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Neuronsinthe brain are wired into adaptive networks that exhibit
collective dynamics as diverse as scale-specific oscillations and scale-free

neuronal avalanches. Although existing models account for oscillations
and avalanches separately, they typically do not explain both phenomena,
are too complex to analyze analytically or intractable to infer from data
rigorously. Here we propose a feedback-driven Ising-like class of neural
networks that captures avalanches and oscillations simultaneously and
quantitatively. In the simplest yet fully microscopic model version, we
can analytically compute the phase diagram and make direct contact with
human brainresting-state activity recordings viatractable inference of
the model’s two essential parameters. The inferred model quantitatively
captures the dynamics over abroad range of scales, from single sensor
oscillations to collective behaviors of extreme events and neuronal
avalanches. Importantly, the inferred parameters indicate that the co-
existence of scale-specific (oscillations) and scale-free (avalanches)
dynamics occurs close to a non-equilibrium critical point at the onset of
self-sustained oscillations.

Synchronization is a key organizing principle that leads to the emer-
gence of coherent macroscopic behaviors across diverse biological
networks'. From Hebb’s neural assemblies” to synfire chains®, synchro-
nization hasalso strongly shaped our understanding of brain dynamics
and function®. The classic and arguably most prominent example of
large-scale neural synchronizationis brain oscillations, first reported
abouta century ago’: periodic, large deflections in electrophysiologi-
calrecordings such as electroencephalography (EEG), magnetoen-
cephalography (MEG) or local field potential (LFP)*°. As oscillations are
thought to play afundamental rolein brain function, their mechanistic
origins have been the subject of intense research. According to the cur-
rentview, the canonical circuit that generates prominent brain rhythms
suchasthealpha oscillations and the alternation of up- and down-states
uses mutual coupling between excitatory (E) and inhibitory (I) neurons®.

Alternative circuits, includingI-1population coupling, have been pro-
posed to explain other brain rhythms such as high-frequency gamma
oscillations’. Setting biological details aside, the majority of research
has predominantly focused on the emergence of synchronization at
apreferred temporal scale—the oscillation frequency.

Yet brain activity also exhibits complex, large-scale cooperative
dynamics with characteristics that are antithetic to those of oscilla-
tions. In particular, empirical observations of neuronal avalanches
have shown that brain rhythms co-exist with activity cascades in which
neuronal groups fire in patterns with no characteristic time or spatial
scale, suggesting that the brain may operate near criticality® ™. In this
context, the co-existence of scale-free neuronal avalanches with scale-
specific oscillations suggests an intriguing dichotomy thatis currently
not understood. On the one hand, models of brain oscillations are
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very specific and seek to capture physiological mechanisms underly-
ing particular brain rhythms. On the other hand, attempts to explain
the emergence of neuronal avalanches almost exclusively focus on
criticality-related aspects and ignore co-existing behaviors such as
oscillations, even though they themselves may be constitutive for
understanding the putative criticality. Among the few exceptions™ ",
Poil etal. proposed a probabilisticintegrate and fire spiking model with
E and I neurons, which generates long-range correlated fluctuations
reminiscent of MEG oscillationsin the resting state, with supra-thresh-
old activity following power-law statistics consistent with neuronal ava-
lanches and criticality®. More recently, by adopting a coarse-grained
Landau-Ginzburgapproachto neural network dynamics, DiSantoetal.
have shown that neuronal avalanches and related putative signatures
of criticality co-occur atasynchronization phase transition, where col-
lective oscillations may also emerge". These results were successively
extended to ahybrid-type synchronization transitionin a generalized
Kuramoto model®.

Although these and other proposed approaches show that neu-
ronal avalanches may co-exist with some form of network oscilla-
tions™" or network synchronization'”?°, they suffer from three major
shortcomings. First, these models are neither simple (for example, in
terms of parameters) nor analytically tractable, making an exhaustive
exploration of their phase diagram out of reach. Second, neither of the
two above-mentioned models simultaneously capture events at the
microscopic (individual spikes) and macroscopic (collective variables)
scales. Third, itisnot clear how torigorously connect these models to
data, beyond relying on qualitative correspondences.

Here we propose aminimal, microscopic and analytically tractable
model class that can capture awide spectrum of emergent phenomena
inbrain dynamics, including neural oscillations, extreme event statis-
tics and scale-free neuronal avalanches®. Inspired by recent theoretical
results on the emergence of self-oscillations insystems with distinct co-
existing phases?, these models are non-equilibrium extensions of the
Ising model of statistical physics with an extrafeedback loop that ena-
bles self-adaptation. As aconsequence of feedback, neuronal dynamics
isdriven by the ongoing network activity, generatingarich repertoire
of dynamical behaviors. The structure of the simplest model from this
class permits microscopic network dynamicsinvestigations as well as
ananalytical mean-field solutionin the Laudau-Ginzburgspiritand, in
particular, allows us to construct the model’s phase diagram.

The tractability of our model enables us to make direct contact
with MEG data on the resting-state activity of the human brain. With
itstwo free parameters inferred from data, the model closely captures
braindynamicsacross scales, fromsingle sensor MEG signals to collec-
tive behavior of extreme events and neuronal avalanches. Remarkably,
the inferred parameters indicate that scale-specific (neural oscilla-
tions) and scale-free (neuronal avalanches) dynamicsin brain activity
co-exist close to a non-equilibrium critical point that we proceed to
characterize in detail.

Results

Adaptive Ising model

We consider a population of interacting neurons whose dynamics is
self-regulated by a time-varying field that depends on the ongoing
populationactivity level (Fig.1a). The Nspinss;=+1(i=1,2, ..., N;N=10*
in our simulations unless specified otherwise) represent excitatory
neurons thatare active whens; = +1orinactive whens;=-1.In the sim-
plest, fully homogeneous scenario described here, neurons interact
with each other through synapses of equal strengthJ;=/=1(Methods).

The ongoing network activity is defined as m(¢) = i ZL s;(6) (thatis,

as the magnetization of the Ising model) and each neuron experiences
auniform negative feedback h that depends on the network activity
as h = —cm, with cdetermining the strength of the feedback. Neurons
s;are stochastically activated according to Glauber dynamics, where

the new state of neurons;is drawn from the marginal Boltzmann-Gibbs
distribution P(s;) o exp(Bh;s;), with by = 3, JyS; + h, where Bis remi-
niscent of the inverse temperature for an Ising model (see Methods).

