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Statistical mechanics for metabolic networks during
steady state growth
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Which properties of metabolic networks can be derived solely from stoichiometry? Predictive

results have been obtained by flux balance analysis (FBA), by postulating that cells set

metabolic fluxes to maximize growth rate. Here we consider a generalization of FBA to single-

cell level using maximum entropy modeling, which we extend and test experimentally.

Specifically, we define for Escherichia coli metabolism a flux distribution that yields the

experimental growth rate: the model, containing FBA as a limit, provides a better match to

measured fluxes and it makes a wide range of predictions: on flux variability, regulation, and

correlations; on the relative importance of stoichiometry vs. optimization; on scaling relations

for growth rate distributions. We validate the latter here with single-cell data at different sub-

inhibitory antibiotic concentrations. The model quantifies growth optimization as emerging

from the interplay of competitive dynamics in the population and regulation of metabolism at

the level of single cells.
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After the significant developments in molecular biology and
biochemistry in the last century, many aspects of cellular
physiology could be understood as a result of interactions

between identified molecular components. Perhaps the best-
characterized example is intermediate metabolism, the set of
reactions that enable cell growth by converting organic com-
pounds and transducing free energy. Today it is possible to some
extent to infer the topology of metabolic networks from data at
genomic scale, but the dynamics and parameter dependence of
such networks remain difficult to analyze. Alternatively, one can
assume that known reactions only provide physico-chemical
constraints within which some adaptive dynamics has maximized
the growth rate, e.g., by adjusting enzyme levels and controlling
reaction rates1. An influential implementation of this idea for
batch cultures under steady-state conditions has been the flux
balance analysis (FBA)2, which has been tested experimentally3,4,
also in mutant strains, strains used for industrial production5–7,
as well as phenotypes implicated in disease (e.g., Warburg
effect8). Using maximum entropy ideas from statistical physics,
we extend the application of FBA from batch to single-cell level
and show that our extension makes a wide range of predictions,
some of which we test experimentally.

Recent measurements at the single-cell level demonstrated the
existence of substantial cell-to-cell growth rate fluctuations even
in well-controlled steady-state conditions9. These fluctuations
exhibit universal scaling properties10–13, relate to cell size control
mechanisms14,15, act as a global collective mode for heterogeneity
in gene expression16–18, and are ultimately believed to affect fit-
ness19. To link these observations to metabolism, however, we
need to set up a mathematical description not only of the optimal
metabolic fluxes and maximal growth rate in batch culture (as in
FBA, which permits no heterogeneity across cells), but for the
complete joint distribution over metabolic fluxes. Metabolic
phenotypes of individual cells growing in steady-state conditions
can then be understood as samples from this joint distribution,
which would automatically contain information about flux cor-
relations, and, in particular, could directly predict cell-to-cell
growth rate fluctuations.

The simplest construction of a joint distribution over metabolic
fluxes can be derived in the maximum entropy framework20. The
key intuition is to look for the most unbiased (or random) dis-
tribution over fluxes through individual metabolic reactions that
is consistent with the given stoichiometric constraints, while
matching the experimentally measured average growth rate. The
maximum entropy model that we specify below will turn out to
be a one-parameter family of distributions, where the single
parameter can be fit to match experimental data; all subsequent
predictions follow directly, without further fitting. A similar
approach has recently been used in diverse biological settings,
ranging from neural networks21,22, genetic regulatory networks23,
antibody diversity24, and collective motion of starling flocks25.

In addition to accounting for cell-to-cell variability, the max-
imum entropy construction provides a principled interpolation
between two extremal regimes of metabolic network function. In
the uniform (no-optimization) limit, no control is exerted over
metabolic fluxes: they are selected at random as long as they are
permitted by stoichiometry, resulting in broad yet non-trivial flux
distributions that support a small, non-zero growth rate. In the
FBA limit, fluxes are controlled precisely to maximize the growth
rate, with zero fluctuations. The existence of these two limits
defines a fundamental, and still unanswered, question about
metabolic networks: Is there empirical evidence that real meta-
bolic networks are located in an intermediate regime between the
two limits where fluctuations are non-negligible26, and if so, what
are the properties of this intermediate regime (see Fig. 1)? Here,

we address this question using metabolic flux and single-cell
physiology data for Escherichia coli.

