and 2v. Assuming the minimum distance between two points in Λ is 1, most edges of MST(Λ)186

have length 1, while most edges of MST(B) have length 2. Since B contains only a quarter of187

the points, this implies |MST(B)| = 1
2 |MST(Λ)|. The complement of the sublattice contains188

three quarters of the points, and the edges in its MST have length at least 1, which implies189

|MST(Λ \B)| ≥ 3
4 |MST(Λ)|. Hence, the MST-ratio satisfies µ(Λ, B) ≥ 1

2 + 3
4 = 1.25. ◀190

3.4 Upper Bound for Inf-Max191

The upper bound for the infimum of the maximum MST-ratio will be proved in Section 4.192

This proof is carefully constructed from a network of inequalities that require attention193

to detail. This subsection makes an argument why it is not unreasonable to believe that194

significant short-cuts may be difficult to find.195

The lattice that is most resistant to large MST-ratios is the hexagonal lattice, Λ, of which196

four different subsets, B ⊆ Λ, are illustrated as packings of hexagonal neighborhoods in197

Figure 3. Starting at the upper middle, then left, then right, and finally the lower middle,198

the density of the packing decreases monotonically as the minimum distance between points199

of B increases from
√

3 to 2, to
√

7, and finally to 3. Corresponding, B contains one third,200

one quarter, one seventh, and one ninth of the points. Perhaps surprisingly, the MST-ratio201
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Figure 3: Four partitions of the hexagonal lattice into two sets, in which we draw each (blue)
point of the smaller set with its hexagonal neighborhood. The proportions of blue versus white
points are 1 : 2 in the upper middle, 1 : 3 on the left, 1 : 6 on the right, and 1 : 8 in the lower middle.
The corresponding MST-ratios are approximately 1.245, 1.25, 1.236, and 1.222, in this sequence.

does not vary monotonically and attains the largest value for the subset B that contains one202

quarter of the points. The purpose of Section 4 is to prove that no other subset of Λ achieves203

a larger MST-ratio; that is: 1.25 is the maximum MST-ratio of the hexagonal lattice.204

▷ Claim 3.6. c0 ≤ 1.25.205

Because the value matches the lower bound stated in Claim 3.5, this implies that 1.25 is206

indeed the infimum maximal MST-ratio over all 2-dimensional lattices. Prior to studying207

the hexagonal lattice, the authors of this paper proved that the maximal MST-ratio of the208

integer lattice is
√

2—which happens to match the ratio found for random sets [7]—and the209

maximizing subset are the points whose coordinates add up to even integers. The proof is210

similar to the one for the hexagonal lattice presented in Section 4, and almost as long. If211

instead we consider the points whose coordinates add up to odd integers, we get the same212

MST-ratio, so the integer lattice has at least two global maxima. Similarly, the hexagonal213

lattice has at least four global maxima, and moving from one to the other means walking a214

path along which the MST-ratio is sometimes barely below 1.25. To support the hypothesis215

of a rugged but shallow landscape between the global minima, we conducted computational216

experiments, which identified many local maxima that prevent local improvement strategies217

from reaching any global maximum. We feel that these findings justify the exhaustive case218

analysis in Section 4, and the many delicate inequalities in that section give evidence for219

how close the paths get to the maximum MST-ratio.220
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4 Hexagonal Lattice on Torus221

In this section, we prove Claim 3.6 for the hexagonal lattice on the torus. We begin by222

constructing this lattice from a portion of the hexagonal lattice in the plane and proving223

that the minimum spanning trees in the two topologies are not very different in length. In224

the remaining subsections, we give a precise statement of the theorem that implies Claim 3.6225

and prove the theorem with a packing argument in six steps.226

4.1 Plane versus Torus227

We consider the hexagonal lattice on the torus rather than in R2 in order to eliminate228

boundary effects, which appear when we study a finite portion of the hexagonal lattice. Let229

u and v be two unit vectors with a 60◦ degree angle between them, and write Λ ⊆ R2 for230

the hexagonal lattice they span. For every positive n ∈ Z, let Λn ⊆ Λ contain the n2 points231

a = αu + βv with 0 ≤ α, β ≤ n − 1. We write Λ′
n for the same n2 points but with the232

topology of the torus, which we get by identifying a with a+ inu + jnv for all i, j ∈ Z, and233

defining the distance as the minimum Euclidean distance between any two representatives.234

Equivalently, consider the rhombus of points φu +ψv for real coefficients − 1
2 ≤ φ,ψ ≤ n− 1

2 ,

Figure 4: The hexagonal lattice of 36 points on the torus, obtained by gluing opposite sides of
the rhombus. The sublattice with twice the distance between neighboring points in shown in blue.

235

and glue this rhombus along opposite sides as illustrated for n = 6 in Figure 4. Call the236

boundary of this rhombus the seam. Its length is 4n in the plane but only 2n on the torus237

since the sides are glues in pairs. Note also that every point of Λ has distance at least
√

3/4238

from the nearest point in the seam.239

▶ Lemma 4.1. Let Λ ⊆ R2 be the hexagonal lattice, Λn ⊆ Λ the subset of n2 points, and240

Λ′
n the same n2 points but on the torus, as described above. For any subset Bn ⊆ Λn and241

the corresponding subset B′
n ⊆ Λ′

n on the torus, the lengths of the minimum spanning trees242

satisfy |MST(B′
n)| ≤ |MST(Bn)| ≤ |MST(B′

n)| + 32
√

2 · n
√
n.243

Proof. Fix two minimum spanning trees, T of Bn in R2 and T ′ of B′
n on the torus. Since244

the distances on the torus are smaller than or equal to those in R2, we have |T ′| ≤ |T |, which245

is the first claimed inequality. Let E′ be the edges of T ′ that have the same length in both246

topologies, and let E′′ be the other edges of T ′, which are shorter on the torus than in R2.247

