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Statistical modeling of adaptive neural 
networks explains co-existence of avalanches 
and oscillations in resting human brain

Fabrizio Lombardi    1  , Selver Pepić1, Oren Shriki    2, Gašper Tkačik1   & 
Daniele De Martino    3 

Neurons in the brain are wired into adaptive networks that exhibit 
collective dynamics as diverse as scale-specific oscillations and scale-free 
neuronal avalanches. Although existing models account for oscillations 
and avalanches separately, they typically do not explain both phenomena, 
are too complex to analyze analytically or intractable to infer from data 
rigorously. Here we propose a feedback-driven Ising-like class of neural 
networks that captures avalanches and oscillations simultaneously and 
quantitatively. In the simplest yet fully microscopic model version, we 
can analytically compute the phase diagram and make direct contact with 
human brain resting-state activity recordings via tractable inference of 
the model’s two essential parameters. The inferred model quantitatively 
captures the dynamics over a broad range of scales, from single sensor 
oscillations to collective behaviors of extreme events and neuronal 
avalanches. Importantly, the inferred parameters indicate that the co-
existence of scale-specific (oscillations) and scale-free (avalanches) 
dynamics occurs close to a non-equilibrium critical point at the onset of  
self-sustained oscillations.

Synchronization is a key organizing principle that leads to the emer-
gence of coherent macroscopic behaviors across diverse biological 
networks1. From Hebb’s neural assemblies2 to synfire chains3, synchro-
nization has also strongly shaped our understanding of brain dynamics 
and function4. The classic and arguably most prominent example of 
large-scale neural synchronization is brain oscillations, first reported 
about a century ago5: periodic, large deflections in electrophysiologi-
cal recordings such as electroencephalography (EEG), magnetoen-
cephalography (MEG) or local field potential (LFP)4,5. As oscillations are 
thought to play a fundamental role in brain function, their mechanistic 
origins have been the subject of intense research. According to the cur-
rent view, the canonical circuit that generates prominent brain rhythms 
such as the alpha oscillations and the alternation of up- and down-states 
uses mutual coupling between excitatory (E) and inhibitory (I) neurons6. 

Alternative circuits, including I–I population coupling, have been pro-
posed to explain other brain rhythms such as high-frequency gamma 
oscillations7. Setting biological details aside, the majority of research 
has predominantly focused on the emergence of synchronization at 
a preferred temporal scale—the oscillation frequency.

Yet brain activity also exhibits complex, large-scale cooperative 
dynamics with characteristics that are antithetic to those of oscilla-
tions. In particular, empirical observations of neuronal avalanches 
have shown that brain rhythms co-exist with activity cascades in which 
neuronal groups fire in patterns with no characteristic time or spatial 
scale, suggesting that the brain may operate near criticality8–14. In this 
context, the co-existence of scale-free neuronal avalanches with scale-
specific oscillations suggests an intriguing dichotomy that is currently 
not understood. On the one hand, models of brain oscillations are 
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the new state of neuron si is drawn from the marginal Boltzmann–Gibbs 
distribution P(si) ∝ exp(β ̃hisi), with ̃hi = ∑j≠iJijsj + h, where β is remi-
niscent of the inverse temperature for an Ising model (see Methods).

Multiple interpretations of this model are possible. On the one 
hand, negative feedback can be identified with a mean-field approxima-
tion to the inhibitory neuron population that uniformly affects all 
excitatory neurons with a delay given by the characteristic time c−1 
(Supplementary Section 1.4). On the other hand, feedback could be 
seen as intrinsic to excitatory neurons, mimicking, for example, spike-
threshold adaptation22. Exploration-worthy (and possibly more real-
istic) extensions within the same model class are accessible by 
considering two ways in which geometry and neural biology can enter 
the model. First, as in the standard Ising magnet, the interaction matrix 
Jij can be used to model cell types (for example, inhibitory versus excita-
tory types; Supplementary Section 1.4), the spatial structure of the 
cortex, or empirically established topological features of real neural 
networks (Supplementary Section 1.5). Second, feedback hi to neuron 
i could be derived from a local magnetization in a neighborhood around 
neuron i instead of the global magnetization; in the interesting limiting 
case in which ̇hi = −csi, each neuron would feedback only on its own 
past spiking history and the model would reduce to a set of coupled 
binary oscillators (see Supplementary Section 1.2 and Supplementary 
Fig. 2 for a discussion of this limiting case). Irrespective of the exact 
setting, the model’s mathematical attractiveness stems from its trac-
table interpolation between stochastic (spiking of excitatory units) 
and deterministic (feedback) elements.

Here we consider the fully connected continuous time limit of 
the model (Fig. 1 and Methods). Network behavior is determined by 
c and β. For c = 0, h = 0, the model reduces to the standard infinite-
dimensional (mean field) Ising model with a second-order phase transi-
tion at β = βc = 1. At non-zero feedback, c > 0, the model is driven out of 
equilibrium and its critical point at βc coincides with an Andronov–Hopf 
bifurcation21. For β < βc and c below a threshold value c* = (β−1)2/4β, m(t) 
is described by an Ornstein–Uhlenbeck process independently of β. For 
β < βc, the system is stable and shows a cross-over from a stable node with 
exponential relaxation (two negative real eigenvalues) to a stable focus 
with oscillation-modulated exponential relaxation (two complex eigen-
values; resonant regime) when c increases beyond c* (Supplementary 
Fig. 7). In the resonant regime, c > c*, oscillations become more promi-
nent as βc = 1 is approached, finally transitioning into self-sustained 
oscillations for β > βc (Supplementary Fig. 8). At β = βc, we have a line of 
Andronov–Hopf bifurcations where a focus loses stability and a limit 
cycle emerges. We find that this bifurcation is supercritical, with the 
first Lyapunov coefficient being negative (that is, λ1 = −(1 + c)β/8 < 0).

