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From the seminal discovery of repression and activation as the 
basic mechanisms of gene regulation1,2, a fundamental picture 
has emerged, where individual regulatory components—pro-

moters and transcription factors (TFs)—are interconnected into 
gene regulatory networks (GRNs): global structures that deter-
mine cellular gene expression patterns. However, a mechanistic 
understanding of how GRNs evolve is still lacking. GRN evolution 
can be studied at two opposing levels of organization: (i) globally 
emerging features of GRNs, such as functional redundancy, which 
can promote changes in network structure3; or (ii) local rewiring, 
which leads to the formation of new regulatory connections within 
GRNs4. The principles of GRN evolution have been primarily stud-
ied globally, at the level of entire networks, through comparative 
genomic analyses4,5 or in silico6,7, in order to understand how global 
network features determine evolutionary properties such as robust-
ness8 (phenotypic persistence in the face of mutation), tunability9 
(changes in gene expression levels) and evolvability10 (capacity 
to acquire new regulatory connections). Yet, GRN structures can 
change solely through making and breaking of connections at the 
molecular level, that is, through local rewiring of individual com-
ponents11–16. However, how characteristics of individual regulatory 
components impact on GRN evolution by determining robustness, 
tunability and evolvability is unknown.

Local network rewiring, that is, changes in the binding speci-
ficity of a TF, involves loss of binding, gain of binding and modi-
fications in the strength of binding, which occur either through 
mutations in TFs or in DNA binding sites of TFs (operators). Most 
experimental studies on network rewiring have focused on muta-
tions in proteins17 or on the consequences of gene duplication 
events18–20, showing that TF divergence affects GRN evolution21. 
However, in contrast to mutations in operators22–24, mutational 
pathways of TFs are thought to be heavily constrained by epistasis 
between amino acids25, the high frequency of deleterious muta-
tions26 and the strong pleiotropic effects of TFs27, suggesting that 
operators are superior targets for modifying existing and acquiring 
novel network connections.

In contrast to previous studies on promoter evolution, which 
considered promoters independently of the associated TFs24,28–30, 
we want to understand how the properties of a TF determine its 
evolutionary interactions with operator sites. To achieve this, we 
define the ‘evolutionary potential for local rewiring’ with respect to 
point mutations in an operator, thus characterizing the evolution-
ary potential for an individual network component that does not 
itself change: the repressor. We combine three distinct properties, 
which have been previously used to describe network rewiring11,31,32, 
to define the evolutionary potential of a repressor as the ability (i) 
to withstand operator mutations (robustness), (ii) to modify the 
strength of binding to existing operators (tunability) and (iii) to 
acquire binding to new operators (evolvability) (Fig. 1a). Using two 
of the best understood prokaryotic repressors—Lambda CI and P22 
C2—we study how characteristics of individual TFs determine the 
evolutionary potential for regulatory rewiring.

Results
Experimental system for quantitative measurements of evolu-
tionary potential. We used homologous33 elements of the bacterio-
phage Lambda and P22 genetic switches34,35. Specifically, we used 
Lambda CI and P22 C2 repressors, along with their respective PR pro-
moter regions. The PR promoter region consists of RNA polymerase 
(RNAP) binding sites and two operators, OR1 and OR2, which regu-
late PR expression through cooperative repressor binding (Fig. 1b).  
We experimentally studied changes in gene expression, and hence 
binding of the repressors, along the mutational path between the 
two promoters by directionally mutating the operator sequence of 
one repressor to that of the other (Fig. 1c). Throughout, we refer to 
systems containing matching (non-matching) repressors and pro-
moters as cognate (non-cognate) (Fig. 1b). We created a library of 
OR1 operator mutants by selecting all base pairs known to have large 
impact on repressor binding36,37, and that differed between Lambda 
and P22 OR1 sequences, resulting in six mutated positions (Fig. 1d 
and Supplementary Table 1). Subsequently, we also investigated 
mutations in OR2, even though repressor binding to this operator 
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is considered to have only a minor direct impact on PR repression34. 
All mutants were cloned into a very low copy number plasmid38 and 
fluorescence as a proxy for PR expression levels was measured in 
the presence and absence of repressor. This set-up, which measures 
binding of two repressors along the mutational path between the 
two operators, allowed us to study in a comparative manner how the 
evolutionary potential for regulatory rewiring depends on repres-
sors themselves.

Evolutionary potential of repressors. To characterize the evolu-
tionary potential of the two repressors, we experimentally mea-
sured their robustness, tunability and evolvability in terms of how 
repressor binding is affected by operator mutations. Robustness and 
tunability were quantified on the cognate promoter background. 
Robustness was the fraction of cognate operator mutants that main-
tained at least 90% repression. Tunability was the standard deviation 
in repression levels when repression was reduced but not completely 
lost (90− 10%). From these definitions, it does not follow that robust-
ness and tunability are necessarily negatively correlated: the expres-
sion variability (tunability) generated by non-robust mutations can 
be either large or small. Evolvability was the fraction of non-cognate 
operator mutants that could be repressed to at least 10%.