To draw an edge of E′′ in the plane so its length matches the length on the torus, we need to248

connect representatives of the endpoints that lie in different rhombi. Assuming one endpoint249

is in Λn, this edge crosses the seam. In contrast, every edge in E′ can be drawn between250

two points of Λn, so without crossing the seam. We will prove shortly that the distance251

between two crossings measured along the seam is at least 1
2 . Since the length of the seam is252
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2n, this implies that E′′ contains at most 4n edges. Let V ′′ ⊆ Λn be the set of at most 8n253

endpoints of the edges in E′′, and let T ′′ be a minimum spanning tree of V ′′, with distances254

measured in R2. Since Λn easily fits inside a square with sides of length 8n, Lemma 3.3255

implies |T ′′| ≤ 32
√

2 · n
√
n. The edges in E′ together with the edges of T ′′ form a connected256

graph with vertices Λn. Hence,257

|T | ≤ |T ′| + |T ′′| ≤ |T ′| + 32
√

2 · n
√
n, (14)258

which is the second claimed inequality. It remains to show that the distance between two259

crossings along the seam is at least 1
2 . Let ab and xy be two edges in E′′, and recall that260

the greedy construction of the minimum spanning tree prohibits x and y to lie inside the261

smallest circle that passes through a and b, and vice versa. If the edges share an endpoint,262

then the angle between them is at least 60◦. Since the common endpoint is at distance at263

least
√

3/4 from the seam, the implies the claimed lower bound on the distance between the264

two crossings. So assume a, b, x, y are distinct, and let c ∈ ab and z ∈ xy be the points that265

minimize the distance between the edges, and observe that ∥c− z∥ is a lower bound for the266

distance between the crossings. At least one of c and z must be an endpoint, so suppose267

z = x. But since x lies outside the smallest circle of a and b, and outside the unit circles268

centered at a and b, the distance of x to any point of ab is at least 1. ◀269

The inequalities in Lemma 3.3 generalize to all 2-dimensional lattices. Letting u and270

v be two shortest vectors that span a lattice, and assuming 1 = ∥u∥ ≤ ∥v∥ = ν, we get271

2(4 + 4ν)3/2 · n
√
n as an upper bound for the difference in length, in which we compare a272

rhombus of n× n points in R2 and on the torus, as before.273

4.2 Statement of Theorem274

We fix n to an even integer and write ∆ = Λ′
n for the hexagonal lattice on the torus. Since275

n is even, ∆1 = {2x | x ∈ ∆} is a hexagonal sublattice of ∆, and we set ∆3 = ∆ \ ∆1; see276

Figure 4. The lengths of the three minimum spanning trees are easy to determine because277

they use only the shortest available edges, which have length 1 for ∆ and ∆3, and length 2278

for ∆1. The MST-ratio is therefore279

µ(∆,∆1) = |MST(∆1)| + |MST(∆3)|
|MST(∆)| =

2
(
n2/4 − 1

)
+

(
3n2/4 − 1

)
n2 − 1

n→∞−→ 1.25. (15)280

Call an edge short if its length is 1. All other edges have length larger than the desired281

average, which is 5
4 = 1.25, so we call them long. While MST(∆3) has only short edges, and282

MST(∆1) uses only the shortest edges connecting its points, we claim that their combined283

length is as large as it can be.284

▶ Theorem 4.2. Let ∆ be a hexagonal lattice on the torus. Then the maximum MST-ratio285

of ∆ converges to 5
4 = 1.25 from below.286

The proof consists of six steps, which are presented in the same number of subsections: 4.3287

introduces the hexagonal distance, compares its MST with the Euclidean MST, and uses the288

former to formulate the proof strategy; 4.4 introduces the main tool, which are hexagonal-289

neighborhoods of the lattice points; 4.5 constructs a hierarchy of such neighborhoods aimed290

at counting the short edges; 4.6 introduces so-called satellites, which provide additional short291

edges needed in the proof; 4.7 forms loop-free subgraphs of short edges and bounds their292

sizes; and 4.8 does the final accounting while paying special attention to the cases in which293

all long edges have length between
√

3 and 3. Throughout this proof, we use the fact that294
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the minimum spanning tree can be computed by greedily adding the shortest available edge295

that does not form a cycle to the tree [1, 11].296

4.3 Hexagonal Distance and Proof Strategy297

It is convenient to write the points in ∆ with three integer coordinates. To explain this, let298

x = 1√
3 (0, 1) , y = 1√

3

(
−

√
3

2 ,−
1
2

)
, z = 1√

3

( √
3

2 ,−
1
2

)
(16)299

be three vectors, each of length
√

3/3, that mutually enclose an angle of 120◦. These are300

the projections of the unit coordinate vectors of R3 onto the plane normal to the diagonal301

direction, scaled such that the three points are mutually one unit of distance apart. The302

plane consists of all points u = ax + by + cz for which a+ b+ c = 0, and such a point belongs303

to the hexagonal lattice iff a, b, c ∈ Z; see Figure 5. Given a second point, v = αx + βy + γz,304

we write i = a− α, j = b− β, k = c− γ to compute the squared Euclidean distance between305

u and v. Since x2 = y2 = z2 = 1
3 and xy = yz = zx = − 1

6 , we get306

∥u− v∥2 = ∥ix + jy + kz∥2 = 1
3 (i2 + j2 + k2) − 1

3 (ij + ik + jk) = i2 + ij + j2, (17)307

in which we get the final expression using k = −(i+ j). For points of the hexagonal lattice, i308

and j are integers, and so is the squared Euclidean distance between them. It follows that309

the minimum distance between two points in ∆ is 1.

z − x

x

y z

y − z z − y

x − yx − z

y − x

Figure 5: The unit disk under the hexagonal distance in the plane. The edges that connect the
origin to the corners at ±(x − y), ±(y − z), ±(z − x) decompose the hexagon into six equilateral
triangles, whose barycenters are ±x, ±y, ±z.

310

We adapt the notion of distance to construct neighborhoods in the hexagonal lattice. By311

definition, the hexagonal distance between points u = ax + by + cz and v = αx + βy + γz is312

∥u− v∥hex = max{|a− α|, |b− β|, |c− γ|} = max{|i|, |j|, |i+ j|}. (18)313

The unit disk under this distance consists of all points with hexagonal distance at most 1314

from the origin: H = {u ∈ R2 | ∥u− 0∥hex ≤ 1}. It is the regular hexagon with unit length315

sides that is the convex hull of the points ±(x − y), ±(y − z), ±(z − x); see Figure 5. For316