We focus on the resonant regime below and at the critical point, 
and study the reversal times and zero-crossing areas of the total net-
work activity m(t) (Fig. 1c). The reversal time, t, is defined as the time 
interval between two consecutive points in time at which a given signal 
crosses zero. Correspondingly, the zero-crossing area (a0) is the area 
under the signal curve between two zero-crossing points. The distri-
bution P(a0) of the zero-crossing area follows a power-law behavior 
with an exponent τ = 1.227 ± 0.004 in the vicinity of the critical point. 
As β decreases, the scaling regime shrinks until it eventually vanishes 
for small enough β. Similar behavior is observed for the distribution 
P(t) of reversal times. This distribution also follows a power-law with 
an exponent αt = 1.378 ± 0.004 near the critical point (Fig. 1d). Both 
distributions have an exponential cutoff related to the characteristic 
time of the network activity oscillations, 1/c; this cutoff transforms 
into a hump as β → 1 and c ≫ c*(β), that is, as oscillations in m(t) become 
increasingly prominent (Supplementary Fig. 9). Importantly, for the 
non-interacting (J = 0) model, the distributions P(a0) and P(t) follow 
a purely exponential behavior (Fig. 1d, inset), indicating that the co-
existence of oscillatory bursts and power-law distributions for the 
network activity requires neuron interactions as well as the adaptive 
feedback (Supplementary Fig. 10).

very specific and seek to capture physiological mechanisms underly-
ing particular brain rhythms. On the other hand, attempts to explain 
the emergence of neuronal avalanches almost exclusively focus on 
criticality-related aspects and ignore co-existing behaviors such as 
oscillations, even though they themselves may be constitutive for 
understanding the putative criticality. Among the few exceptions15–19, 
Poil et al. proposed a probabilistic integrate and fire spiking model with 
E and I neurons, which generates long-range correlated fluctuations 
reminiscent of MEG oscillations in the resting state, with supra-thresh-
old activity following power-law statistics consistent with neuronal ava-
lanches and criticality15. More recently, by adopting a coarse-grained 
Landau–Ginzburg approach to neural network dynamics, Di Santo et al. 
have shown that neuronal avalanches and related putative signatures 
of criticality co-occur at a synchronization phase transition, where col-
lective oscillations may also emerge17. These results were successively 
extended to a hybrid-type synchronization transition in a generalized 
Kuramoto model20.

Although these and other proposed approaches show that neu-
ronal avalanches may co-exist with some form of network oscilla-
tions15,19 or network synchronization17,20, they suffer from three major 
shortcomings. First, these models are neither simple (for example, in 
terms of parameters) nor analytically tractable, making an exhaustive 
exploration of their phase diagram out of reach. Second, neither of the 
two above-mentioned models simultaneously capture events at the 
microscopic (individual spikes) and macroscopic (collective variables) 
scales. Third, it is not clear how to rigorously connect these models to 
data, beyond relying on qualitative correspondences.

Here we propose a minimal, microscopic and analytically tractable 
model class that can capture a wide spectrum of emergent phenomena 
in brain dynamics, including neural oscillations, extreme event statis-
tics and scale-free neuronal avalanches8. Inspired by recent theoretical 
results on the emergence of self-oscillations in systems with distinct co-
existing phases21, these models are non-equilibrium extensions of the 
Ising model of statistical physics with an extra feedback loop that ena-
bles self-adaptation. As a consequence of feedback, neuronal dynamics 
is driven by the ongoing network activity, generating a rich repertoire 
of dynamical behaviors. The structure of the simplest model from this 
class permits microscopic network dynamics investigations as well as 
an analytical mean-field solution in the Laudau–Ginzburg spirit and, in 
particular, allows us to construct the model’s phase diagram.

The tractability of our model enables us to make direct contact 
with MEG data on the resting-state activity of the human brain. With 
its two free parameters inferred from data, the model closely captures 
brain dynamics across scales, from single sensor MEG signals to collec-
tive behavior of extreme events and neuronal avalanches. Remarkably, 
the inferred parameters indicate that scale-specific (neural oscilla-
tions) and scale-free (neuronal avalanches) dynamics in brain activity 
co-exist close to a non-equilibrium critical point that we proceed to 
characterize in detail.

Results
Adaptive Ising model
We consider a population of interacting neurons whose dynamics is 
self-regulated by a time-varying field that depends on the ongoing 
population activity level (Fig. 1a). The N spins si = ±1 (i = 1, 2, ... , N; N = 104 
in our simulations unless specified otherwise) represent excitatory 
neurons that are active when si = +1 or inactive when si = −1. In the sim-
plest, fully homogeneous scenario described here, neurons interact 
with each other through synapses of equal strength Jij = J = 1 (Methods). 