In the Methods section, we provide a review of the maximum
entropy formalism for metabolic networks as it has been estab-
lished in previous work26–31 and we stress its implementation in
our work. In the Results section, we use this formalism to set up
and test quantitative predictions for E. coli as well as to discuss
possible theoretical extensions. We provide here compelling
experimental evidence that the observed growth rate fluctuations
reflect metabolic flux variability and sub-optimality of growth,
both of which are captured quantitatively by the maximum
entropy model of the metabolic network.

Results
Experimental test of flux predictions for E. coli. We constructed
a maximum entropy model for the catabolic core of the E. coli
metabolism (see Methods section). The model has a single
parameter β that constrains the average growth rate in the flux
space, interpolating from an uniform sampling (β= 0) to the
optimal FBA solution (β→∞). In particular, we consider the
specific value of this parameter β* inferred by constraining the
average growth rate in the model to match the population
experimental growth rate (λ ¼ 0:2 h"1 for a set of 12 experiments
shown in Fig. 2a, and λ ¼ 0:1 h"1 for a set of seven experiments,
not shown).

To evaluate the quality of model predictions, we compared
Nf= 20 measured metabolic fluxes in E. coli from previously
published data to our predictions, as shown in Fig. 2a. We defined
the mean-squared error (MSE) as

MSE ¼ N"1
f

XNf

i¼1

vih i" Við Þ2; ð1Þ

where Vi is the measured flux (relative to glucose uptake) and 〈vi〉
is the mean of the corresponding flux computed in the maximum
entropy model of Eq. (7). Figure 2b examines the behavior of
MSE as a function of the parameter β. First, we note that the best
flux predictions occur at or close to the value β%λmax ’ 120,
identified by the maximum entropy fit, at both average growth
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Fig. 1 Stoichiometric and thermodynamic constraints define a high-
dimensional convex polytope of permissible fluxes, here shown in cross-
section schematically as a black polygon. In a uniform model, the flux
distribution, P(v), is uniform over this polytope (UNIFORM). In contrast,
flux balance analysis (FBA) finds a single permissible and optimal
combination of fluxes, vmax (red dot), such that the growth rate is maximal,
λmax. FBA and the uniform model are two limits (of β→∞ and β= 0,
respectively) of a one-parameter family of distributions (MAXENT), where
increasing the parameter β biases the flux distribution (red gradient) away
from uniform toward achieving higher average growth rates, !λðβÞ. The
distribution over fluxes has a Boltzmann form from statistical physics and
corresponds to a case where fluxes are as random as possible while
achieving a specified growth rate
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rates. This is a non-trivial prediction, because the value of β* was
not fitted to minimize MSE, but rather, as demanded by the
maxent formalism, to match the population growth rate. Second
(and unsurprisingly), we find that flux predictions are better at β*
than with uniform sampling, at β= 0. Perhaps the most
surprising is our third finding: flux predictions at intermediate
value of beta (β%λmax ’ 120) significantly outperform the limit of
β→∞, i.e., the FBA solution.

In addition to a better quantitative match overall, the
maximum entropy model correctly predicted non-zero flux
through the glyoxylate shunt, i.e., for the isocitrate lyase (ICL)
as well as ME1 reactions, which FBA misses qualitatively by
setting them to zero. As a consequence, this also leads to a better
match of our model with data for reactions isocitrate dehydro-
genase (ICDH) and alpha ketoglutarate dehydrogenase
(AKGDH) that channel pyruvate through the Krebs cycle.

Lastly, we point out that Eq. (7) can also be viewed as a
phenomenological equation for average fluxes with a single fitting
parameter β that is set not to match the measured population
growth rate, as in the maxent formalism, but simply to minimize
some error measure (say MSE) with respect to experimentally
measured fluxes. In Supplementary Note 4, we show that this also
leads to predictions that outperform FBA for measured fluxes
both in wild-type and mutant strains.

It is instructive to examine the evolution of the joint
distribution over fluxes, Pβ(v), as a function of the optimization
parameter, β. Figure 3a shows how the growth rate approaches
the maximal rate achievable, λmax, with the inferred values of β*
from Fig. 2a, c suggesting an optimization level in the range of
~80% of the maximum. These levels are reached by adjusting flux
values away from what they would have been under uniform
sampling from the polytope of the allowed metabolic phenotypes,
P. Figure 3b traces the relative changes in all fluxes as a function
of β. Interestingly, in the FBA limit, almost half of the fluxes (38
out of 86 fluxes, the upper half of the plot) are forced to zero,
whereas at the inferred value (β*λmax ≈ 120), these fluxes only
decrease by about 1/3 relative to their average value in the
uniform sampling limit. Furthermore, the glyoxylate shunt
remains active, in agreement with experimental observations.