Lambda CI and P22 C2 have drastically different evolutionary 
potential (Fig. 2a), in spite of their shared ancestry33. These differ-
ences are particularly evident when considering the relationship 
between repression and the number of mutations in the operator 
(Fig. 2b). The high Lambda CI robustness to up to three mutations 
is surprising, since the OR1 site is almost fully conserved across at 
least 12 different lambdoid phages39. As this site is part of a complex 
promoter region in the phage, it could be conserved due to binding 

of RNAP or the second repressor in the switch (Cro). In contrast to 
Lambda CI, one to three mutations in the P22 cognate OR1 site led to 
a wide range of repression (0–100%).

At the non-cognate site, even introduction of single point muta-
tions in P22 OR1 led to repression of at least 35% by Lambda CI  
(Fig. 2c). Gain of binding to the non-cognate site was much less 
frequent for P22 C2, and, except for one mutant, the range of 
repression was 0–20%, which is markedly lower than the 10–90% 
of Lambda CI (Fig. 2c).

Overall, Lambda CI had higher robustness as well as evolvabil-
ity, suggesting that a repressor that is more robust to mutations in 
its cognate operator might also more readily acquire novel bind-
ing sites. At the same time, P22 C2 was more tunable, indicating a 
trade-off between robustness and tunability. The consistently stron-
ger binding of Lambda CI compared to P22 C2 suggests that the 
evolutionary potential for regulatory rewiring is a property of the 
repressor, not of the operator.

Thermodynamic model of evolutionary potential. In order to 
expand on the experimental findings and identify how evolution-
ary potential depends on the biophysical system parameters, we 
used a thermodynamic model of gene regulation40,41 (Fig. 3a). While 
experimentally we determined the general trends underlying the 
evolutionary potential of the two repressors by introducing muta-
tions in a directional manner, we used the model to comprehen-
sively explore all possible mutations in the six selected OR1 positions.

The model—for which all parameter values except repressor con-
centrations were taken from the literature (Supplementary Table 3  
and Supplementary Fig. 1)—accurately reproduced experimen-
tal observations in cognate mutants (Supplementary Fig. 2).  
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Fig. 1 | Experimental investigation of evolutionary potential of a repressor. a, Evolutionary potential of a repressor. Mutations (indicated by ‘x’) in the 
cognate operator can either have no effect on repressor binding (robust), alter repressor binding (tunable) or remove repressor binding (not shown). 
Mutations in the non-cognate site can either have no effect on repressor binding (not evolvable) or lead to gain of repressor binding (evolvable). Together, 
robustness, tunability and evolvability describe the evolutionary potential for regulatory rewiring. b, The synthetic template consists of a repressor 
controlled by an inducible Ptet promoter, and a strong PR promoter—containing two repressor operators (OR1 and OR2) and the RNAP binding sites—that 
controls the expression of a fluorescence marker venus-yfp. c, Experimental investigation of the evolutionary potential. An increasing number of mutations 
(blue) are introduced into the cognate operator (orange) of repressor A. The thickness of the blunt-ended arrows indicates the strength of repression.  
d, Mutated base pairs. Homology alignment of Lambda and P22 OR1 and OR2, showing mutated sites in bold. Arrows show OR1 base pairs that were 
exchanged. The dashed arrow marks an additional site that was used to construct four cognate Lambda mutants, as one of the original positions  
abolished RNAP binding (Supplementary Table 1).
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The poor model fit to non-cognate mutants is not surprising, as the 
model assumption of independent contribution of each position to 
the overall binding energy is known to be violated when mutated 
far away from the wild-type sequence42. Nevertheless, the use of 
the model is justified because the model performs comparably  
for both repressors (Supplementary Fig. 2), it provides a lower 
bound for the experimentally measured non-cognate repression 
and only modest improvements are achievable by accounting for  
dinucleotide dependencies43,44.

We simulated binding to all possible mutants at the six chosen 
positions (4095) and quantified the evolutionary potential of repres-
sors: for tunability and evolvability we used the same definitions as 
in the experiments (Fig. 3b,c), but calculated them separately for 
each mutant class. We used a standard definition to quantify robust-
ness in our simulations8 (see Methods), which we could not apply to 
the experimental measurements due to the insufficient number of 
mutants connected by single mutations. Importantly, applying the 

experimental definition of robustness to the simulations identified 
consistent differences in robustness (51.9% for Lambda CI and 0.3% 
for P22 C2). Overall, model simulations corroborated the experi-
mentally determined differences in the evolutionary potential of 
the two repressors: Lambda CI was more robust and more evolvable 
than P22 C2, but less tunable for up to three mutations (Fig. 3d).

To confirm that the observed differences in the evolutionary 
potential did not arise from the specific operator sites used in this 
study, we simulated the evolvability of both repressors to 106 ran-
dom operators. We found that Lambda CI bound a consistently 
higher portion of random sites (Supplementary Fig. 3) irrespec-
tive of repressor and RNAP concentration, further supporting the 
view that evolutionary potential is a property of the repressor, not 
the operator.