The ongoing network activity is defined as m(t) = 1

N
∑N

i=1 si(t) (that is, 

as the magnetization of the Ising model) and each neuron experiences 
a uniform negative feedback h that depends on the network activity 
as ḣ = −cm, with c determining the strength of the feedback. Neurons 
si are stochastically activated according to Glauber dynamics, where 
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Model inference from local resting-state brain 
dynamics
In the resonant regime below the critical point (c > c*, β < βc), it is pos-
sible to analytically compute the autocorrelation function, C(τ), of 
m(t) in the linear approximation23 (Methods); C(τ) can be used to infer 
model parameters β and c from empirical data by moment matching 
(see Supplementary Section 1.6 for details on parameter inference), 
thereby locating the observed system in the phase diagram (Fig. 1b).

We test the proposed approach on MEG recordings of the awake 
resting-state of the human brain (Methods). We first analyze brain activ-
ity on individual MEG sensors. To this end, we compare the magnetic 
field recorded on individual MEG sensors with the magnetization m of 
the model (Fig. 1). This analogy relies on the nature of the brain mag-
netic fields captured by the MEG, which are generated by synchronous 
post-synaptic currents in cortical neurons, and on their relationship 
with collective neural fluctuations mimicked by m (ref. 24).

During resting wakefulness the brain activity is largely dominated 
by oscillations in the alpha band (8−13 Hz; Fig. 2a), which have been 
the starting point of many investigations4,25,26 including ours reported 
below; similar results are also obtained for the broadband activity 
(Supplementary Fig. 11). After isolating the alpha band, we estimate β 
and c by fitting the empirical C(τ) to the analytical form of the autocor-
relation (Methods). Figure 2b illustrates the typical quality of the fit 

and the qualitative resemblance between the model and MEG sensor 
signal dynamics.

As our model is fit to reproduce the second-order statistical struc-
ture in the signal, we next turn our attention to signal excursions over 
the threshold—a higher-order statistical feature routinely used to 
characterize bursting brain dynamics10,27–29. To that end, we construct 
the distribution of (log) areas under the signal above a threshold ± e  
(Fig. 2c)26; P(log ae) is bell-shaped, featuring strongly asymmetric tails 
for MEG sensors as well as the model (Fig. 2c). Variability across subjects 
is mostly related to signal amplitude modulation, resulting in small 
horizontal shifts in P(log ae) but no variability in the distribution shape. 
Importantly, the rescaled distribution is independent of the threshold 
e over a robust range of values, and is well-described by a Weibull form, 

PW(x; λ, k) =
k
λ
( x
λ
)
k−1

e−(x/λ)
k
 (Fig. 2c, bottom panel inset; Supplementary 

Fig. 12). Taken together, these observations indicate that our model has 
the ability to capture non-trivial aspects of amplitude statistics in MEG 
signals, within and across different subjects (Supplementary Fig. 13).

Parameters inferred across all sensors and subjects suggest base-
line values of β = 0.99 and c = 0.01 that are well matched with the data, 
which we use for all subsequent analyses (unless stated otherwise). 
Specifically, we find that the best-fit β values strongly concentrate in 
a narrow range around β ≈ 0.99 (β = 0.986 ± 0.006; c = 0.012 ± 0.001), 
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Fig. 1 | Co-existence of oscillations and scale-free activity excursions in the 
adaptive Ising model near the critical point. a, Schematic illustration of the 
model. Interacting spins si (i = 1, 2, ... , N) take values of +1 (up arrows) or −1 (down 
arrows), and experience a time-varying external field h(t) that mimics an 
activity-dependent feedback mechanism. In the fully connected continuous time 
limit, the system can be described by the coupled Langevin equations 
ṁ = −m+ tanh [β(Jm+ h)] + bξ  and ḣ = −cm, where ξ is unit-uncorrelated 
Gaussian noise and b = √2/(βN). These equations can be linearized around the 
stationary point (m* = 0, h* = 0) to calculate dynamical eigenvalues and construct 
a phase diagram. b, Phase diagram for the mean-field adaptive Ising model. An 
Andronov–Hopf bifurcation at βc = 1 separates self-sustained oscillations in m(t) 
for β > βc (green shading) from the regime of intermittent oscillations for c above 
c*(β) (yellow shading) and an Ornstein–Uhlenbeck process (O–U) for c below c* 

(gray shading). c, The reversal time t is the time interval between consecutive 
zero-crossing events in m, whereas a0 is the area under the m(t) curve between 
two zero-crossing events (inset). Distributions P(a0) are shown in the resonant 
regime c > c* for different values of β. When β ≈ 1, P(a0) is approximately 
power-law with exponent τ = 1.227 ± 0.004; τ was estimated in the a0 ∈ [0.1, 100] 
range. d, Distributions P(t) of the reversal times are shown in the resonant regime 
c > c* for different values of β. When β ≈ 1, P(t) is approximately power-law with 
exponent αt = 1.378 ± 0.004; αt was estimated in the t ∈ [2, 500] range. The inset 
shows distributions P(a0) and P(t) for the uncoupled model J = 0, which always 
exhibit exponential instead of power-law behavior (note the linear horizontal 
scale). Power-law fits were performed using a maximum likelihood estimator 
(Supplementary Section 1.8).
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which is very close to the critical point (Fig. 2d and Supplementary  
Fig. 14). Although all analyzed signals are bandpass-limited to a central 
frequency of around 10 Hz by filtering, closeness to criticality seems to 
strongly correlate with the fraction of the total power in the raw signal 
in the alpha band (Fig. 2d; R2 = 0.21; P < 10−5). This suggests that alpha 
oscillations may be closely related to critical brain tuning during the 
resting state11,25,30.