Multiple interpretations of this model are possible. On the one
hand, negative feedback canbeidentified with a mean-field approxima-
tion to the inhibitory neuron population that uniformly affects all
excitatory neurons with a delay given by the characteristic time ¢
(Supplementary Section 1.4). On the other hand, feedback could be
seenasintrinsic to excitatory neurons, mimicking, forexample, spike-
threshold adaptation®. Exploration-worthy (and possibly more real-
istic) extensions within the same model class are accessible by
considering two ways in which geometry and neural biology canenter
the model. First, asin the standard Ising magnet, the interaction matrix
Jjcanbe used to model cell types (for example, inhibitory versus excita-
tory types; Supplementary Section 1.4), the spatial structure of the
cortex, or empirically established topological features of real neural
networks (Supplementary Section1.5). Second, feedback h;to neuron
icouldbederived fromalocal magnetizationinaneighborhood around
neuroniinstead of the global magnetization;in theinteresting limiting
case in which A; = —cs;, each neuron would feedback only on its own
past spiking history and the model would reduce to a set of coupled
binary oscillators (see Supplementary Section 1.2 and Supplementary
Fig. 2 for a discussion of this limiting case). Irrespective of the exact
setting, the model’s mathematical attractiveness stems fromits trac-
table interpolation between stochastic (spiking of excitatory units)
and deterministic (feedback) elements.

Here we consider the fully connected continuous time limit of
the model (Fig. 1and Methods). Network behavior is determined by
cand B.For c=0, h=0, the model reduces to the standard infinite-
dimensional (mean field) Ising model with asecond-order phase transi-
tionat f=f,=1.Atnon-zero feedback, ¢ > 0, the model is driven out of
equilibriumandits critical point at S, coincides with an Andronov-Hopf
bifurcation. For < 8,and cbelow a threshold value c* = (8-1)%/48, m(t)
isdescribed by an Ornstein-Uhlenbeck process independently of 8. For
B<B., thesystemisstableand showsa cross-over fromastable node with
exponential relaxation (two negative real eigenvalues) to astable focus
withoscillation-modulated exponential relaxation (two complex eigen-
values; resonant regime) when c increases beyond c¢* (Supplementary
Fig.7).Intheresonantregime, ¢ > ¢*, oscillations become more promi-
nent as .= 1is approached, finally transitioning into self-sustained
oscillations for > . (Supplementary Fig. 8). At S = ., we have aline of
Andronov-Hopf bifurcations where a focus loses stability and a limit
cycle emerges. We find that this bifurcation is supercritical, with the
first Lyapunov coefficient being negative (thatis, A, =-(1+¢)/8 < 0).

We focus on the resonant regime below and at the critical point,
and study the reversal times and zero-crossing areas of the total net-
work activity m(t) (Fig. 1c). The reversal time, ¢, is defined as the time
interval between two consecutive pointsin time at which agiven signal
crosses zero. Correspondingly, the zero-crossing area (a,) is the area
under the signal curve between two zero-crossing points. The distri-
bution P(a,) of the zero-crossing area follows a power-law behavior
with an exponent 7=1.227 + 0.004 in the vicinity of the critical point.
As S decreases, the scaling regime shrinks until it eventually vanishes
for small enough S. Similar behavior is observed for the distribution
P(t) of reversal times. This distribution also follows a power-law with
an exponent a,=1.378 + 0.004 near the critical point (Fig. 1d). Both
distributions have an exponential cutoff related to the characteristic
time of the network activity oscillations, 1/c; this cutoff transforms
intoahumpasf > 1andc » c*(f), thatis, as oscillations in m(t) become
increasingly prominent (Supplementary Fig. 9). Importantly, for the
non-interacting (/= 0) model, the distributions P(a,) and P(¢) follow
a purely exponential behavior (Fig. 1d, inset), indicating that the co-
existence of oscillatory bursts and power-law distributions for the
network activity requires neuron interactions as well as the adaptive
feedback (Supplementary Fig.10).
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Fig.1| Co-existence of oscillations and scale-free activity excursionsin the
adaptive Ising model near the critical point. a, Schematic illustration of the
model. Interacting spinss; (i=1, 2, ..., N) take values of +1 (up arrows) or -1 (down
arrows), and experience a time-varying external field h(¢) that mimics an
activity-dependent feedback mechanism. In the fully connected continuous time
limit, the system can be described by the coupled Langevin equations

1 = —m + tanh [f(Jm + h)| + b and h = —cm, where §is unit-uncorrelated
Gaussian noise and p = 1/2/(jN). These equations can be linearized around the
stationary point (m* =0, h* = 0) to calculate dynamical eigenvalues and construct
aphase diagram. b, Phase diagram for the mean-field adaptive Ising model. An
Andronov-Hopf bifurcation at S, = 1separates self-sustained oscillations in m(¢t)
for B> B, (green shading) from the regime of intermittent oscillations for cabove
c*(B) (yellow shading) and an Ornstein-Uhlenbeck process (O-U) for c below c*
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(gray shading). ¢, The reversal time ¢ is the time interval between consecutive
zero-crossing events inm, whereas a, is the area under the m(¢) curve between
two zero-crossing events (inset). Distributions P(a,) are shown in the resonant
regime ¢ > ¢*for different values of 8. When 8= 1, P(a,) is approximately
power-law with exponent 7=1.227 + 0.004; T was estimated in the a, € [0.1,100]
range. d, Distributions P(¢) of the reversal times are shown in the resonant regime
c> c*for different values of 8. When 8 = 1, P(¢t) is approximately power-law with
exponenta,=1.378 + 0.004; o, was estimated in the t € [2, 500] range. The inset
shows distributions P(a,) and P(¢) for the uncoupled model/= 0, which always
exhibit exponential instead of power-law behavior (note the linear horizontal
scale). Power-law fits were performed using a maximum likelihood estimator
(Supplementary Section 1.8).

Modelinference fromlocal resting-state brain
dynamics
Inthe resonant regime below the critical point (¢ > c*, f<f.), itis pos-
sible to analytically compute the autocorrelation function, C(z), of
m(t)inthelinear approximation® (Methods); C(r) can be used to infer
model parameters 8 and c from empirical data by moment matching
(see Supplementary Section 1.6 for details on parameter inference),
thereby locating the observed system in the phase diagram (Fig. 1b).
We test the proposed approach on MEG recordings of the awake
resting-state of the human brain (Methods). We first analyze brain activ-
ity onindividual MEG sensors. To this end, we compare the magnetic
field recorded onindividual MEG sensors with the magnetization m of
the model (Fig. 1). This analogy relies on the nature of the brain mag-
neticfields captured by the MEG, which are generated by synchronous
post-synaptic currents in cortical neurons, and on their relationship
with collective neural fluctuations mimicked by m (ref.**).
Duringresting wakefulness the brain activity is largely dominated
by oscillations in the alpha band (8-13 Hz; Fig. 2a), which have been
thestarting point of many investigations***® including ours reported
below; similar results are also obtained for the broadband activity
(Supplementary Fig. 11). After isolating the alpha band, we estimate 8
and cby fitting the empirical C(7) to the analytical form of the autocor-
relation (Methods). Figure 2b illustrates the typical quality of the fit

and the qualitative resemblance between the model and MEG sensor
signal dynamics.