B ⊆ ∆, we write MSThex(B) for the spanning tree that minimizes the hexagonal length. We317

construct it by adding the edges in sequence of non-decreasing hexagonal length, breaking318

ties with Euclidean length, and breaking the remaining ties arbitrarily. Since MSThex(B) is319

a spanning tree but not necessarily the one that minimizes Euclidean length, we have320

|MST(B)| ≤ |MSThex(B)|, (19)321

in which we measure the Euclidean length on both sides. To prove Theorem 4.2, we show322

that for every B ⊆ ∆, the average (Euclidean) length of the long edges in MSThex(B) and323
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the short edges in MSThex(∆ \B) is at most 5
4 . Interchanging B and ∆ \B, we get the same324

relation by symmetry. Using (19), this implies325

|MST(B)| + |MST(∆ \B)| ≤ |MSThex(B)| + |MSThex(∆ \B)| ≤ 5
4 (n2 − 2). (20)326

Compare this with (15), which establishes |MST(∆1)|+|MST(∆3)| = 5
4n

2−3 for the partition327

∆ = ∆1 ⊔ ∆3. The right-hand side differs from the upper bound in (20) by only a small328

additive constant. We thus conclude that the maximum MST-ratio of ∆ converges to 5
4 from329

below, as claimed by Theorem 4.2.330

4.4 Hierarchy of Habitats331

Let Tℓ be the subset of edges in MSThex(B) whose hexagonal lengths are at most ℓ, together332

with the endpoints of these edges. For example, T0 has zero edges, T1 consist of all short333

edges, and Tℓ = MSThex(B) for sufficiently large ℓ. All edges connecting points in different334

components of Tℓ have hexagonal length ℓ+ 1 or larger. We thus write kH for the scaled335

copy of the unit disk and call336

Dk(B) =
⋃

u∈B
(kH + u) (21)337

the k-th thickening of B, in which kH + u is the translate of kH whose center is u. As338

illustrated in Figure 6, the k-th thickenings of points u and v overlap, touch, are disjoint if339

the hexagonal distance between u and v is less than, equal to, larger than 2k, respectively.

c

b

fe

a

d

Figure 6: The blue 1-st thickening and the pink 2-nd thickening of B = {a, b, c, d, e, f} in the
hexagonal lattice. H + a and H + b share an edge and therefore form two rooms in a common house,
while H + e and H + f overlap and thus form a one-room house in D1(B). These two houses form a
block, and together with H + d, they form a compound of two blocks. H + c is a room, a house, a
block, and a compound by itself. The two compounds lie in the interior of a room in D2(B).

340

The boundary of kH passes through 6k points of the hexagonal lattice, which we call341

the vertices of kH. Furthermore, we call the 6k (short) edges that connect these points in342

cyclic order the edges of kH. Let Bk ⊆ B be the vertex set of a component of T2k−1, and343

observe that for all u, v ∈ Bk there is a sequence of points u = x1, x2, . . . , xm = v in Bk such344

that kH + xi and kH + xi+1 overlap for all 1 ≤ i ≤ m − 1. We define the frontier of the345

component, denoted ∂Dk(Bk), as the lattice points and the connecting (short) edges in the346
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boundary of Dk(Bk). Furthermore, ∂Dk(B) is the union of frontiers of the components of347

T2k−1. These notions are illustrated in Figure 6, which shows ∂D1(B) and ∂D2(B) for six348

marked points. Note that the edge shared by H + a and H + b is part of ∂D1(B).349

4.5 Subdivided Foreground and Background350

Consider the 1-st thickening of B, which for the time being we call the foreground. Letting351

B1 ⊆ B2 be the vertex sets of two nested components of T1 and T2, we call D1(B1) a room352

and D1(B2) a block of the foreground. We say two rooms are adjacent if they share at least353

one edge. In Figure 6, there are five rooms, two of which are adjacent, and three blocks, one354

of which contains three rooms.355

To make a finer distinction, observe that for any edge, its Euclidean length is smaller356

than or equal to the hexagonal length. The two notions agree on edges with slope 0, 2,357

and −2. Consider T2 and T3 after removing all edges whose Euclidean length equals 2358

and 3, respectively, and let B′
2 and B′

3 be the vertex sets of the components that satisfy359

B1 ⊆ B′
2 ⊆ B2 ⊆ B′

3. Observe that any two rooms in D1(B′
2) have a sequence of pairwise360

adjacent rooms connecting them. We therefore call D1(B′
2) a house. For comparison, any361

two rooms in D1(B2) have a sequence of room connecting then such that any two consecutive362

rooms share at least a vertex but not necessarily a full edge. Similarly, for any two blocks in363

D1(B′
3), there is a sequence of blocks connecting them such that the channel separating any364

two consecutive blocks at its narrowest place is only
√

3/2 wide. We therefore call D1(B′
3)365

a compound; see Figure 6 for examples. For comparison, the channel that separates two366

compounds is at its narrowest place at least one unit of distance wide. A few observations:367

(i) all vertices of ∂D1(B) are points in ∆ \B;368

(ii) all edges of ∂D1(B) are short;369

(iii) the frontier of a room consists of at least six (short) edges.370

We call the complement of the foreground the background, and the components of the371

background its backyards. We say a backyard is adjacent to a house if the two share a372

non-empty portion of their boundary. There are configurations in which the number of373

backyards is twice the number of houses; see Figure 3 on the left, where each backyard374

is adjacent to three houses, and each house is adjacent to six backyards. In general, we375

distinguish between backyards adjacent to at most two and at least three houses, denoting376

their numbers α1 and β1, respectively. We prove an upper bound for β1 in terms of the377

number of houses and blocks.378

▶ Lemma 4.3. Given h1 houses arranged in b1 blocks, the number of backyards adjacent to379

three or more houses satisfies β1 ≤ 2h1 − 2b1 + 2.380

Proof. We construct a graph G = G(B) on the torus by placing a node inside each house,381

and whenever two houses meet at a boundary vertex, we connect the corresponding nodes382

with a curved arc that passes through the shared vertex. This can be done such that no383

two of the arcs cross and each face of G contains one backyard. A face bounded by a single384

arc (loop) or two arcs (multi-arcs) contains a backyard adjacent to at most two houses and385

thus does not count toward β1. We remove this face by deleting the loop or one of the386

two multi-arcs. The resulting graph has h1 nodes, b1 components, and β1 faces. Write a1387

for the number of arcs. If the graph is connected and all faces are bounded by three arcs,388

we have h1 − a1 + β1 = 0 because the Euler characteristic of the torus is 0. Whenever we389

remove an arc from this graph, we either merge two faces or split a component, but it is also390

possible that the removal of the arc has neither of those two side-effects. Hence, we have391
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h1 − a1 + β1 ≥ b1 − 1 in the general case. Since 2a1 ≥ 3β1, this implies β1 ≤ 2h1 − 2b1 + 2,392

as claimed. ◀393

4.6 Satellites394

By definition, compounds cannot be packed as tightly as blocks; see Figure 3 with lattice395

points between the compounds in the lower middle but no such points between the blocks on396

the right. Recall that each component of D1(B) is contained in a room of D2(B). For each397

such room, we single out the largest compound it contains—breaking ties arbitrarily—and398

call this the big compound of the room. All others are small compounds of the room. We399

identify satellites for each compound and distinguish between small and big compounds400

because of differences in the construction. The targeted lattice points are at distance
√

3/2401

outside D1(B) and either on the boundary or in the interior of D2(B).