A classic fingerprint of tuning to criticality is the emergence of 
long-range temporal correlations (LRTCs), which have been docu-
mented empirically25,29,30. Long-range temporal correlations in the 
alpha band have been investigated primarily by applying the detrended 
fluctuations analysis (DFA) to the amplitude envelope of MEG or EEG 
signals in the alpha band (Methods)15,25. Briefly, DFA estimates the 
scaling exponent α of the root-mean-square fluctuation function F in 
non-stationary signals with polynomial trends31. In brief, the integrated 
signal is divided into windows of equal length, n, and the local trend is 
subtracted in each window. For signals exhibiting positive (or negative) 
LRTC, F scales as F ∝ nα with 0.5 < α < 1 (or 0 < α < 0.5); α = 0.5 indicates 
the absence of long-range correlations; α also approaches unity for 
a number of known model systems as they are tuned to criticality32.

To test for the presence of LRTC using DFA, we analyzed the scal-
ing behavior of fluctuations and extracted their scaling exponent α.  

To avoid spurious correlations introduced by signal filtering, α was esti-
mated over the range 2 s < n < 60 s (Fig. 2e)25. We find that α is consist-
ently between 0.5 and 1 for all MEG sensors and subjects, in agreement 
with previous analyses25. Importantly, model-free α values measured 
across MEG sensors positively correlate with the inferred β values from 
the model (Fig. 2f), indicating that higher β values are diagnostic of 
the presence of long-range temporal correlations in the amplitude 
envelope. Furthermore, we find that inferred β values correlate with 
the fraction of total signal power in the alpha band (Fig. 2d), which in 
turn correlates with the inferred entropy production in brain signals 
(Supplementary Section 1.1)33.

Taken together, our analyses so far show that the adaptive Ising 
model recapitulates single-MEG-sensor dynamics by matching their 
autocorrelation function and the distribution of amplitude fluctua-
tions, and further suggest that the true MEG signals are best repro-
duced when the adaptive Ising model is tuned close to, but slightly 
below, its critical point (β ≲ 1).

Scale-invariant collective dynamics of extreme 
events
We now turn our attention to phenomena that are intrinsically collec-
tive: (1) coordinated supra-threshold bursts of activity, which emerge 
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model plotted against fitted β, across all MEG sensors and subjects (the colors 
represent the fraction of the total MEG signal power in the alpha band); β values 
closer to βc = 1 are correlated with higher power in the alpha band (linear model fit 
y = ax + b; R2 = 0.21; P = 2 × 10−193; Supplementary Section 1.8). e, Root-mean-
square fluctuation function F(n) of the DFA for the amplitude envelope of MEG 
sensor signals in the alpha band (the green lines represent individual sensors for a 
single subject); F(n) scales as F(n) ∝ nα for 2 s < n < 60 s (light blue dashed lines), 
with 0.53 < α < 0.85. f, Inferred β values correlate with the corresponding DFA 
exponents α for all MEG sensors and subjects (linear model fit y = ax + b; 
P = 3 × 10−131; Supplementary Section 1.8).
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jointly with LRTC in alpha oscillations15; and (2) neuronal avalanches, 
that is, spatio-temporal cascades of threshold-crossing sensor activity, 
which have been identified in the MEG of the resting state of the human 
brain11,30. Both of these phenomena are generally seen as chains of 
extreme events that are diagnostic of the underlying brain dynamics10,34.

We start by defining the instantaneous network excitation Aϵ(t) as 
the number of extreme events co-occurring within time bins of size ϵ 
across the entire MEG sensor array (Methods). For each sensor, extreme 
events are the extreme points in that sensor’s signal that exceed a set 
threshold e = ± n s.d. (Fig. 3a). For a given threshold, Aϵ depends on the 
size of the time bin ϵ that we use to analyze the data (Fig. 3b). To make 
contact with the model, we parcel our simulated network into K equally 
sized disjoint subsystems of nsub = N/K neurons each, and consider 
each subsystem activity mμ (μ = 1, … , K) as the equivalent of a single 
MEG sensor signal (Methods); Aϵ for the model then follows the same 
definition as for the data, allowing us to perform direct side-by-side 
comparisons of extreme event statistics.

We first study the distribution of the network excitation, P(Aϵ). We 
use the same threshold value e = 2.9 s.d. for both the data and model 
analyses (see Methods). Extensive robustness analyses confirm that our 
key results are stable in the 2.7 s.d. < e < 3.1 s.d. range (Supplementary 
Figs. 19 and 20), which we detail result-by-result below.