Asour modelisfittoreproduce the second-order statistical struc-
turein the signal, we next turn our attention to signal excursions over
the threshold—a higher-order statistical feature routinely used to
characterize bursting brain dynamics'®” %, To that end, we construct
the distribution of (log) areas under the signal above a threshold t e
(Fig.2c)*; P(log a,) is bell-shaped, featuring strongly asymmetric tails
for MEG sensors as well as the model (Fig. 2c). Variability across subjects
is mostly related to signal amplitude modulation, resulting in small
horizontal shiftsin P(log a,) but no variability in the distribution shape.
Importantly, the rescaled distribution is independent of the threshold
eoverarobustrange of values, and is well-described by a Weibull form,

k,x k-1 Ko .
Py A.k) =~ (3) e~/Y" (Fig. 2c, bottom panel inset; Supplementary

Fig.12). Taken together, these observationsindicate that our model has
the ability to capture non-trivial aspects of amplitude statistics in MEG
signals, within and across different subjects (Supplementary Fig. 13).

Parametersinferred across all sensors and subjects suggest base-
line values of f=0.99 and c = 0.01 that are well matched with the data,
which we use for all subsequent analyses (unless stated otherwise).
Specifically, we find that the best-fit § values strongly concentrate in
anarrow range around $=0.99 (£=0.986 + 0.006; c=0.012 + 0.001),
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Fig.2| Correspondence between MEG resting-state activity of the human
brainand amarginally subcritical adaptive Ising model. a, Example trace from
asingle MEG sensor (top) that predominantly contains power in the alpha band
(8-13 Hz; bottom, red shaded region). The power spectra of MEG signals peak at
around 10 Hz (bottom, the gray curve represents the average across 273 MEG
sensors for each of the 14 subjects, whereas the green curve represents the
average over sensors and subjects). Amp., amplitude of the MEG signal.

b, Example of an alpha bandpass-filtered MEG signal (top, green curve) and the
simulated m(t) of amodel with parameters matched to the data (top, violet
curve). The model parameters (8= 0.9870 and ¢ = 0.0113 for this trace) are
inferred by fitting the analytical form of C(z) (bottom, violet dots) to
autocorrelation estimated from MEG data (bottom, green line; typical standard
error of a C(7) estimate ~107). ¢, Top: schematic of the areaunder the curve a,
(red shaded area) for agiven threshold e in units of signal s.d. Bottom:
distributions P(log a.) of the logarithm of a, (withe = 2.5s.d.) for MEG data (each

dark green curve represents the average over the sensors for each subject) and
the model (the violet curve represents the simulation at baseline parameters; see
main text). The inset shows that rescaled distributions of a, collapse to a universal
Weibull-like distribution across different values of e (Weibull parameters: k=1.74,
A=2.58).d, Central frequency f=w/2m=(Bc-Q1 _ﬂ)2)1/2/8n of the fitted
model plotted against fitted 8, across all MEG sensors and subjects (the colors
represent the fraction of the total MEG signal power in the alphaband); S values
closer to 8. =1are correlated with higher power in the alpha band (linear model fit
y=ax+b;R*=0.21; P=2x107%; Supplementary Section 1.8). e, Root-mean-
square fluctuation function F(n) of the DFA for the amplitude envelope of MEG
sensor signalsin the alphaband (the green lines represent individual sensors for a
single subject); F(n) scales as F(n) «< n“for2s <n< 60 s (light blue dashed lines),
with 0.53 <a < 0.85.f, Inferred S values correlate with the corresponding DFA
exponents a for all MEG sensors and subjects (linear model fity = ax + b;
P=3x10"; Supplementary Section 1.8).

which is very close to the critical point (Fig. 2d and Supplementary
Fig.14). Although all analyzed signals are bandpass-limited to a central
frequency of around 10 Hz by filtering, closeness to criticality seems to
strongly correlate with the fraction of the total power in the raw signal
in the alpha band (Fig. 2d; R?= 0.21; P <107°). This suggests that alpha
oscillations may be closely related to critical brain tuning during the
resting state’>>*°,

A classic fingerprint of tuning to criticality is the emergence of
long-range temporal correlations (LRTCs), which have been docu-
mented empirically”*?>*. Long-range temporal correlations in the
alphaband have beeninvestigated primarily by applying the detrended
fluctuations analysis (DFA) to the amplitude envelope of MEG or EEG
signals in the alpha band (Methods)">*. Briefly, DFA estimates the
scaling exponent a of the root-mean-square fluctuation function Fin
non-stationary signals with polynomial trends®. In brief, the integrated
signalis divided into windows of equallength, n, and thelocal trend is
subtracted ineachwindow. For signals exhibiting positive (or negative)
LRTC, Fscalesas Fe< n“with0.5<a <1(or0<a<0.5);a=0.5indicates
the absence of long-range correlations; « also approaches unity for
anumber of known model systems as they are tuned to criticality®.

To test for the presence of LRTC using DFA, we analyzed the scal-
ing behavior of fluctuations and extracted their scaling exponent a.

Toavoid spurious correlations introduced by signal filtering, a was esti-
mated over therange 2 s <n <60 s (Fig. 2e)*. We find that a is consist-
ently between 0.5and1for all MEG sensors and subjects, in agreement
with previous analyses®. Importantly, model-free a values measured
across MEG sensors positively correlate with the inferred S values from
the model (Fig. 2f), indicating that higher § values are diagnostic of
the presence of long-range temporal correlations in the amplitude
envelope. Furthermore, we find that inferred 8 values correlate with
the fraction of total signal power in the alpha band (Fig. 2d), whichin
turn correlates with the inferred entropy production in brain signals
(Supplementary Section 1.1)*.

Taken together, our analyses so far show that the adaptive Ising
model recapitulates single-MEG-sensor dynamics by matching their
autocorrelation function and the distribution of amplitude fluctua-
tions, and further suggest that the true MEG signals are best repro-
duced when the adaptive Ising model is tuned close to, but slightly
below, its critical point (8 S 1).