Figure 7: From left to right: a single, a double, another double, and a triple satellite in red. In
the left two cases, the satellite belongs to the frontier of a room of the 2-nd thickening of B, while
in the right two cases, the satellite lies in the interior of such a room.

402

For each small compound we find three satellites as follows: sandwich the compound403

between three lines with slopes 0, 2,−2, choose a (short) edge as the basis of an equilateral404

triangle outside the compound on each line, and pick the vertex of this triangle opposite to405

the basis as a satellite. Observe that the Euclidean distance between any two satellites of406

the same compound is at least 3. In contrast, we pick six lattice points as the satellites of407

the big compound by sandwiching it between six lines, two each of slope 0, 2,−2, choosing408

one basis on each line, and picking the vertex of the equilateral triangle opposite to the basis409

as a satellite. The Euclidean distance between any two such satellites is at least
√

3.410

As illustrated in Figure 7, a lattice point can be a satellite of one, two, or three compounds411

in the same room. Accordingly, we call the point a single, double, or triple satellite of the412

room, respectively. A single satellite is necessarily a vertex on the frontier of the room,413

a triple satellite is necessarily in the interior of the room, and a double satellite can be414

one or the other. For a room, R, we write s(R) and d(R) for the number of single and415

double satellites on its frontier, and e(R) and t(R) for the number of double and triple416

satellites in its interior. Summing over all rooms in D2(B), we set s1 =
∑
s(R), d1 =

∑
d(R),417

e1 =
∑
e(R), t1 =

∑
t(R), and refer to s1, d1, e1, t1 as the satellite sums of D2(B). Since418

s(R) + 2d(R) + 2e(R) + 3t(R) is three times the number of small compounds in R plus six419

for the big compound, the satellite sums satisfy a linear relation, which we state together420

with a property of short edges connecting satellites in the interior:421

(iv) if c1 > 1, then the satellite sums of D2(B) satisfy s1 + 2d1 + 2e1 + 3t1 = 3c1 + 3r2;422

(v) any unit length edge connecting blocks of D1(B) inside a room of D2(B) with each other423

or to satellites in the interior of this room is contained in the interior of this room.424
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By construction, there are s(R) + d(R) satellites that are vertices of R. We prove a stronger425

lower bound on the number of vertices, which also strengthens Claim (iii).426

▶ Lemma 4.4. Assume r2 ≥ 2 and let R be a room of D2(B). Then the frontier of R has at427

least 6 + 2
3s(R) + 4

3d(R) vertices.428

Proof. Let p, s, d be the number of non-satellite lattice points, single satellites, double429

satellites, and write per(R) for the perimeter, which is the length of or the number of (short)430

edges in the frontier of R. To begin note that a satellite in the frontier of R is in the boundary431

of at most one backyard. This is because the external angle is 180◦ at a single satellite and432

60◦ at a double satellite. The internal angle at any vertex of another room is at least 120◦,433

so there is not enough space for two backyards around a satellite; see the left two panels434

in Figure 7. This implies that we may assume that the frontier of R is a simple polygon,435

or a collection of such. Indeed, if the polygon touches itself at a vertex, this must be a436

non-satellite, which we can duplicate, and if the polygon touches itself along a sequence of437

edges, we can remove these edges and their shared vertices. This operation neither changes438

the number of single and double satellites, nor does it increase the perimeter. A room that439

contains only one compound can have perimeter as small as 12, but a room with at least440

two compounds has significantly larger perimeter, certainly larger than 15. For per(R) ≤ 15,441

we thus get only one compound and, by construction, only 6 single and no double satellites.442

This implies the claimed inequality. We therefore assume (22), aim at proving (23), and note443

that (24) follows as the convex combination of (22) and (23) with coefficients 1
3 and 2

3 :444

per(R) ≥ 16; (22)445

per(R) ≥ 1 + s+ 2d; (23)446

per(R) ≥ 1
3 16 + 2

3 (1 + d+ 2d) = 6 + 2
3s+ 4

3d. (24)447

It remains to prove (23). Call the endpoints of an edge in the frontier of R neighbors. Two448

neighbors cannot both be double satellites, else they would belong to a common compound,449

which contradicts that the distance between them is at least
√

3. Furthermore, if a double450

satellite neighbors a single satellite, then this is only possible if they are vertices of an451

equilateral triangle bounding a backyard, as in Figure 8 on the left. For lack of space around452

this triangle, its third vertex is a non-satellite. The contribution of these three vertices to453

the right-hand side of (23) is 2 + 1 + 0 = 3. Hence, we can remove the three edges from the454

left-hand side and the three vertices from the right-hand side of (23) without affecting the455

validity of the inequality. As illustrated in Figure 8 on the left, two such triangles may touch456

at a non-satellite vertex, but this does not matter and we can remove the edges and vertices457

of both triangles from (23).458

We can therefore assume that both neighbors of a double satellite are non-satellites.459

Hence, between any two double satellites there is at least one non-satellite, which implies460

p ≥ d. But p = d only if p = d = 0 or there is strict alternation between double satellites461

and non-satellites. It is not possible that all vertices in the frontier are single satellites,462

because this contradicts that the distance between any two of them is at least
√

3. Strict463

alternation is possible, but only for the polygon of 12 edges shown in Figure 8 on the right.464

By assumption, D2(B) has at least two rooms, so not all backyards of R can be bounded by465

such 12-gons. But this implies p ≥ d+ 1, so per(R) = p+ s+ d ≥ 1 + s+ 2d, as claimed. ◀466

To generalize the above concepts to k ≥ 1, we let B2k−1 ⊆ B2k be the vertex sets of467

two nested components of T2k−1 and T2k, and call Dk(B2k−1) a room and Dk(B2k) a block468

of Dk(B). The rooms that share edges join to form houses, and the blocks separated by469
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channels that are only
√

3/2 wide join to form compounds. Write rk, hk, bk, ck for the number470

of rooms, houses, blocks, compounds of Dk(B), αk, βk for the number of backyards adjacent471

to at most 2, at least 3 houses, and sk, dk, ek, tk for the satellite sums of Dk+1(B). We can472

now extend Claims (i) to (v) and Lemmas 4.3 and 4.4 merely by substituting Dk(B) for473