Surprisingly, only for a few reactions the fluxes are predicted to
increase with growth rate optimization relative to the uniform
sampling (lowest ~5 fluxes in Fig. 3b). These are mainly nitrogen
and phosphate transport reactions, and to a lesser extent, malate
dehydrogenase (MDH) and phosphoglucose isomerase (PGI)
reactions. The latter two reactions are classified as reversible,
whereas regulation in metabolic networks is thought to take place
at irreversible reactions32, so the predicted increase may be a
consequence of increased substrate levels.

We separately illustrate three flux behaviors in Fig. 3c, for ICL,
ICDH, and glutamate dehydrogenase (GLUDy). ICL and ICDH
track the relative channeling of carbon sources in the Krebs cycle
vs. glyoxylate shunt; ICL flux is switched off in the β→∞ limit,
whereas ICDH flux remains nearly constant with β. In contrast,
GLUDy reaction is reversible, switching sign at intermediate
values of β, while at high β the reaction ultimately gets frozen in
the backward direction, implying high levels of ammonia in the
cell, given the low affinity of this enzyme for ammonia33.

We also evaluated the predicted variability in metabolic fluxes
from the maximum entropy model, Eq. (7), at β*λmax ~ 102, and
found a clear division between reactions with high and low
coefficients of variation (CV). Among fluxes with lower variability
were all glycolytic reactions (CV < 0.3) with the exception of PGI,
as well as all transport reactions related to biomass formation (i.e.,
for glucose, oxygen, ammonia, carbon dioxide, phosphate ions;
CV < 0.11), the first part of the Krebs cycle, and the irreversible
reactions of oxidative phosphorylation.

We next wondered how flux variances scale with the optimization
level. In the uniform sampling limit (β= 0), the variances should be
large, characteristic of the shape and extent of the permitted polytope,
P. While in the FBA limit (β→∞) the flux variability should vanish,
we expect a well-defined scaling regime at high β where the variances
shrink toward the FBA solution in a manner that is independent of
the global polytope properties. This regime is indeed reached for all
fluxes at !λ=λmax≳0:90 and for some fluxes much earlier, as shown in
Fig. 3d: flux variability subsequently decreases with β as
σ iðβÞ=σ iðβ ¼ 0Þ / 1" !λðβÞ=λmax

! "
.

What kind of correlation structure between fluxes does the
maximum entropy model predict? While the growth rate λ is
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Fig. 2 a Comparison of measured fluxes (black, mean, error bars defined as SD over 12 experiments, technical replicates; normalized to glucose uptake)
with predictions of FBA (red stars) and of the maximum entropy model (pink, error bars defined as SD with simulation sample size 105). Also shown are
mean fluxes predicted by uniform sampling, i.e., using β= 0 in Eq. (7) (gray stars; mean, for clarity, large SDs are not displayed). Data for a are a collection
of 12 experiments at average growth rate !λ ¼ 0:2 h"1. Wild-type E. coli was grown in glucose-limited medium in aerobic conditions. b Quality of flux
predictions, quantified as mean-squared error or MSE in Eq. (1) between flux measurements and the maximum entropy predictions, as a function of
dimensionless βλmax parameter. Two curves correspond to models inferred at two different average growth rates, !λ ¼ 0:2 h"1 (data from a) and
!λ ¼ 0:1 h"1 (Supplementary Data 1). Maximum entropy models for both growth rates coincide at an intermediate value of β*λmax≈ 120 (pink line) and
provide a better fit than the uniform (β= 0) or FBA (β→∞) limits
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linear in constituent fluxes in Eq. (7), suggesting that the joint
distribution could factorize, correlations between fluxes develop
because of the stoichiometric constraints that define the polytope
P. A subset of fluxes that we focus on in Fig. 3 exhibits a clear
structure of strong (anti-)correlation both under uniform
sampling (Fig. 3e) and in the FBA limit (Fig. 3f). The FBA
pattern of correlations, in particular, can easily be partitioned into
four groups using a clustering algorithm34 so that the groups are
strongly enriched for reactions characteristic of glycolysis,
glyoxylate shunt, pentose phosphate pathway, and citric acid
cycle, respectively. Fluxes in the glycolysis cluster tend to correlate
strongly with fluxes in the citric acid cycle cluster, but anti-
correlate with glyoxylate shunt and pentose phosphate pathway
cluster. Comparison of the FBA correlations (F) with the uniform
sampling (E) reveals that stoichiometric constraints alone shape
much of the correlation structure, with the exception of anti-
correlation between glycolysis and glyoxylate shunt clusters,
which is a distinct consequence of the growth rate optimization.
More generally, it is intriguing to apply maximum entropy to
recover the correlation structure of metabolic fluxes in the FBA
limit and use that to identify, automatically via clustering,
separate metabolic pathways.