Scale-invariant collective dynamics of extreme
events

We now turn our attention to phenomena that are intrinsically collec-
tive: (1) coordinated supra-threshold bursts of activity, which emerge
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Fig.3| Connecting non-exponential extreme event statistics in MEG
resting-state activity and in amarginally subcritical adaptive Ising model.
a, Top: extreme events identified on a single sensor (red dots) usinge=+3s.d.
(horizontal lines). Bottom: the resulting raster of extreme events shown across
273 MEG sensors of asingle subject. b, Top: A. is defined as the total number of
extreme events across all sensorsinatime bine, =nT, amultiple of the sampling
interval 7. Bottom: representative sequences of network excitation extracted
fromtheraster in the top panel for increasinge,. ¢, Rescaled distributions P(4,)
forarange of €, (different plot symbols) collapse onto a single non-exponential
master curve for both the data (green symbols represent the average over
subjects) and model simulated at baseline parameters, with K =100 subsystems
of ny,, =1,000 neurons each (violet symbols) (N =10°). The corresponding
distribution in phase-scrambled MEG signals shows an exponential behavior,
with absence of high excitation events (the brown line represents surrogate
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data). Inset: rescaled P(A,) (green symbols represent the average over n =14 MEG
subjects, whereas violet symbols represent the average over the model
simulations) and respective s.d. (colored areas) shown for e =2T.d, Rescaled
distributions of quiescence durations, P(/,) collapse onto a single master curve
for different values of €. The plotting conventions and model simulation details
arethe same asin c. Top inset: rescaled P(I,) (green symbols represent the average
of n=14 MEG subjects, whereas violet symbols are the average over model
simulations) and respective s.d. (colored area) shown for € = 2T. Bottom inset: the
probability P, of finding a quiescent time bin approximately scales as

Po = exp (—roefi)withe; §,=0.582 + 0.013and §,= 0.610 + 0.012 for the dataand
model, respectively; 8,= 0.996 + 0.001 for surrogate data. The exponent 8, was
estimated via an ordinary linear least-square fity = ax + b, where y = In(—In Py)
and x = In(e).

jointly with LRTC in alpha oscillations"; and (2) neuronal avalanches,
thatis, spatio-temporal cascades of threshold-crossing sensor activity,
which have beenidentified in the MEG of the resting state of the human
brain"~°. Both of these phenomena are generally seen as chains of
extreme events thatare diagnostic of the underlying brain dynamics'**.

We start by defining the instantaneous network excitation A(¢) as
the number of extreme events co-occurring within time bins of size €
acrossthe entire MEG sensor array (Methods). For each sensor, extreme
events are the extreme points in that sensor’s signal that exceed a set
threshold e =+ ns.d. (Fig. 3a). Foragiven threshold, A.depends on the
size of the time bin e that we use to analyze the data (Fig. 3b). To make
contact withthe model, we parcel our simulated network into Kequally
sized disjoint subsystems of n,, = N/K neurons each, and consider
each subsystem activity m, (u=1, ..., K) as the equivalent of a single
MEG sensor signal (Methods); A, for the model then follows the same
definition as for the data, allowing us to perform direct side-by-side
comparisons of extreme event statistics.

Wefirst study the distribution of the network excitation, P(4,). We
use the same threshold value e=2.9 s.d. for both the data and model
analyses (see Methods). Extensive robustness analyses confirm that our
key results are stableinthe 2.7 s.d. < e <3.1s.d. range (Supplementary
Figs.19 and 20), which we detail result-by-result below.

Although P(A,) generally depends on ¢, the distributions corre-
sponding to different € collapse onto a single, non-exponential mas-
ter curve when A, is rescaled by the average instantaneous network
excitation (A.) (Fig. 3c). The excitation distribution is thus invariant

under temporal coarse-graining and the number of extreme events
scales non-trivially with €, in contrast to phase-shuffled surrogate
data (Methods and Fig. 3¢). Model simulations fully recapitulate this
data collapse as well as the non-exponential extreme event statistics.
Moreover, we show that model simulations reproduce P(A,) to within
the variability observed among subjects (Fig. 3¢, inset) for given values
of €. An analysis of the Kullback-Leibler divergence (Supplementary
Section 2) shows that the model quantitatively reproduces the meas-
ured distributions to an expected degree given the natural variability
in the data (Supplementary Table1).

Periods of excitation (A, # 0) are separated by periods of quies-
cence (A, =0) of duration /.= ne, where nis the number of consecutive
time binswith A, = 0. The distribution of quiescence durations, P(/,), is
invariantunder temporal coarse-graining when rescaled by the average
quiescence duration, (/.), collapsing onto a single, non-exponential
master curve (Fig. 3d). As was the case with the distribution of network
excitation, the model-predicted distribution of quiescence durations
also diverges from the data average distribution by an amount that is
within the range of variability among subjects (Fig. 3d, upperinsetand
Supplementary Table 1).

We also show that the overall probability P,(¢) of finding a quies-
cent time bin follows a non-exponential relation Py(€) = exp (-ro€e?),
with B,~ 0.6 (Fig. 3d, lower inset), indicating that extreme events
grouped into bins of increasing size are not independent®. These
results are robust to changes in N, so long as n,,;, or the number of
subsystems Kis fixed, or does not change considerably (Supplementary
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Figs.15and 16); otherwise, the value of ethat defines an extreme event
should be adjusted accordingly, in particular to closely reproduce the
distribution of P(/.) (Supplementary Fig.17). Finally we notice that the
quantities (A.)and (/,) scale as apower of the bin size ¢ (Supplementary
Fig.21), and are connected to each other by a relationship of the form
(Ae) ~ <I€)bA’(Supplementary Fig.21). Thisimplies that for afixed value
ofe,bothdistributions P(4,) and P(I.) are controlled by asingle quantity,
forexample, (A,).

We performed the dataand model analyses using the same thresh-
old value e =2.9 s.d., which was fixed by comparing the amplitude
distribution of MEG sensor signals and model subsystem signals m,,.
The distributions P(A,) and P(l,) follow a similar functional behavior
in both the data and model for different values of e. The influence of
thresholding on the analysis of continuous signals hasbeen previously
investigated®. Here, for increasing values of e, we find that: (1) the
probability of large (small) A. tends to decrease (increase); (2) the prob-
ability of large (small) /. tends to increase (decrease) (Supplementary
Fig.18). These effects are more pronounced for the distribution of P(/,),
particularly in its tail. Importantly, P(A,.) and P(/.), as well as the expo-
nent B, show a similar dependence on e in both MEG data and model
simulations and, as a consequence, the agreement between the data
and modelis robust to changesin e (Supplementary Figs. 19 and 20).

In summary, our simple model at baseline parameters provides a
robust accountof the collective statistics of extreme events. We empha-
size that the excellent match to the observed long-tailed distributions
is only observed for the inferred value f ~ 0.99, which is very close to
criticality; for $=0.98, we already observe considerable deviations
from the data (Supplementary Figs. 22 and 23), demonstrating that
excitation and quiescence distributions represent a powerful bench-
mark for collective brain activity.