The thermodynamic model identifies several system param-
eters that affect the evolutionary potential of a repressor (Fig. 3a): 
(i) intracellular conditions, that is, concentrations of repressor 
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Fig. 2 | Lambda CI and P22 C2 have different evolutionary potential. a, Evolutionary potential of Lambda and P22 repressors. Robustness, tunability and 
evolvability of Lambda CI and P22 C2. b, Repressor binding to cognate mutants. Loss of binding was determined by mutating away from the cognate site, 
making it more similar to the non-cognate site. The dotted line shows the 90% repression threshold used to evaluate robustness. c, Repressor binding to non-
cognate mutants. Gain of binding was determined by mutating away from the non-cognate site making it more similar to the cognate one. The dotted line 
shows the 10% repression threshold for evolvability. Expression levels in the absence of repressor are shown in Supplementary Table 2. Mutants that abolished 
RNAP binding are not shown, resulting in a different number of mutants in b and c. Points show mean percentage repression over three replicates and bars are 
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and RNAP; (ii) interactions arising from the promoter architec-
ture, which in our system enable cooperative repressor binding; 
and (iii) intrinsic binding characteristics of the repressor itself. 

Repressor-specific binding characteristics are captured in the total 
binding energy, Etot, which is determined by the strength of repres-
sor binding to its wild-type operator (called the ‘offset’ or EWT), to 

Robustness

wild-type

–15 –10 –5 0 5 10 15 20 25

P
er

ce
nt

ag
e 

re
pr

es
si

on

Binding energy (kcal mol–1)

–15 –10 –5 0 5 10 15 20 25

Binding energy (kcal mol–1)

100

80

60

40

20

0

100

80

60

40

20

0

Tunability

No repression

Evolvability

P
er

ce
nt

ag
e 

re
pr

es
si

on

wild-type No repression
A
C
G
T

P22 C2

kcal m
ol –1

a

d

b

c

A
C
G
T

Lambda CI

kcal m
ol –1

T A C C T C T G GC G G T G A T A

A T T T A A G T G G T C T T T A A

OR2 OR1

–10–35

RNAP
concentration

Offset

Cooperativity

cI 
Repressor

concentration

Energy matrix

E
nt

ry
 c

ou
nt

Change in binding energy
(kcal mol–1)

Lambda CI 

0

20

40

0–1 1 2 3 4 5 6

0–1 1 2 3 4 5 6

E
nt

ry
 c

ou
nt

0

20

40

Energy matrix histogram

P22 C2

P
er

ce
nt

ag
e 

re
pr

es
si

on
 

100

80

60

40

20

0

P
er

ce
nt

ag
e 

re
pr

es
si

on
 

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

Sing
le

Dou
ble

Trip
le

Qua
dr

up
le

Quin
tu

ple

Sex
tu

ple

Sing
le

Dou
ble

Trip
le

Qua
dr

up
le

Quin
tu

ple

Sex
tu

ple

Mutant class Mutant class

P22 C2 binding to non-cognate OR1 site  P22 C2 binding to cognate OR1 site 

0
1
2
3

–.5

0
1
2
3

–.5

Lambda CI binding to cognate OR1 site Lambda CI binding to cognate OR1 site 

Fig. 3 | Thermodynamic model of gene expression. a, Parameters affecting evolutionary potential. Gene expression is determined by: intracellular 
concentration of (i) repressor and (ii) RNAP; (iii) cooperativity of binding between two repressor dimers; (iv) binding energy to the wild-type operator 
(offset EWT); and (v) additional contribution of each mutation to the binding energy (energy matrix). Negative (positive) entries in the energy matrix 
show mutations that decrease (increase) binding energy, and hence increase (decrease) repression. Zero values denote the wild-type sequence. b, c, 
Robustness and tunability (b), and evolvability (c). The sigmoidal relationship between binding energy and repression, determined by the thermodynamic 
model, provides quantitative definitions of robustness, tunability and evolvability. d, Comprehensive computational exploration of the evolutionary 
potential of Lambda CI and P22 C2. Comprehensive simulation of repression for all possible mutations in the six chosen positions in OR1.

NaTuRE ECoLoGy & EvoLuTIoN | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNATUrE EcoloGy & EvolUTioN

which the effect of each mutation on binding is added, as defined 
by the ‘energy matrix’ (Eseq), so that Etot =  EWT +  Eseq. Hence, the off-
set captures the overall propensity of a repressor to bind cognate 
DNA, while the energy matrix describes how operator mutations 
affect repressor binding.

Repressor and RNAP concentrations, as well as binding coopera-
tivity, influence robustness, tunability and evolvability to different 
degrees, although not always in a straightforward manner (Fig. 4a 
and Supplementary Figs. 4− 6). As such, the evolutionary potential 
for rewiring depends on intracellular conditions that change with 
cellular physiology45, and on the promoter architecture that can 
determine binding cooperativity. Experimental measurements of 
relative repressor concentrations revealed 3.8- to 5.5-fold higher 
intracellular Lambda CI levels (Supplementary Fig. 1). Reassuringly, 
the difference in evolutionary potential between repressors was con-
sistently identified across a range of repressor and RNAP concentra-
tions, making the model results largely independent of uncertainty 
in these parameters (Supplementary Fig. 7).

Biophysical determinants of evolutionary potential. We asked 
if it was possible to reconcile the differences in the evolutionary 
potential between Lambda CI and P22 C2 by swapping their model 
parameters. Specifically, we calculated robustness and tunability 
for one repressor after swapping either repressor concentration or 

cooperativity with the parameter values of the other repressor. For 
evolvability, we only swapped repressor concentration, since the 
absence of a cognate OR2 site prevented cooperative binding.