Lower limit of regulatory information needed for fast growth.
As the growth rate optimization parameter β is increased, flux
variances shrink (Fig. 3d), correlations strengthen (Fig. 3f), and
the distribution over fluxes within the polytope P localizes closer
to the FBA solution, vmax. Could this localization emerge due to

competitive growth dynamics in batch culture28? To test this
hypothesis, we checked the relationship predicted by Eq. (13),
which can be solved analytically (see Supplementary Methods).
For the typical values of the carrying capacity vs. inoculation size
ratio (NC=N0 ’ 106), the corresponding prediction from Eq. (13)
is β*λmax ~ 50, considerably underestimating β%λmax ’ 120,
recovered by the maximum entropy model as reproducing the
population growth rate and showing good match with measured
fluxes. In other words, metabolic fluxes are more localized and
growth is closer to optimal than would be expected in a scenario
where metabolic reactions at the individual cell level are not
actively regulated.

Motivated by these findings, we explored an alternative
scenario where the localization of the distribution over fluxes
around the optimal growth rate is achieved by active regulation of
metabolic reactions. First, we quantified the degree of localization
by the decrease in the entropy of the distribution over fluxes, Eq.
(10). This is plotted for our E. coli network in Fig. 3g, where we
show the average growth rate, !λ, as a function of information, I
(expressed in bits), parametrically in β. The resulting curve
divides the ðI; !λÞ plane into two halves: while it is possible to
achieve metabolic phenotypes below the Ið!λÞ curve, the dashed
region above the curve is forbidden. This is because no
distribution exists that achieves high growth rates !λ without also
deviating from the uniform distribution by at least the required
number of bits.

Figure 3g suggests that at least ~40 bits of information are
required to control the fluxes and reach growth rates amounting
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to ~80% of the maximal rate, λmax, as reported in data for E. coli;
higher growth rates call for increasing amounts of information,
which formally diverges in the FBA limit as β→∞. Interestingly,
the number of out-of-equilibrium reactions in the model, 39, is in
good agreement with the inferred amount of minimal informa-
tion, given a simplistic estimate of 1 bit per reaction (sufficient to
distinguish, e.g., high from low expression of the metabolic
enzyme). This is consistent with the hypothesis that regulatory
control is exerted for enzymes that catalyze irreversible
reactions32.

Cells control metabolic fluxes through regulatory networks,
either indirectly, by regulating the expression of metabolic
enzymes, or directly, by modulating the enzymatic activity
through various feedback loops; either way, metabolic resources
are required to exert this control. This leads to a trade-off: flux
control is necessary to support a high growth rate, but itself
carries a growth rate penalty. We created a simple toy model to
capture this intuition (see Supplementary Note 2). Here, K
regulatory pathways control the fluxes and each pathway is
modeled as a Gaussian information channel, so that together,
these channels provide I(β) bits of necessary information as
shown in Fig. 3g. The signal-to-noise of each regulatory channel
is determined by the number of regulatory molecules: higher
molecular counts enable precise control and thus higher
information, but impose higher cost. In this model, the cost-
free growth rate at given β is reduced by the cost to support K
channels which control the fluxes, so that the resulting effective
growth rate is:

!λeff ðβÞ ¼ !λðβÞ " αK 22IðβÞ=K " 1
h i

; ð2Þ

where α determines the metabolic cost of regulatory molecules,
and we estimated the number of regulatory pathways, K, to be
approximately the number of degrees of freedom of the flux
polytope, K ≈D. The cost of regulation clearly limits the
achievable growth rate, as shown in Fig. 3h, where the !λeff ðβÞ
curves now develop a maximum rather than increasing mono-
tonically as in the cost-free case of Fig. 3a. While our toy model is
very simplistic, it does capture properly the scaling of information
with the growth rate, as well as the exponential metabolic cost of
achieving high information transmission in molecular networks,
reported previously35,36. Thus, among many possible constraints
acting on a cell, the cost of regulating metabolism itself1 can
impose non-negligible limits to growth.