Concomitant occurrence of scale-free neuronal
avalanches and scale-specific oscillations

A neuronal avalanche is a maximal contiguous sequence of time bins
populated with at least one extreme event per bin (Fig. 4a)®*"; every
avalanche thus starts after—and ends with—a quiescent timebin (4, = 0)
(see Methods for details). Neuronal avalanches are typically character-
ized by theirsize s, defined as the total number of extreme events within
theavalanche. Avalanche sizes have beenreported to have ascale-free
power-law distribution®™"*3°,

We estimate the distribution of avalanche sizes P(s) inthe resting-
state MEG, and compare it with the distribution obtained from model
simulation at close-to-critical baseline parameter set (Fig. 4b). Both
distributions are described by a power-law with an exponential cut-
off" and show an excellent match across subjects and for individual
subjects. Again, the Kullback-Leibler divergence between the mean
empirical and model distribution is smaller than the mean Kullback-
Leibler divergence estimated among MEG subjects (Supplementary
Table 1). Phase-scrambled surrogate data strongly deviate from the
power-law observations, as do model predictions when parameter 8
is moved even marginally below 0.99 (Supplementary Fig. 24). These
results are independent of the Nso long as the size n,, or the number
K of the subsystems are fixed or do not change considerably (Sup-
plementary Figs. 15 and 16). Importantly, the model also reproduces
the distribution of avalanche durations (Supplementary Fig. 26) and,
in particular, the scaling relation (s)(d) ~ d° that connects average
avalanche sizes s and durations d. Unlike the power-law exponent of
avalanche size distribution that typically depends on time bin size €
(refs. #°%), the exponent { does not depend on €, as shown by the data
collapse for both MEG data and model (Fig. 4b, inset). Although the
scaling behavior is reproduced qualitatively, the inferred and model-
derived values of (are notin quantitative agreement, probably due to
the overly simplified mean-field connectivity assumed by our model.

As shown for P(A,) and P(I,), the distributions of avalanche sizes
alsomoderately depend on e. This has been previously reported both
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Fig. 4 | Reproducing scale-free neuronal avalanches in MEG resting-state
activity with a marginally subcritical adaptive Ising model. a, Schematic
representation of a neuronal avalanche. The avalanche size sis the sum of
network excitations A, over time bins belonging to the avalanche; its duration, d,
isthe number of bins multiplied by their duration, €. b, Distribution of avalanche
sizes, P(s), for MEG data (the green circles with error bars represent the average
over the subjects *s.d.) and the model simulated at baseline parameters with

K =100 subsystems of n,;, = 100 neurons each (the violet squares with error bars
represent the average over the model simulations + s.d.). Both distributions are
estimated using e =2.9s.d.and €, =4T. The brown curve represents the P(s)
obtained from the surrogate data (Supplementary Section 1.8) with the same
threshold and bin size. The inset shows that the average avalanche size scales with
its duration as (s) ~ d° (different plot symbols represent different ¢, as in Fig. 3;
green, MEG data; violet, model simulation; model simulation curves are vertically
shifted for clarity) so that the exponent {remains independent of €; {=1.28 + 0.01
for the MEG data (dashed line) and {=1.58 + 0.03 for the model simulation (thick
line). The exponent {was estimated via ordinary linear least-square fity =ax+b,
with y = In(s)and x = In(e~3/2d).

in theresting human brain and in other systems®*°. We find that simu-
lated avalanche size distributions show a similar dependence to the
data, and are thus in agreement with empirical distributions for a
range of e values (Supplementary Fig. 25). Importantly, we observe
that therelationship between avalanche sizes and durationsis robust
to changesine, and the exponent {shows no substantial dependence
one(Supplementary Figs. 18 and 25).

Discussion

Inthis paper we put forward the adaptive Ising class of models for cap-
turing large-scale brain dynamics. To our knowledge, this is the sim-
plestmodel class that reproduces the stylized co-existence of neuronal
avalanches and oscillations—the two antithetic features of real brain
dynamics. In this formulation, individual units are neither intrinsic
oscillators themselves®>*, nor are they mesoscopic units operating
close to a Hopfbifurcation’®; the collective dynamics is therefore not
aresult of oscillator synchronization (even though this regime could
also be captured by adifferent realization of an adaptive Ising model).
Our proposal thus provides an analytically tractable alternative to, or
perhaps a reformulation of, existing models™'"'**°, which typically
implicate either particular excitation/inhibition or network resource
balance, or ad hoc driving mechanisms to openup the regime inwhich
oscillations and avalanches may co-exist.

Starting with the seminal work of Hopfield*’, the functional
aspects of neural networks have traditionally been studied with micro-
scopicspinmodels or attractor neural networks. The associated inverse
(maximum entropy) problemrecently attracted great attention in con-
necting spin models to data**?, particularly with regards to criticality
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signatures® and the structure of temporal correlations in the neural
activity****. However, the dynamical expressive power of maximum-
entropy stationary, kinetic or latent-variable models has been limited,
and therhythmicbehavior of brain oscillations was beyond the practi-
cal scope of these models. The adaptive Ising model class can be seen
as a natural yet orthogonal extension to those previous works, as it
enables oscillations and furthermore permits us to explore an inter-
estinginterplay of mechanisms, for example, by having self-feedback
drive Hopfield-like networks (with memories encoded in the coupling
matrixJ) through sequences of stable states.

By contrast to past works™"”, we do not make contact with exist-
ing data by qualitatively matching the phenomenology, but instead
by proper parameter inference. The inferred parameters consistently
placethe model very close toits critical point, supporting the hypoth-
esis thatalpha oscillations represent brain tuning to criticality”. Infer-
ence of parameters with methods that are not based on autocorrelation
matching*® has confirmed this result (Supplementary Section 1.7 and
Supplementary Figs.3-6). Other models also predict adaptive param-
eters that are slightly subcritical’. However, within our framework,
the possibility of mapping empirical data to a defined region in the
adaptive Ising model phase diagram through parameter inference
paves the way for further quantification of the relationship between
measures of brain criticality and healthy, developing or pathological
brain dynamics along the lines developed recently*s,

Our inferred model provides a broad account of brain dynamics
across spatial and temporal scales. Despite the successes, we openly
acknowledge the quantitative failures of our model: first, at the single
sensor level, small deviations exist in the distributions of log activity
(Fig.2c), probably due tovery long timescales or non-stationaritiesin
the MEG signals™; second, the scaling exponent governing the relation
between the avalanche size and duration, ¢, is not reproduced quanti-
tatively (Fig.4b, inset). Despite these valid points of concern, we find it
remarkable that such asimple and tractable model can quantitatively
account for so much of the observed phenomenology.

Future work should, first, consider connectivity beyond the
simple all-to-all mean-field version that weintroduced here, probably
leading to a better data fit and new types of dynamics, for example,
cortical waves (Supplementary Section 1.5). Second, we strongly advo-
cate forrigorous and transparent data analysis and quantitative—not
only stylized—comparisons to data. To this end, care must be taken
not only when inferring the essential model parameters beyond the
linear approximation*®*’, but also when treating the hidden degrees
of freedom related to the data analysis (specifically, subsampling,
temporal discretization, thresholding and so on)®*°?**, Third, it is
important to confront the model with different types of brainrecord-
ings; a real success in this vein would be to account simultaneously
for the activity statistics at the microscale (spiking of individual
neurons) as well as at the mesoscale (coarse-grained activity probed
with MEG, EEG or LFP).