Swapping either repressor concentration or cooperativ-
ity between Lambda CI and P22 C2 decreased the differences in 
robustness and evolvability, but still left a disparity in robustness, 
tunability and evolvability of at least 50% (Fig. 4b). Therefore, 
intrinsic binding characteristics of repressors—the offset and the 
energy matrix—crucially determine their evolutionary potential, as 
previously found for the regulation of the lac promoter46. When we 
swapped the offset between the two repressors, we found that the 
effect was comparable to the effects of swapping either repressor 
concentration or cooperativity. Notably, swapping all three param-
eters did not lead to a full reconciliation between the two repres-
sors (Fig. 4b), indicating that the energy matrices accounted for the 
remaining differences of at least 30% (except for robustness when 
swapping from P22 C2 to Lambda CI).

To better understand the mechanism by which intrinsic binding 
characteristics of a repressor (offset and energy matrix) determine 
the differences in the evolutionary potential, we developed an intui-
tive and generic description of robustness, tunability and evolvabil-
ity based on the sigmoidal curve relating repressor binding energy 
to repression (Fig. 5a). The formulas in Fig. 5a describe the evolu-
tionary potential in terms of the offset and the energy matrix, rather 
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than using the full thermodynamic model. Robustness is the aver-
age number of mutational steps needed to lose 50% of repression. 
Evolvability is the average number of mutational steps necessary 
to gain 50% of repression starting from a given random sequence. 
Tunability is the ease of generating variation in gene expression lev-
els, that is, the variation in repression around the half-repression 
point, defined in relation to the distance between this point and the 
cognate operator (Fig. 5a).

Adopting these generic definitions results in simple analytical 
expressions (Fig. 5a), which show that robustness and evolvability 
are positively correlated through the number of mutations that sep-
arate the given random sequence from the cognate operator. This 
correlation holds true as long as: (i) the average mutational effect 
size (m) is relatively small and similar between repressors—which 
is a reasonable assumption in general because the scale of m is set 
by the energetics of hydrogen bonds (1–3 kcal mol–1)47, but also an 
assumption that is specifically testable for any particular set of TFs 
for which the energy matrices are known; and (ii) the energy matrix 
is a fixed property of a repressor, meaning that m stays constant 
when mutating towards a random non-cognate site. Tunability, 
on the other hand, is in a trade-off with robustness, although the 
dependence of tunability on the standard deviation of mutational 
effects suggests that this relationship can be adjusted to some extent.

Applying these generic definitions to the systems used in this 
study, we observe higher robustness and evolvability, but lower 
tunability for Lambda CI (Fig. 5a). To illustrate that these generic 
definitions are in accordance with the binding landscape obtained 
through model simulations, we used the simplest model set-up 
where repressors bind only a single operator site and repressor con-
centrations are the same. We selected three operator sequences for 
each repressor—the cognate (EWT), the non-cognate (Enon-cognate) and 
the weakest binding (Emax) sequence—computed their binding ener-
gies and positioned them on the sigmoidal repression curve.

The consistently stronger binding of Lambda CI to all three types 
of operators (Fig. 5b) arises from its lower offset (− 13.2 kcal mol–1, 
compared to − 12 kcal mol–1 for P22 C2) and smaller average muta-
tional effect size (1.23 kcal mol–1, compared to 2.43 kcal mol–1 for 
P22 C2). Positioning the mean binding energy of each mutant class 
(Fig. 2) on the sigmoidal curve (hence not using the full model but 
only the offset and the energy matrix) allowed accurate predic-
tions of the experimental measurements, at least for cognate sites 
(Supplementary Fig. 8). Therefore, the lower offset of Lambda CI 
places it further away from the slope of the repression curve (Fig. 5b),  
resulting in higher robustness, but lower tunability. Similarly, 
Lambda CI binds the non-cognate operator, all of its mutants and 
even the operator sequence with weakest possible binding more 
strongly (Fig. 5b), illustrating that, on average, Lambda CI binding 
a random sequence will be closer to the rise of the sigmoidal curve 
and hence more evolvable.

Role of inter-operator epistasis. We investigated experimentally if 
promoter architecture—the existence of multiple operator sites—
can affect the observed trade-off between robustness/evolvability 
and tunability. We first tested the effects of mutating four residues 
in the Lambda cognate OR2 (Supplementary Table 4). The effects 
of mutations in OR2 on repression (Fig. 6a) were modest (75–100% 
repression), but less robust than mutations in OR1 (comparing Fig. 6a  
to Fig. 2b, top panel), despite the supposedly weaker influence of 
OR2 on repression34.