Experimental test of growth rate fluctuation scaling. Can we
test the novel predictions of our theory that extend beyond the
domain of validity of the FBA? While it is currently experimen-
tally unfeasible to measure metabolic fluxes and their variability
at the single cell level, one can tractably measure division times
and growth rates for single E. coli cells growing in stable condi-
tions for long periods of time. In our model, such growth mea-
surements directly connect to the biomass producing reaction
with its associated growth flux λ(v). Figure 3d suggests that flux
variability should scale / ðλmax " !λÞ, and since the growth flux is
a linear combination of metabolic fluxes, its variability, too,
should follow the same scaling. To verify this explicitly, we
computed the fluctuations in growth rate, σ/λmax, as a function of
the optimization parameter β, in Fig. 4a.

In the range of βλmax≳40, characteristic of wild-type E. coli
experiments, the predicted growth fluctuations indeed obey

σ
λmax

/ βλmaxð Þ"1/ λmax " !λ
! "

; ð3Þ

we refer to this range as the scaling regime. Beyond variance, the

complete distribution of growth rates, Q(λ), can be sampled by
marginalizing the maximum entropy model, Eq. (7).

Measurements of single-cell growth rates allow us to estimate
growth rate distributions and compare them to the predicted Q
(λ), as well as to empirically extracted !λ, λmax, and the fluctuations
σ, to verify the predicted relation of Eq. (3). We used previously
published data37 where E. coli cells were stably grown in a mother
machine microfluidic device while multiple sub-inhibitory steps
of concentration of the antibiotic tetracycline were delivered as
shown in Fig. 4b. Low concentrations of antibiotic allowed us to
probe different average growth rates in the same setup, and to
construct empirical distributions of growth rates for every
antibiotic concentration by pooling data from technical replicates
of the multi-step experiments (Supplementary Note 3). We find
an excellent match between measured and predicted growth rate
distributions in Fig. 4c for all five concentrations of the antibiotic
used. Looking at many individual lineages in separate micro-
fluidic channels, we can also extract λmax, !λ, and σ per lineage
empirically and confirm the predicted scaling of growth rate
fluctuations, as shown in Fig. 4d.

To conclude this section on fluctuations, we briefly mention
that, under mild conditions, it is possible to study the dynamical
response of the network in the linear regime under small
perturbations. For example, ref.26 introduced a simple biologically
motivated dynamics of diffusion-replication inside the metabolic
space, described by the one-parameter equation for the growth
rate distribution Q(λ), showing that the following fluctuation-
dissipation scaling laws should hold for the typical response times
as well as the growth rate fluctuation autocorrelation time τ:29

σ & λmax " λ
! "

& τ"1: ð4Þ

This relation, which further extends Eq. (3), is experimentally
testable and predicts a divergent slowing down of the response
time with growth rate maximization. As a consequence, growth
rate fluctuations could take on a functional role in speeding up
the response to environmental perturbations, e.g., to nutritional
up-shifts or externally applied stresses. Even if the experimental
test of such dynamic predictions is beyond the scope of this
paper, our model connects to a wide range of currently ongoing
metabolism- and growth-related investigations.

Discussion
In this work, we considered maximum entropy distributions at
fixed average growth rate in the space of metabolic phenotypes, a
straightforward and statistically rigorous extension of the FBA,
which is recovered in the asymptotic limit. Experimental esti-
mates of enzymatic fluxes of the central carbon core metabolism
in bulk cultures of E. coli, as well as empirical growth rate dis-
tributions of E. coli collected from single cell measurements, are
consistent with intermediate level of growth optimization (βλmax
~ 102 and !λ=λmax & 0:8). We find that variability can be captured
by a simple maximum entropy model, and that the zero-
fluctuation FBA limit qualitatively misses important experimental
facts, e.g., the observed non-zero fluxes through the glyoxylate
shunt.

The improved ability of our model to match the flux mea-
surements is a consequence of a single extra parameter, β, which
can easily be determined from existing experimental data. Beyond
a better fit, however, our model also makes a wide range of
predictions, extending the domain of metabolic network analysis
to the single-cell level. While it is difficult to measure the single-
cell metabolic fluxes and their variability in isogenic populations
in steady state, such measurements for the growth rate are
increasingly available. This connection enables the new
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predictions of our theory to be tested, and opens up the theory for
verifiable extensions. Validating the predicted scaling of growth
rate fluctuations in Fig. 4 is only the first step, with two broad
lines of investigation within reach.