Methods

Data acquisition and preprocessing

Ongoing brain activity was recorded from 14 healthy participants in
the MEG core facility at the National Institute of Mental Health for a
duration of 4 min (eyes closed). All of the experiments were performed
inaccordance with the NIH guidelines for human subjects. All partici-
pants gave written informed consent. The sampling rate was 600 Hz,
and the datawere bandpass-filtered between1and 150 Hz. Power-line
interferences were removed using a 60 Hz notch filter designed in
Matlab (Mathworks). The sensor array consisted of 275 axial first-order
gradiometers. Two dysfunctional sensors were removed, leaving 273
sensorsintheanalysis. The analysis was performed directly on the axial
gradiometer waveforms. The data analyzed here were selected from
a set of MEG recordings for a previously published study", in which
further details can be found. For our analyses, we used the subjects

showing the highest percentage of spectral power in the alpha band
(8-13 Hz). Similar results were obtained for randomly selected subjects.

The adaptive Ising model

The model comprises a collection of Nspinss;=+1(i=1, 2,...,N) that
interact with each other with a coupling strength J. In our analysis,
the N spins represent excitatory neurons that are active when s; = +1
or inactive when s;=-1andJ;> 0. Furthermore, we consider the fully
homogeneous scenario in which neurons interact with each other
through synapses of equal strength J;=/=1. However, interesting
generalizations with non-homogeneous, negative, non-symmetric
J;are possible, which allow to include in the model, for example, the
effect of inhibitory neuronal population and structural and functional
heterogeneity. The s;are stochastically activated according to the Glau-
ber dynamics, where the state of a neuron is drawn from the marginal
Boltzmann-Gibbs distribution

P(sp) < exp(Bhys) By =0y + hy. ()
J

The spins experience an external field A, a negative feedback that
depends on network activity according to the following equation,

; 1
h; = —-—c— S, (2)
=N %Y

where cisaconstant that controls the feedback strength, and the sum
runs over a neighborhood of the neuron i specified by »;; indexj enu-
merates over all of the elements of this neighborhood. Depending on
the choice of »;, the feedback may depend on the activity of the neuron
iitself (self-feedback), its nearest neighbors, or the entire network—the
case which we considered in the main paper.Inamorerealistic setting
including both excitatory (J;> 0) and inhibitory neurons (J;< 0), one
could then take into account the different structural and functional
properties of excitatory and inhibitory neurons by considering differ-
entinteraction and feedback properties.

In the fully connected continuous time limit, the model can be
described with the following Langevin equations:

m = —m + tanh [f(Jm + h)| + b

©)

h = —cm,

where £is unit-uncorrelated Gaussian noise; the stochastic term thus
has amplitude b = 1/2/(BN). This framework allows for a reparametri-
zazionof spin variabless;from (- 1,1) to (0, 1) by introducing a constant
term, —cm,, in the feedback equation (Supplementary Section 1.3).
Equation (3) can be linearized around the stationary point
(m*=0, h*=0) to calculate dynamical eigenvalues and construct a
phase diagram (Fig. 1b, main text):

P Nl @

2 2

In the resonant regime below the critical point (¢ > c*, < f,), itis pos-
sibleto analytically compute the autocorrelation function, C(r), of the
ongoing network activity m(¢) in the linear approximation®:

)4

C(1) = e " (coswT + P sin wr), (5)

where y=(1-p)/2 is the relaxation time of the system, and

w =1/ Bc— (1— B)*/4 is the characteristic angular frequency of the

model.
In our simulations, one time step corresponds to one system
sweep—that is, N spin flips—of Monte Carlo updates, and equation
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(2) isintegrated using At =1/N. Note that this choice of timescales for
deterministic versus stochastic dynamicisimportant, asitinterpolates
between the quasi-equilibrium regime where spins fully equilibrate
withrespecttothefield h, and theregime where the field isupdated by
feedback after each spin-flip and so spins can constantly remain out of
equilibrium; Atis generally much smaller than the characteristic time
of the adaptive feedback that is controlled by the parameter c.

Detrended fluctuations analysis of the alpha band amplitude
envelope

The DFA™ consists of the following steps: (1) given a time-series
x{i=1,...,N),calculate the integrated signal /(k) = Zle(x(i) — (x)) where
(x)is the mean of x;; (2) divide the integrated signal /(k) into boxes of
equal length n and, in each box, fit /(k) with a first-order polynomial
1,(k), whichrepresents the trend in that box; (3) for each n, detrend /(k)
by subtracting the local trend, /,(k), in each box and calculate the

root-mean-square (r.m.s.) fluctuation F(n) = E',:'zl (k) - In(k)]z/N; 4)

repeat this calculation over a range of box lengths n and obtain a
functional relation between F(n) and n. For a power-law correlated
time-series, the average r.m.s. fluctuation function F(n) and the box
size nare connected by apower-law relation F(n) = n®. The exponent
quantifies the long-range correlation properties of the signal. Values
of a < 0.5indicate the presence of anti-correlationsin the time-series x;,
a=0.5indicates the absence of correlations (white noise), and values
of a>0.5indicate the presence of positive correlations in x;. The DFA
was appliedtothe alphaband (8-13 Hz) amplitude envelope. Datawere
bandfilteredinthe 8-13 Hz range usingafiniteimpulse response (FIR)
filter (second order) designed in Matlab. The scaling exponent a was
estimated in the n range corresponding to 2-60 s to avoid spurious
correlationsinduced by the signal filtering®.

Extreme events, instantaneous network excitation and
neuronal avalanches

Data. For each sensor, positive and negative excursions beyond a
threshold e were identified. In each excursion beyond the threshold,
asingle event was identified at the most extreme value (the maximum
for positive excursions and minimum for negative excursions). Com-
parison of the signal distribution with the best-fit Gaussian indicates
that the two distributions start to deviate from one another at around
+2.7s.d. (ref."). A Gaussian distribution of amplitudes is expected to
be produced fromasuperposition of uncorrelated sources, and is not
indicative of individual extreme events. For such areason, one needs
to choose e > 2.7 s.d. for the threshold. Higher values will reduce the
number of false positives, but increase the number of false negatives.
Inthisstudy we seteto+2.9s.d. We performed an extensive robustness
analyses to confirm that our key results are stable across a range of e
values (Supplementary Figs. 19, 20 and 25).

Theraster ofidentified events was binned at anumber of temporal
resolutions €, which are a multiple of the sampling time 7=1.67 ms.
The network excitation A, at a given temporal resolution € is defined
as the number of events occurring across all sensors in a time bin. An
avalanche is defined as a continuous sequence of time bins in which
there is at least an event on any sensor, ending with at least a time bin
with no events (Fig. 4a). The size of an avalanche, s, is defined as the
number of events in the avalanche. See refs. ™ *° for more details.