D1(B), βk for β1, ck for c1, etc. In particular, the extension of Claim (iv) to474

sk + 2dk + 2ek + 3tk = 3ck + 3rk+1 (25)475

assuming ck > 1 will be needed shortly. We note that (25) and the extension of Lemma 4.4476

can be strengthened, but it is not necessary for the purpose of proving Theorem 4.2.477

4.7 Loop-free Subgraphs478

Let Vk be the vertices of Dk(B) together with all double and triple satellites that lie in the479

interior of rooms in Dk+1(B), and note that Vj ∩ Vk = ∅ whenever j ≠ k. Let V ′
k be Vk480

together with the remaining satellites of Dk(B), and note that Vj ∩ V ′
k = ∅ if j < k, but V ′

k481

and Vk+1 may share points. To account for this difference, let ℓ be the smallest integer such482

that rℓ+1 = 1, and define483

V =


V1 if ℓ = 0;
V1 ⊔ . . . ⊔ Vℓ−1 ⊔ Vℓ if ℓ ≥ 1 and cℓ = 1;
V1 ⊔ . . . ⊔ Vℓ−1 ⊔ V ′

ℓ if ℓ ≥ 1 and cℓ > 1.
(26)484

By construction, all points in V belong to ∆ \B, and all unit length edges connecting these485

points are candidates for MSThex(∆ \B). We therefore let U be a loop-free graph whose486

vertices are the points in V and whose edges all have unit length. Since U has no loops,487

there is an MSThex(∆ \B) that contains U as a subgraph. We are therefore motivated to488

study the number of edges in U . Using a slight abuse of notation, we denote this number489

#U . For every k, let Uk and U ′
k be the subgraphs of U induced by Vk and V ′

k, respectively.490

We first count the edges in U1 and U ′
1.491

▶ Lemma 4.5. Let r1 ≥ h1 ≥ b1 ≥ c1 be the number of rooms, houses, blocks, and compounds492

of D1(B), and s1, d1, e1, t1 the satellite sums of D2(B). Then493

#U1 ≥ 2r1 + h1 + 3b1 + (e1 + t1) − r2 − 4; (27)494

#U ′
1 ≥ 2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5, (28)495

Figure 8: Left: two touching triangular backyards. Their shared vertex is a non-satellite, the
two red vertices are double satellites, and the two pink vertices are single satellites. Right: unique
polygon with strictly alternating double satellites and non-satellites. On both sides, all (partially
drawn) blue compounds are different and belong to the same (partially drawn) pink room.
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in which we assume c1 > r2 = 1 for the second inequality.496

Proof. We argue in three steps: first counting edges in ∂D1(B), second counting edges497

connecting blocks, and third counting edges connecting the satellites. In each case, we count498

only unit length edges, and we make sure that the edges we count do not form loops.499

For the first step, it is convenient to count half-edges, which are the two sides of an edge.500

These two sides either face two rooms, or one faces a room and the other faces the background.501

For a house, H, we make its r(H) rooms accessible from the outside by removing r(H) − 1502

edges shared by adjacent rooms plus 1 edge shared with the background. By (iii), each room503

was originally faced by at least 6 half-edges, so we still have at least 4r(H) + 1 of them left.504

Doing this for each house, we make all r1 rooms accessible from the background, and we505

have at least 4r1 + h1 half-edges left facing these rooms.506

Observe that the convex hull of a house contains at least six of the (short) edges that507

bound the house. One may have been removed, so we still have at least 5 half-edges facing508

the background. Keeping in mind that the cycles that bound backyards still need to be509

opened, we now have at least 4r1 +h1 + 5h1 half-edges and therefore at least 2r1 + 3h1 edges.510

If a backyard is adjacent to at most two houses, then it has two consecutive (short) edges511

that enclose an angle less than π and that are both shared with the same house. Hence, the512

complementary angle on the side of the house is larger than π, which implies that these two513

edges cannot belong to the convex hull of the house. We remove one of them and use the514

half-edge facing the backyard of the other to compensate for the removed half-edge facing515

the room. Since both edges have not yet been accounted for, we still have at least 2r1 + 3h1516

edges. If a backyard is adjacent to three or more houses, we also remove one edge, but this517

time count one less. Recalling that β1 is the number of such backyards, we still have at518

least 2r1 + 3h1 − β1 ≥ 2r1 + h1 + 2b1 − 2 edges, in which we get the right-hand side from519

Lemma 4.3.520

For the second step, we connect the b(R) blocks inside a common room of D2(B) with521

b(R) − 1 short edges. A total of b1 blocks are hierarchically organized in r2 rooms, so we add522

b1 − r2 short edges to those counted in the first step. Similarly, we add e1 + t1 short edges523

that connect the double and triple satellites in the interiors of the rooms to the vertices in the524

frontier of D1(B). Finally, we remove two edges to open the meridian and longitudinal cycles525

of the graph, if they exist. The final count is therefore at least 2r1 +h1 +3b1 +(e1 +t1)−r2 −4,526

which is the claimed lower bound for #U1.527

For the third step, we assume c1 > r2 = 1. Since there is only one room, there are no528

shared satellites between different rooms, and we can connect them to the frontier of D1(B)529

with s1 + d1 short edges without creating any loop. This implies that the number of edges in530

U ′
1 is at least 2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5, as claimed. ◀531

The bounds in Lemma 4.5 generalize to k > 1, but there are differences. Most important532

is the existence of a loop-free graph for thickness k − 1. In particular, we have satellites that533

affect the structure and size of Uk and U ′
k.534

▶ Lemma 4.6. Let rk ≥ hk ≥ bk ≥ ck be the number of rooms, houses, blocks, compounds of535

Dk(B), and sk, dk, ek, tk the satellite sums of Dk+1(B). Then for k ≥ 2, we have536

#Uk ≥ (3rk + 1
3sk−1 + 2

3dk−1) + 4hk + 3bk + (ek + tk) − rk+1 − 4; (29)537

#U ′
k ≥ (3rk + 1

3sk−1 + 2
3dk−1) + 4hk + 3bk + (sk + dk + ek + tk) − 5, (30)538

in which we assume ck > rk+1 = 1 for the second inequality.539
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Proof. We argue again in three steps: first counting edges in ∂Dk(B), second counting edges540

connecting blocks, and third counting edges connecting to the satellites. Each of these three541

steps is moderately more involved than the corresponding step in the proof of Lemma 4.5,542

and we emphasize the differences.543

The first step starts the construction with Lemma 4.4, which implies that the rooms544

in Dk(B) are faced by a total of at least 6rk + 2
3sk−1 + 4

3dk−1 half-edges. After making545

all rooms accessible to the background, we still have at least (4rk + 2
3sk−1 + 4