First, our approach is not limited to the core catabolism
analyzed here or to bacterial metabolism, but can in principle
be extended to other genome-scale networks. In practice,
however, we often lack suitable large-scale experimental flux
measurements. It is also likely that physico-chemical con-
straints alone are insufficient to yield quantitatively accurate
predictions. Similar issues arise also in the core catabolism for
high growth rates that exceed the threshold of the acetate
switch, for which a trade-off between growth yield and rate
emerges and additional constraints have to be added in FBA-
based approaches38. Our method can be extended to accom-
modate such cases, or systems where strict growth maximiza-
tion is likely not a suitable objective. Extra objectives or
constraints in the maximum entropy would appear as addi-
tional terms in the exponent of Eq. (7), where their corre-
sponding parameters would control various trade-offs between
the objectives. This flexibility may be required to model
metabolic dependencies, cell type heterogeneity, or interactions
between cells.

Such extensions of maximum entropy modeling will benefit
from the recent flourish of statistical-physics-inspired algorithms,
ranging from belief propagation39–41, relaxational learning42, and
gaussian analytical approximation43, used to solve the sampling
problem, which is computationally at the heart of our approach
(where on the other hand FBA relies on simpler linear pro-
gramming). While the employed Monte Carlo hit-and-run
Markov chain is sufficient for the analyzed network, faster
methods (in particular43) will pave the way to large-scale appli-
cations and inverse modeling settings.

Second, we considered two possible mechanisms for the
emergence of maximum entropy distributions over metabolic
fluxes. On the one hand, analysis of population dynamics of
competitive growth under resource constraints reveals that
maximum entropy distributions at fixed average growth rate are
the steady states of logistic growth, in principle giving further
testable predictions on the dependence of the growth optimi-
zation from inoculum size and medium carrying capacity. In
essence, it is the exponential character of the growth laws that
leads naturally to Boltzmann distributions. Despite the same
functional form, this is in contrast to the standard case of
statistical mechanics at equilibrium, where the link between
molecular dynamics and the equilibrium distribution is non-
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trivial. On the other hand, localization of growth distributions
toward the optimum can also arise due to the active regulation
of metabolic enzymes, most likely involved in catalyzing irre-
versible reactions. These two mechanisms are not mutually
exclusive and can actually operate concurrently; in our esti-
mate, the purely population-dynamics scenario substantially
underpredicts growth rate optimization (i.e., βλmax) for the bulk
culture, likely because it completely disregards active regulation
of metabolism, which is known to be important. Note that the
two mechanisms are, at least in principle, distinguishable
experimentally: in the mother-machine device, there is no
competition across the independent microfluidics channels,
putting us in the regime with a very small NC/N0, which pre-
dicts smaller β*λmax than in the bulk, qualitatively in line with
the observations. In other words, in bulk, both single-cell reg-
ulation and competitive growth may be active simultaneously,
leading to higher growth rate optimization than in single-cell
microfluidics measurements, where competitive growth is
nearly absent. Further investigations are required to tease apart
these two contributions quantitatively, in particular allowing
for growth state transitions in modeling.

The connection between maximum entropy models and
fluctuation-dissipation relations, Eq. (4), requires further
assumptions that need to be tested separately, but makes a very
strong prediction about the relationship between the auto-
correlation time of growth fluctuations and the typical response
time to, e.g., nutrient shifts. This relationship appears funda-
mental, since the response time is a central biological quantity
measurable in bulk, while the fluctuation autocorrelations are
microscopic, single-cell properties, which can be measured with
recent experimental setups. Interestingly, the predicted response
times lengthen with the degree of growth rate optimization,
suggesting a trade-off between responsiveness to changes and
efficiency in steady state; as a consequence, it is unclear whether
the evolutionarily optimal outcome should be equated to com-
plete growth rate optimization with no fluctuations, e.g., the FBA
limit. Quantitatively, in stable environments where E. coli grows
well and possibly achieves a high degree of growth rate optimi-
zation, one could experimentally look for signatures of long-
timescale fluctuations, either directly in the growth signal, or by
proxy through constitutive gene expression. Curiously, we report
that the parameter β of our model has the dimension of time,
whose best-fit value inferred from E. coli data is of the order of
1 day.