We tested for interactions between mutations in two operators 
(inter-operator epistasis) by creating a cognate library with muta-
tions in both OR1 and OR2. Because the trade-off between high robust-
ness and low tunability was observed only in Lambda CI, we focused 
only on inter-operator epistasis in the cognate Lambda system. We 
randomly selected three neutral OR1 mutants and combined each 
with eight randomly selected OR2 mutants (Supplementary Tables 1  
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mutational effect size and #mut the distance of the random sequence to the cognate operator in number of mutations (see Methods). Evolvability is 
negative as mutations towards E1/2 improve binding. ∣
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 the slope of the sigmoid curve at E1/2. The table shows the values for robustness, tunability and evolvability for the experimental systems 

(Fig. 1b). Here we calculated evolvability for the non-cognate sites of Lambda CI and P22 C2. b, Energy matrix and offset determine the evolutionary 
potential. Locations of Lambda CI and P22 C2 binding to three categories of operators (EWT, Enon-cognate, Emax) are indicated by large symbols on the sigmoidal 
curve relating binding energy and repression. Repressor concentrations are kept equal. Small symbols show mean energy values obtained through model 
simulations for different mutant classes (1, single; 2, double; and so on) when mutating the cognate (crosses) or the non-cognate (circles) operators.
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and 4). We observed a wider spectrum of repression values (40–
80%), and hence higher tunability, among these mutants (Fig. 6b)  
compared to mutations in individual operators (Supplementary 
Table 5). This meant that mutations in OR2 exacerbate the effects 
of phenotypically neutral OR1 mutations, indicating pervasive inter-
operator epistasis (Supplementary Table 6). Inter-operator epis-
tasis arising from multiple mutations in both operators could not 
be captured by the thermodynamic model (Supplementary Fig. 9), 
which is in contrast to a previous study where we introduced only 
a single point mutation into each operator48. However, the findings 
we report here are in line with studies showing that the presence 
of multiple operators can obstruct sequence-based predictions of  
gene expression49.

Inter-operator epistasis alleviated the trade-off between robust-
ness and tunability for Lambda CI in OR1, probably by effectively 
modifying cooperative repressor binding. This role of inter-oper-
ator epistasis could be specific to operators that are functionally 
connected through cooperative binding and might be different for 
redundant operators. Our results suggest that, for cooperative bind-
ing, additional operators can facilitate network rewiring, as inter-
operator epistasis helps generate expression level diversity, while 
maintaining robustness to the existing operators.

Discussion
The principles that govern gene regulatory evolution, which have been 
studied primarily from a global network perspective, remain poorly 
understood. Here, we identify the biophysical mechanisms that deter-
mine the evolutionary potential of transcription factors for rewiring 
of regulatory network connections. Specifically, we provide an ana-
lytical expression (Fig. 5a) that, under reasonable assumptions, cor-
relates robustness, tunability and evolvability (as defined in this study). 
Indeed, we experimentally observed these correlations for two closely 

related repressors: Lambda CI is more robust and at the same time 
more evolvable, while P22 C2 is more tunable. These differences in 
mutational effects probably arise from differences in specific DNA 
binding mechanisms50: while the binding specificity of Lambda CI is 
mostly based on direct contacts between operator bases and amino 
acid residues36, the affinity of P22 C2 relies strongly on the local DNA 
conformation37,51. The non-linear relationship between binding energy 
and repression, which is inherent to the thermodynamic model52  
(Fig. 3), captures the differences in robustness, tunability and evolv-
ability, explaining how the intrinsic binding characteristics of a 
repressor determine its evolutionary potential for regulatory rewiring  
(Fig. 5). The model does so by representing the evolutionary poten-
tial for each repressor through its total binding energy (offset EWT plus 
energy matrix Eseq) and the average effect size of mutations (given by 
the energy matrix). Typically, energy matrices are used to determine 
and predict binding of TFs to a given DNA sequence53. However, our 
findings imply that the composition of the energy matrix crucially 
determines not only the current regulatory structure, but also the 
potential of the repressor to contribute to GRN evolution through 
making and breaking of individual connections. It is worth noting 
that while we only considered steady-state expression levels, operator 
mutations could also affect expression dynamics, which might be sub-
ject to different constraints.

The in vivo positive correlation between robustness and evolv-
ability is surprising, as molecular systems that are more persistent 
in the face of mutational pressure are generally assumed to be less 
likely to acquire novel functions54. Previous theoretical studies 
attempted to resolve this paradox by describing how robustness 
and evolvability ‘emerge’ as properties of existing networks3,8,55,56, 
but so far, direct experimental approaches have been missing. We 
experimentally resolve this apparent paradox by showing that local 
mechanisms of TF–DNA binding intrinsically correlate robustness 
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and evolvability in a positive manner. In fact, this positive correla-
tion can be explained through an analytical expression that shows 
how robustness and evolvability are connected through the muta-
tional distance between the cognate operator and a random DNA 
sequence (Fig. 5a). As such, a more promiscuous TF is simultane-
ously more robust and more evolvable, retaining cognate binding 
more easily while facilitating acquisition of novel operator sites. 
The positive correlation between robustness and evolvability can 
facilitate GRN evolution19 by enabling a neutral network of geno-
types, throughout which mutations have small phenotypic con-
sequences3,8. Lambda CI is known to be promiscuous, showing 
non-specific binding across the Escherichia coli genome57 and to 
non-cognate phage operators58. Thus, a Lambda CI-like TF has a 
higher potential to become a global regulator, whereas a P22 C2-like 
TF would be more suited as a local regulator, since its easy loss of 
binding could facilitate rewiring by reducing detrimental cross-
talk59. However, the same biophysical mechanisms can impose a 
trade-off between evolvability and tunability, thus constraining the 
range of expression levels that can be achieved by a promiscuous TF 
at a single operator.