Model. The simulated network is parceled into K equally sized disjoint
subsystems of n,, = N/K neurons each, and each subsystem activity
m, (u=1, ..., K) is considered as the equivalent of a single MEG sen-
sor signal. The number of neurons ng,, in each subsystem is fixed by
matching the amplitude distribution of m, to the estimated MEG sen-
sor amplitude distribution between + 2.7 s.d., which is the range over
which amplitude distributions follow a Gaussian behavior". This pro-
cedure gives the sufficient number of neurons whose collective activity

accounts for the the Gaussian core of the empirical signal amplitude
distribution, thus providingacommon reference to consistently define
extreme events in empirical data and model simulations. Extreme
events, network excitation and neuronal avalanches for the model
follow the same definition as for the data.

Data-model comparison. Beyond the two key model parameters that
are directly inferred from individual sensors (8, ¢), quantitative data
analysis of extreme events requires additional parametric choices
(timebine, threshold e, system size Nand subsystem size n,;), both for
empirical data as well as model simulations. We successfully demon-
stratethescalinginvariance of the relevant distributions with respect
to €, and robustness of results in a range of e values (Supplementary
Figs.19,20 and 25). Moreover, we demonstrate robustness with respect
to ng, at fixed K= N/n,;,, and to K at fixed ng,,. However, if K (or ng,;)
changes considerably, a close match to data (in particular, P(/,)) still
requires adjusting one extra parameter (for example, threshold e;
Supplementary Fig.17).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The dataanalyzed inthis study were collected at the MEG facility of the
NIH for a previously published study". The databelong to NIH and are
available from O.S. (shrikio@bgu.ac.il) on reasonable request. Source
dataare provided with this paper.

Code availability
The codes™ used in the current study are publicly available on GitHub
(https://github.com/demartid/stat_mod_ada_nn).

References

1. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization:

A Universal Concept in Nonlinear Sciences (Cambridge Univ.
Press, 2001).

2.  Hebb, D. O. The Organization of Behaviour (Wiley, 1949).

Abeles, M. Corticonics (Cambridge Univ. Press, 1991).

4. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical
networks. Science 304, 1926-1929 (2004).

5. Berger, H. Uber das elektrenkephalogramm des menschen.
Arch. Psychiatr. Nervenkr. 87, 527-570 (1929).

6. Wang, X.-J. Neurophysiological and computational
principles of cortical rhythms in cognition. Physiol. Rev. 90,
1195-1268 (2010).

7. Chow, C. C., White, J. A, Ritt, J. & Kopell, N. J. Frequency control
in synchronized networks of inhibitory neurons. J. Comput.
Neurosci. 5, 407-420 (1998).

8. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical
circuits. J. Neurosci. 23, 11167-11177 (2003).

9. Gireesh, D. E. & Plenz, D. Neuronal avalanches organized as
nested theta-and beta/gamma-oscillations during development
of cortical layer 2/3. Proc. Natl. Acad. Sci. USA 105, 7576-7581
(2008).

10. Tagliazucchi, E., Balenzuela, P., Fraiman, D. & Chialvo, D. R.
Criticality in large-scale brain FMRI dynamics unveiled by a novel
point process analysis. Front. Physiol., https://doi.org/10.3389/
fphys.2012.00015 (2012).

1. Shriki, O. et al. Neuronal avalanches in the resting meg of the
human brain. J. Neurosci. 33, 7079-7090 (2013).

12. Lombardi, F., Herrmann, H. J., Perrone-Capano, C., Plenz, D. & de
Arcangelis, L. Balance between excitation and inhibition controls
the temporal organization of neuronal avalanches. Phys. Rev. Lett.
108, 228703 (2012).

w

Nature Computational Science


http://www.nature.com/natcomputsci
https://github.com/demartid/stat_mod_ada_nn
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015

Article

https://doi.org/10.1038/s43588-023-00410-9

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Lombardi, F. & de Arcangelis, L. Temporal organization of
ongoing brain activity. Euro. Phys. J. Special Topics 223,
2119-2130 (2014).

Fontenele, A. J. et al. Criticality between cortical states. Phys. Rev.
Lett. 122, 208101 (2019).

Poil, S.-S., Hardstone, R., Mansvelder, H. D. & Linkenkaer-Hansen,
K. Critical-state dynamics of avalanches and oscillations jointly
emerge from balanced excitation/inhibition in neuronal networks.
J. Neurosci. 32, 9817-9823 (2012).

Scarpetta, S., Giacco, F., Lombardi, F. & Candia, A. D. Effects of
poisson noise in a if model with stdp and spontaneous replay of
periodic spatiotemporal patterns, in absence of cue stimulation.
Biosystems 112, 258-264 (2013).

Di Santo, S., Villegas, P., Burioni, R. & Munoz, M. A. Landau-
Ginzburg theory of cortex dynamics: scale-free avalanches
emerge at the edge of synchronization. Proc. Natl. Acad. Sci. USA
115, 1356-1365 (2018).

Costa, A. A., Brochini, L. & Kinouchi, O. Self-organized
supercriticality and oscillations in networks of stochastic spiking
neurons. Entropy 19, 399 (2017).

Kinouchi, O., Brochini, L., Costa, A. A., Campos, J. G. F. & Copelli,
M. Stochastic oscillations and dragon king avalanches in self-
organized quasi-critical systems. Sci. Rep. 9, 3874 (2019).
Buendia, V., Villegas, P., Burioni, R. & Munoz, M. A. Hybrid-type
synchronization transition: where incipient oscillations, scale-
free avalanches, and bistability live together. Phys. Rev. Res. 3,
023224 (2021).

De Martino, D. Feedback-induced self-oscillations in large
interacting systems subjected to phase transitions. J. Phys. A 52,
045002 (2019).

Azouz, R. & Gray, C. M. Dynamic spike threshold reveals a
mechanism for synaptic coincidence detection in cortical
neurons in vivo. Proc. Natl. Acad. Sci. USA 97, 8110-8115 (2000).
Gardiner, C. Stochastic Methods Vol. 4 (Springer, 2009).

da Silva, F. L. EEG and MEG: relevance to neuroscience. Neuron
80, 1112-1128 (2013).

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & limoniemi,
R. J. Long-range temporal correlations and scaling behavior in
human brain oscillations. J. Neurosci. 21, 1370-1377 (2001).
Freyer, F., Aquino, K., Robinson, P. A, Ritter, P. & Breakspear, M.
Bistability and non-gaussian fluctuations in spontaneous cortical
activity. J. Neurosci. 29, 8512-8524 (2009).

Lombardi, F., Chialvo, D. R., Herrmann, H. J. & de Arcangelis, L.
Strobing brain thunders: functional correlation of extreme activity
events. Chaos Solitons Fract. 55, 102 (2013).

Wang, J. W. J. L., Lombardi, F., Zhang, X., Anaclet, C. & lvanov, P. C.
Non-equilibrium critical dynamics of bursts in 8 and & rhythms as
fundamental characteristic of sleep and wake micro-architecture.
PLoS Comput. Biol. 15,1007268 (2019).