3dk−1) + hk546

half-edges. Adding the at least 11 half-edges per house facing the background, we have at547

least (4rk + 2
3sk−1 + 4

3dk−1) + 12hk half-edges and thus at least (2rk + 1
3sk−1 + 2

3dk−1) + 6hk548

edges. Let αk and βk be the number of backyards adjacent to at most two and at least three549

houses, respectively. By extension of Lemma 4.3, we have βk ≤ 2hk − 2bk + 2. We remove an550

edge per backyard, which for the first type does not affect the current edge count, while the551

backyards of the second type reduce the count to (2rk + 1
3sk−1 + 2

3dk−1) + 4hk + 2bk − 2.552

For the second step, we connect the blocks of Dk(B) inside a common room of Dk+1(B)553

with bk − rk+1 edges. Furthermore, we add rk edges to connect the blocks of Dk−1(B) inside554

a common room of Dk(B)—which inductively are already connected to each other—to the555

frontier of this room, and we add at least ek + tk edges connecting to the triple satellites556

of compounds inside the rooms of Dk+1(B). After removing two additional edges to break557

the meridian and longitudinal loops, if they exist, we arrive at a lower bound of at least558

(3rk + 1
3sk−1 + 2

3dk−1) + 4hk + 3bk + (ek + tk) − rk+1 − 4 edges in Uk.559

For the third step, we assume ck > rk+1 = 1, in which case we can add at least sk + dk560

edges connecting to the single and double satellites. This implies #U ′
k ≥ (3rk + 1

3sk−1 +561

2
3dk−1) + 4hk + 3bk + (sk + dk + ek + tk) − 5. ◀562

4.8 Book-keeping563

The goal is to show that the average (Euclidean) length of the long edges in MSThex(B)567

and the short edges in MSThex(∆ \B) is at most 5
4 . We thus assign a credit of α = 1

4 to568

every short edge and set the cost of a long edge to be its Euclidean length minus 5
4 . For569

convenience, we set the value of α to 1 Euro and convert the costs into Euros; see Table 1.

564 hex 2 2 3 3 4 4 4 5 5 5
565 L2

√
3

√
4

√
7

√
9

√
12

√
13

√
16

√
19

√
21

√
25

566 cost 1.92 3.00 5.58 7.00 8.85 9.42 11.00 12.43 13.33 15.00

Table 1: The Euclidean lengths of the edges with hexagonal lengths 2 to 5, and their costs in
Euros, each truncated beyond the first two digits after the decimal point.

570

For the accounting, we need the costs of the last two edges for each hexagonal length.571

Letting wk, xk and yk, zk be the costs of the two longest edges with hexagonal length 2k and572

2k + 1, respectively, we have573

wk = 1
α

[√
4k2 − 2k + 1 − 5

4

]
, xk = 1

α

[
2k − 5

4
]
, (31)574

yk = 1
α

[√
4k2 + 2k + 1 − 5

4

]
, zk = 1

α

[
(2k + 1) − 5

4
]

; (32)575

see Table 1, which shows the values of w1, x1, y1, z1, w2, x2, y2, z2 in boldface. Listing the576
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edges in sequence, we need bounds for the cost differences between consecutive edges:577

2 ≤ wk − zk−1 ≤ 2.928 . . . ; 1.071 . . . ≤ xk − wk ≤ 2; (33)578

2 ≤ yk − xk ≤ 2.583 . . . ; 1.414 . . . ≤ zk − yk ≤ 2, (34)579

which are not difficult to prove using elementary computations. We use accounting with580

credits and costs to prove that the average (Euclidean) edge length of the two minimum581

spanning trees is less than 5
4 :582

▶ Lemma 4.7. Let ∆ be the hexagonal lattice with 12n2 points and unit minimum distance583

on the torus, and B ⊆ ∆. Then |MST(B)| + |MST(∆ \B)| ≤ 15n2 − 5
2 .584

Proof. By (19), it suffices to prove the inequality for MSThex(B) and MSThex(∆ \B). For585

k ≥ 1, we compare the edges of hexagonal length 2k and 2k + 1 in MSThex(B) with the586

(short) edges in Uk or possibly in U ′
k. Since T2k+1 \ T2k−1 is the set of these long edges, we587

can do this in one step by comparing T2ℓ+1 with U , for sufficiently large ℓ and U as defined588

right after the definition of V in (26). Recall that rk is the number of components of T2k−1589

or, equivalently, the number of rooms of Dk(B). These rooms are organized hierarchically590

into hk houses, bk blocks, and ck compounds. Hence, r1 ≥ h1 ≥ b1 ≥ c1 ≥ r2, etc. This591

implies that there are592

r1 − h1 edges of hexagonal length 2 and Euclidean length less than 2 that connect the593

rooms pairwise inside the h1 houses;594

h1 − b1 edges of hexagonal and Euclidean length 2 that connect the houses pairwise inside595

the b1 blocks;596

b1 − c1 edges of hexagonal length 3 and Euclidean length less than 3 that connect the597

blocks pairwise inside the c1 compounds;598

c1 − r2 edges of hexagonal and Euclidean length 3 that connect the compounds pairwise599

inside the r2 rooms of D2(B), etc.600

The costs for these edges are w1, x1, y1, z1, respectively. Setting z0 = 0, and generalizing to601

k ≥ 1, we observe that the total cost satisfies602

cost ≤
∑

k≥1
[wk(rk − hk) + xk(hk − bk) + yk(bk − ck) + zk(ck − rk+1)] (35)603

=
∑

k≥1
[(wk − zk−1)rk + (xk − wk)hk + (yk − xk)bk + (zk − yk)ck] (36)604

≤ [2r1 + h1 + 3b1 + c1 − 7] +
∑

k≥2
[3rk + hk + 3bk + ck − 8]. (37)605

To see how (37) derives from (36), we first make the sums finite by letting ℓ be the smallest606

integer such that rℓ+1 = 1. Then the last non-zero term in (35) is zℓ(cℓ − rℓ+1) and,607

correspondingly, the last term in (36) is zℓrℓ+1 = zℓ, which by (32) is equal to 8ℓ−1. But this is608

the same as the sum of constants in (37). Furthermore, we note that if rk = hk = bk = ck = 1,609

for every k, then (36) vanishes because (35) vanishes, and (37) vanishes because for any k the610

corresponding sum of four terms minus the constant vanishes. Hence, the difference between611

(37) and (36) vanishes. To prove the inequality, we reintroduce the variables, which satisfy612

r1 ≥ h1 ≥ . . . ≥ cℓ, and look at their coefficients. The first is 2 − w1 + z0, which is positive613

because w1 < 2 and z0 = 0. Indeed, using the inequalities in (33) and (34), we observe614

that the coefficients alternate between positive and negative. For example, 3 − wk + zk−1615

is positive because wk − zk−1 < 3, and 1 − xk + wk is negative because xk − wk > 1. This616

implies that the difference is non-negative, so (37) follows.617
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The difficult cases are the edges of hexagonal lengths 2 and 3. We therefore consider the618

special cases in which all edges in MSThex(B) have Euclidean length at most
√

3,
√

4,
√

7,
√

9,619

so h1 = 1, b1 = 1, c1 = 1, r2 = 1, respectively; see Figure 3. From (37), we get620

cost ≤


2r1 − 2 if r1 > h1 = 1;
2r1 + h1 − 3 if h1 > b1 = 1;
2r1 + h1 + 3b1 − 6 if b1 > c1 = 1;
2r1 + h1 + 3b1 + c1 − 7 if c1 > r2 = 1.