Given the key role that rewiring of local regulatory connections 
plays in changing GRN structure, the scarcity of direct experimen-
tal approaches studying the mechanisms of rewiring is striking. 
Our work provides a mechanistic link between the biophysics of 
TF–DNA binding and GRN evolution. Epistatic interactions, which 
emerge through the presence of multiple operators and alleviate 
the trade-off between tunability and robustness/evolvability, can 
prevent a straightforward prediction of how local rewiring prop-
erties determine global network evolution. Moreover, the binding 
landscape for regulatory rewiring we describe is based purely on 
biophysical characteristics that connect genotype (mutations) to 
phenotype (gene expression levels), which will be further shaped 
by selection forces acting on this landscape29,30,60. By integrating 
biophysical models with the existing molecular knowledge of regu-
latory elements, our work provides the first steps towards a quan-
titative mechanistic framework for understanding gene regulatory 
network evolution.

Methods
Strains and plasmids. The experimental system is based on the ‘genetic switches’ 
of the bacteriophages Lambda and P22, which have similar regulatory architecture 
and substantial structural homology due to shared ancestry33; specifically we use 
the PR promoter system. We constructed a template plasmid consisting of two 
parts that are separated by 500 random base pairs and a terminator sequence 
(represented by a hairpin structure in Fig. 1b): an inducible repressor gene on 
one strand and a regulatory region controlling a fluorescence marker on the other 
strand. Either Lambda CI or P22 C2 were placed after an inducible PTET promoter. 
The fluorescent protein gene venus-yfp61 was placed under the control of the PR 
regulatory promoter region, containing an RNAP binding site as well as two 
operators, OR1 and OR2, either from Lambda or P22. Specifically, for Lambda PR 
we used the region from − 60 bp upstream of the transcriptional start site to + 9 bp 
downstream. The specific location of the transcriptional start site for P22 PR has 
not been defined. Therefore, upstream of OR2 and downstream of OR1 we used the 
wild-type P22 sequence that was of the same bp length as the analogous Lambda 
PR regions. This meant that we used the wild-type P22 sequence from − 65 bp 
upstream up to the start codon of cro. OR1 more strongly binds the repressor and 
is in direct overlap with the RNAP binding site (− 10). OR2 has a weaker affinity for 
the repressor and assists in repression mainly through cooperative binding between 
two repressor dimers62. Downstream of the phage sequences both promoter 
regions contain the same ribosomal binding site in front of the reporter gene. 
These parts were cloned in all four combinations (cognate combinations: Lambda 
cI with Lambda PR and P22 c2 with P22 PR; non-cognate combinations: Lambda cI 
with P22 PR and P22 c2 with Lambda PR) into a low copy number plasmid (pZS*) 
containing a kanamycin resistance marker38. The TL17 terminator sequences 
followed the repressor genes and the T1 terminator the venus-yfp (Fig. 1b). The 
plasmid libraries were then transformed into MG1655 derived E. coli cells (strain 
BW27785, CGSC (Coli Genetic Stock Center) no.: 7881)63.

Construction of mutant OR1 libraries. We created a library of mutants in OR1 
by selecting six base pairs that were found to be most important for the binding 
of either of the two repressors36,37, and that differed between Lambda and P22 

OR1 sequences. This was done by aligning the OR1 sites from Lambda and P22 
wild-type operators (according to homology, not symmetry) and comparing the 
corresponding base pairs in the operator sites. The six base pairs that were most 
important for repressor binding and that differed between the two operators were 
substituted by the base pairs of the non-cognate OR1 in both directions: starting 
with wild-type Lambda OR1 and mutating it to be more similar to P22 OR1; as well 
as starting with wild-type P22 OR1 and mutating it to be more similar to Lambda. 
We generated all six single mutants, four double, five triple, four quadruple, three 
quintuple and the sextuple mutant. For mutating Lambda OR1 from cognate to non-
cognate, ten additional mutants were constructed that did not contain mutations 
in base pairs overlapping the − 10 binding region of RNAP: two double, two triple, 
two quadruple, three quintuple,and another sextuple mutant. For the quintuple 
and sextuple mutants an additional base pair was chosen that was linked to high 
affinity binding of Lambda CI (Supplementary Table 1). The additional double 
and triple mutants were also created for the P22 non-cognate library. OR1 operator 
libraries were constructed by synthesizing oligos of 73 bp length (Sigma Aldrich), 
carrying wild-type OR2 and mutated OR1 (Supplementary Table 1) and cloning them 
into the experimental system plasmid backbone (Fig. 1b). Clones carrying correct 
mutants were confirmed through Sanger sequencing.

We also tried to construct promoter regions containing cognate OR1 and non-
cognate OR2. As both operators contain parts of the RNAP binding site, we did not 
obtain fluorescence expression in the absence of CI from these promoters even 
when we varied the spacing between the operators. This is possibly due to factors 
other than sequence-dependent binding energy playing a role in the regulatory 
context of these promoters49.

Fluorescence assays. We measured fluorescence of all OR1 mutants (Lambda and 
P22 cognate and non-cognate systems), both in the presence and in the absence 
of the inducer aTc. Three biological replicates of each mutant of the library were 
grown at 37 °C overnight in M9 media, supplemented with 0.1% casamino acids, 
0.2% glucose, 30 μ g ml–1 kanamycin, and either without or with 15 ng ml–1 aTc. 
Overnight cultures were diluted 1,000× , grown to A600 nm of approximately 0.05  
and their fluorescence measured in a Bio-Tek Synergy H1 plate reader. All  
replicate measurements were randomized across multiple 96-well plates. All 
measured mutants had fluorescence levels significantly above the detection limit  
of the plate reader, resulting in measurements at least 1.5-fold greater than the  
non-fluorescent control.