Although P(Aϵ) generally depends on ϵ, the distributions corre-
sponding to different ϵ collapse onto a single, non-exponential mas-
ter curve when Aϵ is rescaled by the average instantaneous network 
excitation 〈Aϵ〉 (Fig. 3c). The excitation distribution is thus invariant 

under temporal coarse-graining and the number of extreme events 
scales non-trivially with ϵ, in contrast to phase-shuffled surrogate 
data (Methods and Fig. 3c). Model simulations fully recapitulate this 
data collapse as well as the non-exponential extreme event statistics. 
Moreover, we show that model simulations reproduce P(Aϵ) to within 
the variability observed among subjects (Fig. 3c, inset) for given values 
of ϵ. An analysis of the Kullback–Leibler divergence (Supplementary 
Section 2) shows that the model quantitatively reproduces the meas-
ured distributions to an expected degree given the natural variability 
in the data (Supplementary Table 1).

Periods of excitation (Aϵ ≠ 0) are separated by periods of quies-
cence (Aϵ = 0) of duration Iϵ = nϵ, where n is the number of consecutive 
time bins with Aϵ = 0. The distribution of quiescence durations, P(Iϵ), is 
invariant under temporal coarse-graining when rescaled by the average 
quiescence duration, 〈Iϵ〉, collapsing onto a single, non-exponential 
master curve (Fig. 3d). As was the case with the distribution of network 
excitation, the model-predicted distribution of quiescence durations 
also diverges from the data average distribution by an amount that is 
within the range of variability among subjects (Fig. 3d, upper inset and 
Supplementary Table 1).

We also show that the overall probability P0(ϵ) of finding a quies-
cent time bin follows a non-exponential relation P0(ϵ) = exp (−r0ϵβI ), 
with βI ≃ 0.6 (Fig. 3d, lower inset), indicating that extreme events 
grouped into bins of increasing size are not independent35. These 
results are robust to changes in N, so long as nsub or the number of 
subsystems K is fixed, or does not change considerably (Supplementary 
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interval T. Bottom: representative sequences of network excitation extracted 
from the raster in the top panel for increasing ϵn. c, Rescaled distributions P(Aϵ) 
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master curve for both the data (green symbols represent the average over 
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of nsub = 1,000 neurons each (violet symbols) (N = 105). The corresponding 
distribution in phase-scrambled MEG signals shows an exponential behavior, 
with absence of high excitation events (the brown line represents surrogate 

data). Inset: rescaled P(Aϵ) (green symbols represent the average over n = 14 MEG 
subjects, whereas violet symbols represent the average over the model 
simulations) and respective s.d. (colored areas) shown for ϵ = 2T. d, Rescaled 
distributions of quiescence durations, P(Iϵ) collapse onto a single master curve 
for different values of ϵ. The plotting conventions and model simulation details 
are the same as in c. Top inset: rescaled P(Iϵ) (green symbols represent the average 
of n = 14 MEG subjects, whereas violet symbols are the average over model 
simulations) and respective s.d. (colored area) shown for ϵ = 2T. Bottom inset: the 
probability P0 of finding a quiescent time bin approximately scales as 
P0 = exp (−r0ϵβI ) with ϵ; βI = 0.582 ± 0.013 and βI = 0.610 ± 0.012 for the data and 
model, respectively; βI = 0.996 ± 0.001 for surrogate data. The exponent βI was 
estimated via an ordinary linear least-square fit y = ax + b, where y = ln(− ln P0) 
and x = ln(ϵ).
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Figs. 15 and 16); otherwise, the value of e that defines an extreme event 
should be adjusted accordingly, in particular to closely reproduce the 
distribution of P(Iϵ) (Supplementary Fig. 17). Finally we notice that the 
quantities 〈Aϵ〉 and 〈Iϵ〉 scale as a power of the bin size ϵ (Supplementary 
Fig. 21), and are connected to each other by a relationship of the form 
⟨Aϵ⟩ ∼ ⟨Iϵ⟩

bAI (Supplementary Fig. 21). This implies that for a fixed value 
of e, both distributions P(Aϵ) and P(Iϵ) are controlled by a single quantity, 
for example, 〈Aϵ〉.

We performed the data and model analyses using the same thresh-
old value e = 2.9 s.d., which was fixed by comparing the amplitude 
distribution of MEG sensor signals and model subsystem signals mμ. 
The distributions P(Aϵ) and P(Iϵ) follow a similar functional behavior 
in both the data and model for different values of e. The influence of 
thresholding on the analysis of continuous signals has been previously 
investigated36. Here, for increasing values of e, we find that: (1) the 
probability of large (small) Aϵ tends to decrease (increase); (2) the prob-
ability of large (small) Iϵ tends to increase (decrease) (Supplementary 
Fig. 18). These effects are more pronounced for the distribution of P(Iϵ), 
particularly in its tail. Importantly, P(Aϵ) and P(Iϵ), as well as the expo-
nent βI, show a similar dependence on e in both MEG data and model 
simulations and, as a consequence, the agreement between the data 
and model is robust to changes in e (Supplementary Figs. 19 and 20).

In summary, our simple model at baseline parameters provides a 
robust account of the collective statistics of extreme events. We empha-
size that the excellent match to the observed long-tailed distributions 
is only observed for the inferred value β ≃ 0.99, which is very close to 
criticality; for β = 0.98, we already observe considerable deviations 
from the data (Supplementary Figs. 22 and 23), demonstrating that 
excitation and quiescence distributions represent a powerful bench-
mark for collective brain activity.