(38)621

The cost needs to be paid from the credit contributed by the (short) edges in U , which622

in these four cases is either U1 or U ′
1. Recall that after the conversion, each short edge623

contributes one Euro of credit, so Lemma 4.5 provides lower bounds:624

credit ≥


2r1 − 1 if r1 > h1 = 1;
2r1 + h1 − 2 if h1 > b1 = 1;
2r1 + h1 + 3b1 − 5 if b1 > c1 = 1;
2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5 if c1 > r2 = 1.

(39)625

Comparing (39) with (38), we get cost ≤ credit trivially in the first three cases. Using626

Claim (iv), we get use s1 + d1 + e1 + t1 ≥ c1 ≥ (s1 + 2d1 + 2e1 + 3t1) − r2 = c1, which627

supports the same in the fourth case. To compare the cost with the credit in the remaining628

cases, we use Lemmas 4.5 and 4.6 to compute a lower bound for the latter, assuming that629

ℓ > 1 is the smallest integer for which rℓ+1 = 1:630

credit ≥ #U1 +
∑ℓ−1

k=2
#Uk + #U ′

ℓ (40)631

≥
[
2r1 + h1 + 3b1 + ( 1

3s1 + 2
3d1 + e1 + t1) − r2 − 4

]
632

+
∑ℓ−1

k=2

[
3rk + 4hk + 3bk + ( 1

3sk + 2
3dk + ek + tk) − rk+1 − 4

]
633

+ [3rℓ + 4hℓ + 3bℓ + (sℓ + dℓ + eℓ + tℓ) − 5] , (41)634

in which we group the terms with index k − 1 that appear in the bounds for #Uk and #U ′
k635

with the terms that have the same index. Using the extension of Claim (iv) to k ≥ 1 stated636

in (25), we get 1
3sk + 2

3dk + ek + tk ≥ 1
3 (sk + 2dk + 2ek + 3tk) = ck + rk+1, so the lower637

bound in (41) exceeds the upper bound in (37). Hence, cost ≤ credit. In other words, the638

average Euclidean length of the edges in MSThex(B) and MSThex(∆ \B) is at most 5
4 . It639

follows that their total Euclidean length is at most 5
4 (n2 − 2), which by (19) implies the same640

for MST(B) and MST(∆ \B). ◀641

By Lemma 4.7, the average Euclidean length of the edges in MST(B) and MST(∆ \B)642

is less than 5
4 . Together with (15), this implies Theorem 4.2.643

5 Discussion644

This paper proves bounds on the supremum and infimum maximum MST-ratio for finite sets645

in the plane as well as for lattices in the plane. There are many directions of generalization,646

and their connection to the topological analysis of colored point sets started in [6] provides a647

potential path to relevance outside of mathematics.648

What about sets in the plane that are less restrictive than lattices but still disallow649

arbitrarily dense clusters of points, such as periodic sets or Delone sets? A first result in650

this direction is the lower bound of 1 + 1/(11(2c+ 1)2) for the maximum MST-ratio of a651

set of n points with spread at most c
√
n.652
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What about partitions of A ⊆ R2 into three or more sets? For example, is it true that653

the maximum MST-ratio of the hexagonal lattice partitioned into three subsets is
√

3, as654

realized by the unique partition into three congruent hexagonal grids? Is
√

3 the infimum,655

over all lattices in R2, of the maximum, over all partitions into three subsets?656

What about three and higher dimensions? Consider for example the FCC lattice in657

R3 (all integer points whose sums of coordinates are even), and partition it into 2FCC658

and the rest. The MST-ratio of this example is 9
8 = 1.125. Is it true that this is the659

maximum MST-ratio of the FCC lattice? Is 1.125 the infimum, over all lattices in R3, of660

the maximum, over all partitions into two subsets?661

Beyond these extensions in discrete geometry, it would be interesting to study the MST-ratio662

stochastically, to determine the computational complexity of the maximum MST-ratio, and663

to frame notions of mingling as measured by homology classes of dimension 1 and higher in664

elementary geometric terms.665
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A Connection to Chromatic Persistence690

As mentioned in the introduction, the study of the MST-ratio is motivated by a recent topolo-691

gical data analysis method for measuring the “mingling” of points in a colored configuration;692

see Figure 9, which shows six persistence diagrams measuring various aspects of the mingling693

in a bi-colored configuration. This appendix addresses the meaning of some of these diagrams694

and explains the connection to the MST-ratio, while referring to [6] for a detailed account of695

the method. In particular, we short-cut the description by ignoring the discrete structures696

that are necessary for the algorithm. We first sketch the general background from [8] and [5],697

and then explain the specific setting that motivates the MST-ratio.698

Let A ⊆ R2 be a finite set of points, χ : A → {0, 1} a bi-coloring, and write B = χ−1(0)699

and C = A \ B = χ−1(1). Let a : R2 → R be the function that maps every x ∈ R2 to700

the minimum Euclidean distance between x and the points in A, and let b : R2 → R and701

c : R2 → R be the similarly defined functions for B and C. Furthermore, write Ar = a−1[0, r],702
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Br = b−1[0, r], and Cr = c−1[0, r] for the sublevel sets at distance threshold r ≥ 0. Each is a703

union of disks with radius r centered at the points of A, B, and C, respectively. The inclusions704

Br ⊆ Ar and Cr ⊆ Ar induce homomorphisms in p-th homology, br : Hp(Br) → Hp(Ar) and705

cr : Hp(Cr) → Hp(Ar), for each dimension p ∈ Z and every threshold r ≥ 0. Assuming field706

coefficients in the construction of the homology groups, the latter are vector spaces and the707

homomorphisms are linear maps.708

We also have Ar ⊆ As whenever r ≤ s, so there are also linear maps from Hp(Ar) to709