Fluorescence values were normalized by A600 nm values (in relative fluorescence 
units, RFU) and averaged over three replicates. Repression values were calculated 
as a normalized ratio between the measured fluorescence with and without  
the repressor:
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Standard errors of the mean repression values were calculated using error 
propagation in order to account for the inherent variability in the fluorescence 
measurements. The fluorescence levels measured in the absence of repressor 
were comparable across all Lambda operator mutants, as well as all P22 operator 
mutants (Supplementary Table 2). This means that the reported differences in 
percentage repression arose mainly from changes in repressor binding, rather 
than alterations to the RNAP binding site. Moreover, our simulations showed 
that changes in RNAP concentration, which correlates with the strength of RNAP 
binding, do not change the qualitative pattern of binding for the two repressors. 
Interestingly, when compared to P22 wild-type OR1, all of the P22 cognate OR1 
operator mutants showed increased expression levels in the absence of repressor. 
Lambda PR is a stronger promoter than P22 PR and introducing mutations in the 
operator region of P22 PR increased promoter strength by making it more similar 
to Lambda PR.

Direct comparisons between the in vivo effects of operator mutations on 
gene expression level that we measured and the previous published studies of 
the same operators36,37 were hindered by the in vitro nature of previous studies. 
All previous studies of Lambda PR and P22 PR mutants relied on biochemical 
filter binding assays, which do not account for cooperativity between the two 
sites, and as such do not necessarily translate quantitatively into gene expression 
levels. As such, comparisons between published and our data are possible only 
through a modelling framework, such as the one we utilize (see Methods section, 
Thermodynamic model of repression at the PR promoter).

For the experimental data, the evolutionary properties were calculated in the 
following way. Robustness and tunability of the repressors were evaluated on the 
cognate operator mutants. Robustness for the experimental data was calculated 
as the percentage of mutants for which > 90% of the wild-type repression was 
retained. Tunability was calculated as the standard deviation in repression levels for 
mutants that exhibited between 10% and 90% of the wild-type repression. On the 
cognate background, mutants that were repressed less than 10% were considered 
neither robust nor tunable. Evolvability was calculated as the portion of non-
cognate mutants that were repressed to more than 10%.

Cellular concentrations of the two repressors were determined using western 
blots. Lambda CI and P22 C2 were cloned with a His-Tag or an HA-Tag, 
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respectively, at their carboxy-terminal end. Rat and rabbit primary antibodies 
(Roche and Thermo Fisher, respectively) in combination with goat anti-rat and 
anti-rabbit secondary antibodies (Thermo Fisher) were used to detect them. 
Samples were processed once at full concentration and once at 2-fold dilution. The 
obtained bands from gel electrophoresis were normalized by a household gene 
and normalized concentrations between the two repressors were compared as 

( )concentration
concentration

Lambda CI
P22 C2

. Lambda CI was present in excess over P22 C2: 3.8-fold for full 
concentration samples and 5.5-fold for diluted samples. We also tested variation 
in repressor levels by measuring fluorescence from the PTET promoter on the same 
plasmid construct as used in the library measurements for six replicates either 
without or with 15 ng ml–1 aTc and found only minor variability (without aTc: 3.6% 
CV, with aTc: 2% CV) that cannot explain the experimentally observed differences 
between the repressors.

Thermodynamic model of repression at the PR promoter. The model is based 
on previously described thermodynamic approaches40,41, which rely on several 
assumptions: (i) TF binding to DNA takes place at thermodynamic equilibrium; 
(ii) gene expression can be equated with the probability of binding of participating 
proteins (in our case RNAP and repressor); and (iii) the contribution of each 
base pair in the operator to binding is additive. The probability of a gene being 
expressed is derived by summing the Boltzmann weights over all promoter 
occupancy states where RNAP is bound. Boltzmann weights are given by 
wi =  [N]* −μe E( )tot , where Etot is the energy of a certain configuration, N is the 
molecule concentration (in μ M) and μ is the chemical potential. Etot, the total 
binding energy, is composed of the offset (EWT), which is the energy of binding 
to a reference (wild-type) sequence; and the binding energy derived for a specific 
sequence from the energy matrix of the binding protein Eseq =  ∑ li=1 є i(ai), where l is 
the length of the sequence, ai the specific nucleotide at position i and є i the energy 
contribution due to the energy matrix of the specific nucleotide a at position i. 
Total binding energy is therefore Etot =  EWT +  Eseq. Binding energies and chemical 
potential are given in kcal mol–1. In our model system, there are two operator sites 
(OR1 and OR2) that can each be occupied by a repressor dimer, and binding to each 
operator site is affected by the strength of cooperative binding between them. 
The probability of the gene being expressed is then given by the sum of all states 
conducive to promoter expression (RNAP bound) normalized by the sum over all 
possible states:






























 =

+
+ +

+

ω
Gene expression 1

1

,

K

[RNAP]