Concomitant occurrence of scale-free neuronal 
avalanches and scale-specific oscillations
A neuronal avalanche is a maximal contiguous sequence of time bins 
populated with at least one extreme event per bin (Fig. 4a)8,11; every 
avalanche thus starts after—and ends with—a quiescent time bin (Aϵ = 0) 
(see Methods for details). Neuronal avalanches are typically character-
ized by their size s, defined as the total number of extreme events within 
the avalanche. Avalanche sizes have been reported to have a scale-free 
power-law distribution8,11,14,30.

We estimate the distribution of avalanche sizes P(s) in the resting-
state MEG, and compare it with the distribution obtained from model 
simulation at close-to-critical baseline parameter set (Fig. 4b). Both 
distributions are described by a power-law with an exponential cut-
off11 and show an excellent match across subjects and for individual 
subjects. Again, the Kullback–Leibler divergence between the mean 
empirical and model distribution is smaller than the mean Kullback–
Leibler divergence estimated among MEG subjects (Supplementary 
Table 1). Phase-scrambled surrogate data strongly deviate from the 
power-law observations, as do model predictions when parameter β 
is moved even marginally below 0.99 (Supplementary Fig. 24). These 
results are independent of the N so long as the size nsub or the number 
K of the subsystems are fixed or do not change considerably (Sup-
plementary Figs. 15 and 16). Importantly, the model also reproduces 
the distribution of avalanche durations (Supplementary Fig. 26) and, 
in particular, the scaling relation 〈s〉(d) ∼ dζ that connects average 
avalanche sizes s and durations d. Unlike the power-law exponent of 
avalanche size distribution that typically depends on time bin size ϵ 
(refs. 8,30), the exponent ζ does not depend on ϵ, as shown by the data 
collapse for both MEG data and model (Fig. 4b, inset). Although the 
scaling behavior is reproduced qualitatively, the inferred and model-
derived values of ζ are not in quantitative agreement, probably due to 
the overly simplified mean-field connectivity assumed by our model.

As shown for P(Aϵ) and P(Iϵ), the distributions of avalanche sizes 
also moderately depend on e. This has been previously reported both 

in the resting human brain and in other systems8,30. We find that simu-
lated avalanche size distributions show a similar dependence to the 
data, and are thus in agreement with empirical distributions for a 
range of e values (Supplementary Fig. 25). Importantly, we observe 
that the relationship between avalanche sizes and durations is robust 
to changes in e, and the exponent ζ shows no substantial dependence 
on e (Supplementary Figs. 18 and 25).

Discussion
In this paper we put forward the adaptive Ising class of models for cap-
turing large-scale brain dynamics. To our knowledge, this is the sim-
plest model class that reproduces the stylized co-existence of neuronal 
avalanches and oscillations—the two antithetic features of real brain 
dynamics. In this formulation, individual units are neither intrinsic 
oscillators themselves20,37, nor are they mesoscopic units operating 
close to a Hopf bifurcation38; the collective dynamics is therefore not 
a result of oscillator synchronization (even though this regime could 
also be captured by a different realization of an adaptive Ising model). 
Our proposal thus provides an analytically tractable alternative to, or 
perhaps a reformulation of, existing models15,17,19,39, which typically 
implicate either particular excitation/inhibition or network resource 
balance, or ad hoc driving mechanisms to open up the regime in which 
oscillations and avalanches may co-exist.

Starting with the seminal work of Hopfield40, the functional 
aspects of neural networks have traditionally been studied with micro-
scopic spin models or attractor neural networks. The associated inverse 
(maximum entropy) problem recently attracted great attention in con-
necting spin models to data41,42, particularly with regards to criticality 
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signatures43 and the structure of temporal correlations in the neural 
activity44,45. However, the dynamical expressive power of maximum-
entropy stationary, kinetic or latent-variable models has been limited, 
and the rhythmic behavior of brain oscillations was beyond the practi-
cal scope of these models. The adaptive Ising model class can be seen 
as a natural yet orthogonal extension to those previous works, as it 
enables oscillations and furthermore permits us to explore an inter-
esting interplay of mechanisms, for example, by having self-feedback 
drive Hopfield-like networks (with memories encoded in the coupling 
matrix J) through sequences of stable states.

By contrast to past works15,17, we do not make contact with exist-
ing data by qualitatively matching the phenomenology, but instead 
by proper parameter inference. The inferred parameters consistently 
place the model very close to its critical point, supporting the hypoth-
esis that alpha oscillations represent brain tuning to criticality25. Infer-
ence of parameters with methods that are not based on autocorrelation 
matching46 has confirmed this result (Supplementary Section 1.7 and 
Supplementary Figs. 3–6). Other models also predict adaptive param-
eters that are slightly subcritical47. However, within our framework, 
the possibility of mapping empirical data to a defined region in the 
adaptive Ising model phase diagram through parameter inference 
paves the way for further quantification of the relationship between 
measures of brain criticality and healthy, developing or pathological 
brain dynamics along the lines developed recently48.