Beyond extensions to dynamics, our analysis made two further
theoretical contributions. First, it clarified the relative roles of
stoichiometric constraints and the growth optimization assump-
tion in FBA. The maximum entropy model is an explicit con-
struction of a smooth interpolation between the uniform regime
(where only stoichiometric constraints are active) and the FBA
(where growth is maximized in addition). The uniform limit is a
natural baseline—where no control is exerted by the cell—against
which to compare the observed fluxes, their fluctuations, and
correlations, as we have done in Fig. 3. Without this baseline
comparison, it is hard to assess how surprising the observations of
metabolic optimality should really be3. Our second theoretical
contribution is the observation that a certain minimal informa-
tion is needed to achieve a desired growth rate (Fig. 3g, h). This
information is expressed in the same currency (bits) in which we
measure the performance of regulatory networks, enabling us to
suggest a trade-off that sets the optimal degree of metabolic
control. Contrary to other cellular networks where estimation of
information only has been done for single network components
or simple pathways36, the metabolic network is the sole case
where we could estimate the lower bound on the required number
of regulatory bits. Our statistical mechanics approach thus opens

a connection between metabolic networks and their regulatory
counterparts, which is both of theoretical interest and could also
be probed in comparative genomic studies.

Methods
General background. We consider the set of reactions in the well-mixed, con-
tinuum limit. Let Siμ be the stoichiometric coefficient of the metabolite μ (whose
concentration is cμ) in reaction i, whose flux is vi. The metabolic network dynamics
is then given by mass balance equations:

_cμ ¼
X

i

Siμvi: ð5Þ

Assuming steady state, _cμ ¼ 0, and including further constraints from
thermodynamics, nutrient availability, and kinetic limits in the form of lower (LB)
and upper (UB) bounds on fluxes, we obtain a convex polytope P of feasible steady
states (metabolic phenotypes) in the space of fluxes:

P
i
Siμvi ¼ 0;

vi 2 vLBi ; vUBi

# $
:

ð6Þ

In addition to bona fide, well-balanced chemical reactions, constraint-based
models often include a phenomenological biomass reaction in the form of a linear
combination of metabolite fluxes, λðvÞ ¼

P
i ξivi , where the proportions ξi are set

to mimic cell growth, i.e., the metabolite fluxes necessary to reconstitute the
biomass of a new cell in a typical division time.

The network. The network employed in the study is the catabolic core of
the genome-scale reconstruction iAF1260 (see Supplementary Methods), in a
glucose-limited minimal medium in aerobic conditions44. The network comprises
N= 86 reactions among M= 68 metabolites and includes glycolysis, pentose
phosphate pathway, TCA cycle, oxidative phosphorylation, and nitrogen catabo-
lism. The dimension of the resulting polytope P of allowed steady states is D= 23,
from which we can efficiently draw flux configurations using Hit-and-Run
Monte Carlo Markov Chain after suitable preprocessing27 (see Supplementary
Methods).

Maximum entropy modeling. FBA looks for the flux configuration vmax that
maximizes growth λmax= λ(vmax) subject to constraints given by Eq. (6), which can
be easily found by linear programming. In contrast, our maximum entropy
approach starts with a distribution over fluxes with a Boltzmann form, which
assumes that the fluxes are as random as possible while achieving a desired average
growth rate26:

PβðvÞ ¼
1
Z e

βλðvÞ v 2 P;
0 v =2P:

(
ð7Þ

The parameter, β, of the distribution P can then be set to match the predicted
average growth rate to the measured growth rate, λdata:

!λðβÞ ¼
Z

v 2P
dv λðvÞPβðvÞ ¼ λdata: ð8Þ

Once β is fixed, the joint distribution of Eq. (7) can be queried for average
fluxes, flux correlations, or other quantities of interest that we discuss later.

The maximum entropy distribution with a constrained average growth rate has
two interesting limits, as illustrated in Fig. 1. The growth rate, !λ , increases with β
(which we will refer to as an optimization parameter) until, in the limit β→∞, the
distribution P∞(v) collapses into a delta function at vmax, lying at the boundary of
the polytope P: this is the FBA solution that supports the maximal growth rate
λmax. Conversely, as β→ 0, Eq. (7) yields a uniform sampling of fluxes over the
permitted polytope P: this uniform solution is an interesting baseline case for
comparison because it incorporates all stoichiometric constraints but postulates no
growth rate optimization. In statistical physics, high-β regime (limiting toward the
FBA solution) corresponds to the energy-dominated regime, while the low-β
regime (limiting toward the uniform sampling) corresponds to the entropy-
dominated regime; the optimization parameter β corresponds to the inverse
temperature.