Hp(As). By now it is tradition in the field to consider the filtration of the Ar, for r from 0710

to ∞, and the corresponding sequence of homology groups together with the linear maps711

between them. Reading this sequence from left to right, we see homology classes being born712

and dying. There is a unique way to pair the births with the deaths that regards the identity713

of the classes, and the persistence diagram summarizes this information by drawing a point714

(r, s) ∈ R2 for every homology class that is born at Ar and dies entering As; see e.g. [8,715

Chapter VII]. Every death is paired with a birth, but it is possible that a birth remains716

unpaired—when the homology class is of the domain—in which case the corresponding point717

is at infinity. We write Dgmp(a) for the persistence diagram defined by the sublevel sets of718

a, noting that it is a multi-set of points vertically above the diagonal.719

Besides Dgmp(a), we consider Dgmp(b) and Dgmp(c), which are the persistence diagrams720

of the sublevel sets of b and c, respectively, and work with the disjoint union, Br ⊔ Cr.721

Conveniently, the p-th persistence diagram of b ⊔ c : R2 ⊔ R2 → R is the disjoint union722

of Dgmp(b) and Dgmp(c), for all p. Write br ⊕ cr : Hp(Br) ⊕ Hp(Cr) → Hp(Ar) for the723

corresponding map in homology. As proved in [5], the sequence of images of the br ⊕ cr724

admit linear maps between them and thus define another persistence diagram, denoted725

Dgmp(im b ⊔ c → a). Similarly, the kernels of the br ⊕ cr define a persistence diagram,726

denoted Dgmp(ker b ⊔ c → a). To simplify the notation, we write κr = br ⊕ cr and use727

mnemonic notation to indicate whether a persistence diagram belongs to the domain, image,728

or kernel of the map:729

Domp(κ) = Dgmp(b ⊔ c), (42)730

Imp(κ) = Dgmp(im b ⊔ c → a), (43)731

Kerp(κ) = Dgmp(ker b ⊔ c → a). (44)732

The 1-norm of a persistence diagram, D, is the sum of the absolute differences between birth-733

and death-coordinates over all points in D, denoted ∥D∥1. To cope with points at infinity,734

we use a cut-off—e.g. the maximum finite homological critical value, denoted ω0—so that735

the contribution of a point at infinity to the 1-norm is finite.736

The kernel, domain, and image form a short exact sequence that splits, which implies737

∥Imp(κ)∥1 + ∥Kerp(κ)∥1 = ∥Domp(κ)∥1; see [6, Theorem 5.3]. For dimension p = 0, all738

three 1-norms can be rewritten in terms of minimum spanning trees. Indeed, ∥Dgm0(b)∥1 =739

1
2 |MST(B)| + ω0 because every edge in the minimum spanning tree of B marks the death of740

a connected component in the sublevel set, and ω0 is contributed by the one component that741

never dies. Similarly, ∥Dgm0(c)∥1 = 1
2 |MST(C)| + ω0, which implies (45):742

∥Dom0(κ)∥1 = ∥Dgm0(b)∥1 + ∥Dgm0(c)∥1 = 1
2 |MST(B)| + 1

2 |MST(C)| + 2ω0; (45)743

∥Im0(κ)∥1 = 1
2 |MST(A)| + ω0. (46)744

Since persistence diagrams are stable, as originally proved in [4], these relations imply that745

minimum spanning trees are similarly stable. (46) deserves a proof. There are two ways746

a connected component of Br can die in the image: by merging with a component of Cr747
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dim 1 48 11.713
total 73 23.713

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

24

1

16
32

kernel

inf
0
1

#pts 1-norm fin
dim 1 130 20.122
dim 2 48 11.713
total 178 31.835

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

24

105

1

16
32

relative

inf
1
2

#pts 1-norm fin
dim 1 105 8.122

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

105

cokernel

1

#pts 1-norm fin
dim 0 100 61.000
dim 1 89 16.122
total 189 77.122

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

74

24

2

41

16
32

domain

inf
0
1

#pts 1-norm fin
dim 0 100 49.500
dim 1 57 4.409
total 157 53.909

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

99

1

57

image

inf
0
1

#pts 1-norm fin
dim 0 100 49.500
dim 1 162 12.531
total 262 62.031

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

99

1

162

codomain

inf
0
1

birth

de
at

h

Figure 9: The six-pack for the 10 × 10 portion of the hexagonal lattice with coloring as in Figure 4.
Important for the current discussion are the diamond-shaped points in the domain, image, and kernel
diagrams. To get the MST-ratio, the 1-norms of the diagrams are computed while ignoring the points at
infinity, giving giving 61.0 and 49.5 for the domain and the image diagrams, respectively. Compare the
ratio of 1.232 . . . with the upper bound of 1.25 proved in Theorem 4.2.

or with another component of Br. In the first case, the death corresponds to an edge of748

MST(A) that connects a point in B with a point in C, and in the second case, it corresponds749

to an edge of MST(A) that connects two points in B. There is also the symmetric case in750

which the edge connects two points in C. This establishes a bijection between the deaths in751

Im0(κ) and the edges of MST(A). There is one component that never dies, which accounts752

for the extra cut-off term and implies (46).753

The 1-norm of the kernel diagram is the difference between the 1-norms of the domain754

diagram and the image diagram: ∥Ker0(κ)∥1 = ∥Dom0(κ)∥1 − ∥Im0(κ)∥1. It thus makes755

sense to call ∥Im0(κ)∥1/∥Dom0(κ)∥1 and ∥Ker0(κ)∥1/∥Dom0(κ)∥1 the image share and kernel756

share, respectively. Observe that both are real numbers between 0.0 and 1.0 and that they add757

up to 1.0. The intuition is that the kernel share is a measure of the amount of “0-dimensional758

mingling” of B and C. In other words, the smaller the image share, the more the two colors759

mingle. We therefore get760

µ(A,B) = |MST(B)| + |MST(C)|
|MST(A)| =

∥Dom0(κ)∥1 − 2ω0

∥Im0(κ)∥1 − ω0
, (47)761

for the MST-ratio, which besides the cut-off terms is the reciprocal of the image share. Hence,762

the larger the MST-ratio the more the two colors mingle. In this interpretation, Theorem 3.1763

says that among all lattices in R2, the hexagonal lattice is most restrictive to mingling as it764

does not permit MST-ratios larger than the inf-max, which for 2-dimensional lattices is 1.25.765
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