Our inferred model provides a broad account of brain dynamics 
across spatial and temporal scales. Despite the successes, we openly 
acknowledge the quantitative failures of our model: first, at the single 
sensor level, small deviations exist in the distributions of log activity 
(Fig. 2c), probably due to very long timescales or non-stationarities in 
the MEG signals11; second, the scaling exponent governing the relation 
between the avalanche size and duration, ζ, is not reproduced quanti-
tatively (Fig. 4b, inset). Despite these valid points of concern, we find it 
remarkable that such a simple and tractable model can quantitatively 
account for so much of the observed phenomenology.

Future work should, first, consider connectivity beyond the 
simple all-to-all mean-field version that we introduced here, probably 
leading to a better data fit and new types of dynamics, for example, 
cortical waves (Supplementary Section 1.5). Second, we strongly advo-
cate for rigorous and transparent data analysis and quantitative—not 
only stylized—comparisons to data. To this end, care must be taken 
not only when inferring the essential model parameters beyond the 
linear approximation46,49, but also when treating the hidden degrees 
of freedom related to the data analysis (specifically, subsampling, 
temporal discretization, thresholding and so on)8,30,36,50. Third, it is 
important to confront the model with different types of brain record-
ings; a real success in this vein would be to account simultaneously 
for the activity statistics at the microscale (spiking of individual 
neurons) as well as at the mesoscale (coarse-grained activity probed 
with MEG, EEG or LFP).

Methods
Data acquisition and preprocessing
Ongoing brain activity was recorded from 14 healthy participants in 
the MEG core facility at the National Institute of Mental Health for a 
duration of 4 min (eyes closed). All of the experiments were performed 
in accordance with the NIH guidelines for human subjects. All partici-
pants gave written informed consent. The sampling rate was 600 Hz, 
and the data were bandpass-filtered between 1 and 150 Hz. Power-line 
interferences were removed using a 60 Hz notch filter designed in 
Matlab (Mathworks). The sensor array consisted of 275 axial first-order 
gradiometers. Two dysfunctional sensors were removed, leaving 273 
sensors in the analysis. The analysis was performed directly on the axial 
gradiometer waveforms. The data analyzed here were selected from 
a set of MEG recordings for a previously published study11, in which 
further details can be found. For our analyses, we used the subjects 

showing the highest percentage of spectral power in the alpha band 
(8–13 Hz). Similar results were obtained for randomly selected subjects.

The adaptive Ising model
The model comprises a collection of N spins si = ±1 (i = 1, 2, ... , N) that 
interact with each other with a coupling strength Jij. In our analysis, 
the N spins represent excitatory neurons that are active when si = +1 
or inactive when si = −1 and Jij > 0. Furthermore, we consider the fully 
homogeneous scenario in which neurons interact with each other 
through synapses of equal strength Jij = J = 1. However, interesting 
generalizations with non-homogeneous, negative, non-symmetric 
Jij are possible, which allow to include in the model, for example, the 
effect of inhibitory neuronal population and structural and functional 
heterogeneity. The si are stochastically activated according to the Glau-
ber dynamics, where the state of a neuron is drawn from the marginal 
Boltzmann–Gibbs distribution

P(si) ∝ exp(β ̃hisi) ̃hi = ∑
j
Jijsj + hi. (1)

The spins experience an external field h, a negative feedback that 
depends on network activity according to the following equation,

ḣi = −c 1
𝒩𝒩i

|Ni |
∑
j∈𝒩𝒩i

sj, (2)

where c is a constant that controls the feedback strength, and the sum 
runs over a neighborhood of the neuron i specified by 𝒩𝒩i; index j enu-
merates over all of the elements of this neighborhood. Depending on 
the choice of 𝒩𝒩i, the feedback may depend on the activity of the neuron 
i itself (self-feedback), its nearest neighbors, or the entire network—the 
case which we considered in the main paper. In a more realistic setting 
including both excitatory (Jij > 0) and inhibitory neurons (Jij < 0), one 
could then take into account the different structural and functional 
properties of excitatory and inhibitory neurons by considering differ-
ent interaction and feedback properties.

In the fully connected continuous time limit, the model can be 
described with the following Langevin equations:

ṁ = −m + tanh [β(Jm + h)] + bξ

ḣ = −cm,
(3)

where ξ is unit-uncorrelated Gaussian noise; the stochastic term thus 
has amplitude b = √2/(βN). This framework allows for a reparametri-
zazion of spin variables si from (− 1, 1) to (0, 1) by introducing a constant 
term, −cm0, in the feedback equation (Supplementary Section 1.3). 
Equation (3) can be linearized around the stationary point 
(m* = 0, h* = 0) to calculate dynamical eigenvalues and construct a 
phase diagram (Fig. 1b, main text):

λ± = (β−1)
2

± √(β−1)2−4cβ
2

. (4)

In the resonant regime below the critical point (c > c*, β < βc), it is pos-
sible to analytically compute the autocorrelation function, C(τ), of the 
ongoing network activity m(t) in the linear approximation23:

C(τ) = e−γτ(cosωτ + γ
ω sinωτ), (5)

where γ = (1 − β)/2 is the relaxation time of the system, and 

ω = √βc − (1 − β)2/4  is the characteristic angular frequency of the 

model.
In our simulations, one time step corresponds to one system 

sweep—that is, N spin flips—of Monte Carlo updates, and equation 
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(2) is integrated using Δt = 1/N. Note that this choice of timescales for 
deterministic versus stochastic dynamic is important, as it interpolates 
between the quasi-equilibrium regime where spins fully equilibrate 
with respect to the field h, and the regime where the field is updated by 
feedback after each spin-flip and so spins can constantly remain out of 
equilibrium; Δt is generally much smaller than the characteristic time 
of the adaptive feedback that is controlled by the parameter c.