Apart from generic information-theoretic arguments put forward by Jaynes in
support of the maximum entropy approach20, are there further justifications for
using the Boltzmann form in Eq. (7) that would be specific to the case of metabolic
networks? Below, we consider two non-exclusive possibilities: active regulation at
the single-cell level and competitive growth dynamics in a population.
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Information costs of regulation. The first possibility is to mechanistically inter-
pret the deviation of flux distributions away from the uniform sampling of the
polytope P and its localization around the optimal solution as a consequence of the
active regulation in the metabolic network. Such regulation could be achieved by,
e.g., control over gene expression of key metabolic enzymes, or by allosteric
feedback regulation mediated by metabolite concentrations or fluxes. The degree of
localization of the flux distribution can be quantified by its entropy:

S βð Þ ¼ "
Z

v2P
dv Pβ vð Þ logPβ vð Þ: ð9Þ

Because Pβ(v) is, by construction, a maximum entropy distribution with average
growth rate !λðβÞ, the decrease in entropy26,

I βð Þ ¼ S β ¼ 0ð Þ " S βð Þ; ð10Þ

is a measure for the minimal amount of information necessary to control the
fluxes and achieve a given average growth rate. Equivalently, if we were to
construct a regulation system that needs to realize the Boltzmann distribution of
Eq. (7), I(β) would provide a lower bound on its information demand. In the
Results section, we estimate this information demand for the E. coli network and
propose a toy regulatory model that can meet it.

Competitive growth dynamics. The second possibility is that the Boltzmann
distribution emerges from competitive growth dynamics. Since its historical origins
in statistical physics, much research has been devoted to uncovering the dynamical
roots of Boltzmann distributions, whose study highlighted important concepts and
applications, ranging from ergodicity to fluctuation-response relations. The same
questions naturally arise in the context of its application in metabolism. It has been
shown that the maximum entropy distribution at a fixed average growth rate is
recovered independently and justified dynamically as the steady state of logistic
growth28. Since the logistic growth is the standard model used to experimentally fit
optical density curves45, this link also provides a possible interpretation of the
maximum entropy parameter β, as we discuss below.

Consider a population of initial size N0 in a medium with carrying capacity NC
and assume that the intrinsic growth rates of individuals, λi, are sampled
independently from a distribution q(λ), defined over the feasible polytope P. In the
simplest setting, upon neglecting growth state transitions, the number ni of cells
with growth rate λi will evolve in time according to

_ni
ni

¼ λi 1" N
NC

% &
; NðtÞ ¼

XN0

i¼1

ni tð Þ: ð11Þ

Then, niðtÞ ¼ eβðtÞλi , with

β tð Þ ¼ t " 1
NC

Z t

0
N t′ð Þdt′: ð12Þ

Under a mean field approximation28, the steady states of these dynamics are
distributions with maximum entropy form at a fixed average growth rate, where the
asymptotic optimization parameter, β? , is given implicitly by the equation

Z
qðλÞeβ

?λdλ ¼ NC

N0
: ð13Þ

Equation (13) can be viewed as a relationship between quantities that can be
independently estimated for a specific experimental setup: the inoculum size (N0)
and carrying capacity (NC) on the one hand, as well as the typical value of β, via
Eq. (8) or direct fitting of measured metabolic fluxes, on the other.

Taken together, the two mechanisms, active regulation and competitive growth
dynamics, need not be exclusive, and can operate concurrently. A simple
diagnostic that could provide insight into the relative importance of both
mechanisms is to examine whether the relationship of Eq. (13) is satisfied. If it
were, it would suggest that the Boltzmann distribution is dynamical in origin. If, on
the other hand, the values of β inferred from fitting the maximum entropy model
were higher than those derived from the NC/N0 ratio and Eq. (13), additional
active regulation may be at work. In the Results section and Supplementary
Methods, we provide estimates of these quantities for the experiments under
consideration.

Code availability. We have provided in doi:10.15479/AT:ISTA:62 a C++ code
implementing the Lovasz preprocessing as well as the Hit-and-Run algorithm and
the polytope representation of the metabolic network used in this study. Please
refer to the README.txt file for further information.

Data availability. The metabolic network employed in this study is the catabolic
core from the genome-scale reconstruction iAF1260 and it is available in the
Supplementary materials of the published reconstruction work44. The experimental
estimates of the metabolic fluxes can be retrieved from the database46 doi: 10.1093/
nar/gku1137 (see also the Supplementary Methods and Supplementary Data 1).
Single-cell growth rate data are available from the Supplementary materials pub-
lished in37.
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