Lombardi, F. et al. Critical dynamics and coupling in bursts of
cortical rhythms indicate non-homeostatic mechanism for sleep-
stage transitions and dual role of VLPO neurons in both sleep and
wake. J. Neurosci. 40, 171-190 (2020).

Lombardi, F., Shriki, O., Herrmann, H. J. & de Arcangelis, L.
Long-range temporal correlations in the broadband resting state
activity of the human brain revealed by neuronal avalanches.
Neurocomputing 461, 657-666 (2021).

Peng, C.-K. et al. Mosaic organization of DNA nucleotides.

Phys. Rev. E 49, 1685-1689 (1994).

Eisler, Z., Bartos, |. & Kertész, J. Fluctuation scaling in

complex systems: Taylor’s law and beyond. Adv. Phys. 57,

89-142 (2008).

Lynn, C. W., Cornblath, E. J., Papadopoulos, L., Bertolero, M. A. &
Bassett, D. S. Broken detailed balance and entropy production in
the human brain. Proc. Natl. Acad. Sci. USA 118, 1-7 (2021).

34. Fekete, T. et al. Critical dynamics, anesthesia and information
integration: lessons from multi-scale criticality analysis of voltage
imaging data. Neurolmage 183, 919-933 (2018).

35. Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W.
Coarse graining, fixed points, and scaling in a large population of
neurons. Phys. Rev. Lett. 123, 178103 (2019).

36. Font-Clos, F., Pruessner, G., Moloney, N. R. & Deluca, A. The perils
of thresholding. New J. Phys. 17, 043066 (2015).

37. Deco, G., Kringelbach, M. L., Jirsa, V. K. & Ritter, P. The dynamics of
resting fluctuations in the brain: metastability and its dynamical
cortical core. Sci. Rep. 7, 3095 (2017).

38. Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity
dynamically evolves on multiple time-scales over a static
structural connectome: models and mechanisms. Neuroimage
160, 84-96 (2017).

39. Pausch, J., Garcia Millan, R. & Pruessner, G. Time dependent
branching processes: a model of oscillating neuronal avalanches.
Sci. Rep. 10, 13678 (2020).

40. Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proc. Natl. Acad. Sci.
USA 79, 2554-2558 (1982).

41. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise
correlations imply strongly correlated network states in a neural
population. Nature 440, 1007-1012 (2006).

42. Tkacik, G. et al. Searching for collective behavior in a large network
of sensory neurons. PLoS Comput. Biol. 10, 1003408 (2014).

43. Tkacik, G. et al. Thermodynamics and signatures of criticality
in a network of neurons. Proc. Natl. Acad. Sci. USA 112,
11508-11513 (2015).

44. Marre, O., El Boustani, S., Frégnac, Y. & Destexhe, A. Prediction
of spatiotemporal patterns of neural activity from pairwise
correlations. Phys. Rev. Lett. 102, 138101 (2009).

45. Nasser, H., Marre, O. & Cessac, B. Spatio-temporal spike train
analysis for large scale networks using the maximum entropy
principle and Monte Carlo method. J. Stat. Mech. Theory Exp. 3,
03006 (2013).

46. Ferretti, F., Chardes, V., Mora, T., Walczak, A. M. & Giardina, I.
Building general langevin models from discrete datasets. Phys.
Rev. X10, 031018 (2020).

47. Menesse, G., Marin, B., Girardi-Schappo, M. & Kinouchi, O.
Homeostatic criticality in neural networks. Chaos Solitons Fract.
156, 111877 (2022).

48. Fekete, T., Hinrichs, H., Sitt, J. D., Heinze, H.-J. & Shriki, O.
Multiscale criticality measures as general-purpose gauges of
proper brain function. Sci. Rep. 11, 14441 (2021).

49. Bruckner, D. B., Ronceray, P. & Broedersz, C. P. Inferring the
dynamics of underdamped stochastic systems. Phys. Rev. Lett
125, 058103 (2020).

50. Levina, A. & Priesemann, V. Subsampling scaling. Nat. Commun.
8,15140 (2017).

51. Lombardi, F. & De Martino, D. demartid/stat mod_ada_nn: v1.1.1
(Zenodo, 2022); https://doi.org/10.5281/zenodo.7426504

Acknowledgements

This research was funded in whole, or in part, by the Austrian Science
Fund (FWF) (grant no. PT1013M03318 to F.L. and no. P34015 to GT.).
For the purpose of open access, the author has applied a CC BY public
copyright licence to any Author Accepted Manuscript version arising
from this submission. The study was supported by the European

Union Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie action (grant agreement No. 754411 to F.L.).

Author contributions
F.L., GT. and D.D.M. designed the research and wrote the paper. F.L. and
D.D.M. analyzed the data. All of the authors performed the research.

Nature Computational Science


http://www.nature.com/natcomputsci
https://doi.org/10.5281/zenodo.7426504

Article

https://doi.org/10.1038/s43588-023-00410-9

Competinginterest
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s43588-023-00410-9.

Correspondence and requests for materials should be addressed to
Fabrizio Lombardi, Gasper Tkacik or Daniele De Martino.

Peer review information Nature Computational Science thanks
Cristiano Capone, Osame Kinouchi, and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.
Handling editor: Ananya Rastogi, in collaboration with the Nature
Computational Science team. Peer reviewer reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

Nature Computational Science


http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00410-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

nature portfolio

Corresponding author(s):  Fabrizio Lombardi

Last updated by author(s): Dec 26, 2022

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested

OO X OK

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX O 0 XK [OXOS
X

O X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The data was recorded using a CTF MEG system (CTF Systems). Data preprocessing was performed using the Field-Trip toolbox (version
2011-09) in MATLAB 2011a (Mathworks)
Data analysis Data analysis was performed in MATLAB 2020b.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data analyzed in this study was collected at the MEG facility of the NIH. Data belongs to NIH and is available upon request. We have permission to use it and
share it upon request. We do not have permission to upload the data into a public repository.

>
Q)
—
c
D)
§O)
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
[
3
3
Q
=
2




Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex and gender were not relevant for the present study. We did not perform sex/gender based analyses. Although this
information was collected for the original study (Shriki et al, J. Neurosci. 33 (16) : 7079 -7090, 2013; see Population
characteristics), it was not accessible to the Authors and was not relevant for the selection of the 14 subjects used for the
present study. Because we were interested in the connection between alpha oscillations and brain criticality, subject
selection was solely based on the percentage of spectral power in the alpha band (8-13 Hz).

Population characteristics The NIH facility recorded activity from 104 subjects (38 males and 66 females; age, 31.8 + 11.8 ) for 4 min at rest with eyes
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between alpha oscillations and brain criticality, we used 14 subjects showing high percentage of spectral power in the alpha band (8-13 Hz).
Similar results were obtained for randomly selected subjects.
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