Detrended fluctuations analysis of the alpha band amplitude 
envelope
The DFA31 consists of the following steps: (1) given a time-series 
xi(i = 1, ... , N), calculate the integrated signal I(k) = ∑k

i=1(x(i) − ⟨x⟩), where 
〈x〉 is the mean of xi; (2) divide the integrated signal I(k) into boxes of 
equal length n and, in each box, fit I(k) with a first-order polynomial 
In(k), which represents the trend in that box; (3) for each n, detrend I(k) 
by subtracting the local trend, In(k), in each box and calculate the 

root-mean-square (r.m.s.) fluctuation F(n) = √∑N
k=1 [I(k) − In(k)]

2/N; (4) 

repeat this calculation over a range of box lengths n and obtain a
 functional relation between F(n) and n. For a power-law correlated 
time-series, the average r.m.s. fluctuation function F(n) and the box 
size n are connected by a power-law relation F(n) ≈ nα. The exponent α 
quantifies the long-range correlation properties of the signal. Values 
of α < 0.5 indicate the presence of anti-correlations in the time-series xi, 
α = 0.5 indicates the absence of correlations (white noise), and values 
of α > 0.5 indicate the presence of positive correlations in xi. The DFA 
was applied to the alpha band (8−13 Hz) amplitude envelope. Data were 
band filtered in the 8–13 Hz range using a finite impulse response (FIR) 
filter (second order) designed in Matlab. The scaling exponent α was 
estimated in the n range corresponding to 2–60 s to avoid spurious 
correlations induced by the signal filtering25.

Extreme events, instantaneous network excitation and 
neuronal avalanches
Data. For each sensor, positive and negative excursions beyond a 
threshold e were identified. In each excursion beyond the threshold, 
a single event was identified at the most extreme value (the maximum 
for positive excursions and minimum for negative excursions). Com-
parison of the signal distribution with the best-fit Gaussian indicates 
that the two distributions start to deviate from one another at around 
± 2.7 s.d. (ref. 11). A Gaussian distribution of amplitudes is expected to 
be produced from a superposition of uncorrelated sources, and is not 
indicative of individual extreme events. For such a reason, one needs 
to choose e ≥ 2.7 s.d. for the threshold. Higher values will reduce the 
number of false positives, but increase the number of false negatives. 
In this study we set e to ± 2.9 s.d. We performed an extensive robustness 
analyses to confirm that our key results are stable across a range of e 
values (Supplementary Figs. 19, 20 and 25).

The raster of identified events was binned at a number of temporal 
resolutions ϵ, which are a multiple of the sampling time T = 1.67 ms. 
The network excitation Aϵ at a given temporal resolution ϵ is defined 
as the number of events occurring across all sensors in a time bin. An 
avalanche is defined as a continuous sequence of time bins in which 
there is at least an event on any sensor, ending with at least a time bin 
with no events (Fig. 4a). The size of an avalanche, s, is defined as the 
number of events in the avalanche. See refs. 11,30 for more details.

Model. The simulated network is parceled into K equally sized disjoint 
subsystems of nsub = N/K neurons each, and each subsystem activity 
mμ (μ = 1, …, K) is considered as the equivalent of a single MEG sen-
sor signal. The number of neurons nsub in each subsystem is fixed by 
matching the amplitude distribution of mμ to the estimated MEG sen-
sor amplitude distribution between ± 2.7 s.d., which is the range over 
which amplitude distributions follow a Gaussian behavior11. This pro-
cedure gives the sufficient number of neurons whose collective activity 

accounts for the the Gaussian core of the empirical signal amplitude 
distribution, thus providing a common reference to consistently define 
extreme events in empirical data and model simulations. Extreme 
events, network excitation and neuronal avalanches for the model 
follow the same definition as for the data.

Data-model comparison. Beyond the two key model parameters that 
are directly inferred from individual sensors (β, c), quantitative data 
analysis of extreme events requires additional parametric choices 
(time bin ϵ, threshold e, system size N and subsystem size nsub), both for 
empirical data as well as model simulations. We successfully demon-
strate the scaling invariance of the relevant distributions with respect 
to ϵ, and robustness of results in a range of e values (Supplementary 
Figs. 19, 20 and 25). Moreover, we demonstrate robustness with respect 
to nsub at fixed K = N/nsub, and to K at fixed nsub. However, if K (or nsub) 
changes considerably, a close match to data (in particular, P(Iϵ)) still 
requires adjusting one extra parameter (for example, threshold e; 
Supplementary Fig. 17).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data analyzed in this study were collected at the MEG facility of the 
NIH for a previously published study11. The data belong to NIH and are 
available from O.S. (shrikio@bgu.ac.il) on reasonable request. Source 
data are provided with this paper.

Code availability
The codes51 used in the current study are publicly available on GitHub 
(https://github.com/demartid/stat_mod_ada_nn).
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