1 2 e

1

p

R
KR

R
KR

R
KR

[ ] [ ]
2

[ ]

where = μ−K ex
E( )xtot,  represents the effective equilibrium dissociation constant 

(relative to the genomic background)—which is the concentration for half-
maximal occupation of the site—of, either RNAP (KP) or the repressor (KR). We 
simplified this formula by not distinguishing between different binding affinities of 
repressors for OR1 and OR2. Please note that we account for concentration-specific 
effects separately and µ incorporates only non-specific background binding and 
other unspecific cellular effects. The probability of transcription factor (TF)–DNA 
binding is of the form22: pi = ∕

+ ∕
K

K
[TF ]

1 [TF ]
i i

i i
. Based on Gerland et al.23, we can assume 

that Kx is individually tunable for each binding site. [R] is the concentration of 
repressor dimers, which is the effective concentration, as repressors only bind as 
dimers and, as we assume fast dimerization64, this corresponds to half of the total 
monomer concentration in the cell. [RNAP] is the concentration of RNAP and ω is 
the cooperativity energy value, describing the strength of interaction between two 
repressor dimers. All concentrations and dissociation constants are given in units 
of µ M. The calculated gene expression value is a relative measure, with 1 indicating 
full expression and 0 no expression. Percentage repression was then calculated 
using the formula












 = − × .Percentage repression 1

gene expression

gene expression
100repressor

no repressor

In the ‘main model’, which is used throughout the study, RNAP competes with 
repressor binding at OR1 and repressor binding to OR1 is increased by cooperative 
binding of a second dimer to OR2. Therefore, the following scenarios are possible: 
(i) the promoter can be bound by neither protein; (ii) RNAP can be bound either 
alone or together with the repressor at OR2; or (iii) the repressor bound to OR1 keeps 
RNAP from binding, either by binding on its own or cooperatively together with 
another repressor at OR2. The corresponding formula was taken from Bintu et al.40 
(Case 4). We also considered an ‘alternative model’ where OR2 binding impedes 
RNAP binding as well (Bintu et al.40; Case 6), but as the main model always gave a 
better fit to experimental data, we utilized only the main model throughout.

Energy values for binding to mutated sequences were calculated for RNAP 
and repressor binding using the respective energy matrices by adding up the 
individual relative contributions of each base pair and adding an offset. The 
offset is the energy of binding of the repressor to the wild-type sequence, which 

was added because the energy matrix calculates only energy differences relative 
to wild-type binding. Binding energy matrices were based on Sarai and Takeda36 
for Lambda CI, on Hilchey et al.37 for P22 C2—which were both determined 
biochemically—and, for RNAP, on an ongoing work on RNAP binding to Lambda 
PR within the group. Wild-type binding affinities of Lambda CI to both operators 
(offset) were taken from Vilar67. Other model parameters were taken from the 
following sources: binding cooperativity and non-specific binding energy were 
adopted from Hermsen et al.69; wild-type binding affinities for both operators 
were obtained from Hilchey et al.37 for P22 repressor; and binding energy and 
concentration for RNAP were taken from Santillan and Mackey65. Promoter 
strength for both Lambda PR and P22 PR was based on previously published values 
for the Lambda PL promoter66, but we also found that the results were not sensitive 
to this parameter. Repressor dimer concentrations were the only parameters that 
were fitted to the data by means of a Monte Carlo algorithm. The algorithm used 
simulated annealing to find the optimal parameter values minimizing the squared 
difference between the predicted and observed percentage repression between the 
data and the model. The fitted difference in concentration values between the two 
repressors is slightly lower than found experimentally (Supplementary Fig. 1). We 
tested the model for concentration values from 0- to 7-fold difference and always 
found the same trends in the evolutionary potential (Supplementary Fig. 7). Note 
that standard experimental measures cannot provide effective TF concentrations 
(that is, proteins that are free to bind at the target site), especially when two TFs 
are not equally promiscuous, as these measures cannot distinguish free and non-
specifically bound proteins. Because of this, and because the overall differences 
in evolutionary potential did not depend on variations in repressor concentration 
parameters, we used repressor concentrations determined by the best model fit and 
not those we experimentally measured. All parameter values used in the model are 
shown in Supplementary Table 3.

In order to verify the fit of our model to the experimental data, linear 
regression was performed between the data obtained experimentally (see 
Fluorescence assays) and the prediction of repression values produced through 
the thermodynamic model. Matlab R2015a software was used to calculate the 
regression, R2 and P values for the OR1 library (Supplementary Fig. 2). The model 
accurately reproduced experimental observations in cognate mutants, but did 
not fit non-cognate mutant measurements (Supplementary Fig. 2). The lack of fit 
to non-cognate mutants is not surprising, as thermodynamic models assume an 
independent contribution of each position, which does not hold when mutated far 
away from the wild-type operator sequence42,67. Nevertheless, because the model 
provided a lower bound on the experimentally measured non-cognate repression 
levels (Supplementary Fig. 2), we used it to explore parameters affecting repression 
at non-cognate sites as well.

Robustness. Robustness was calculated for repressors binding to cognate mutants 
only if they retained more than 20% repression. We counted the number of robust 
neighbours for each operator, where ‘robust neighbour’ refers to an operator 
sequence that is exactly one mutation away from the reference and exhibits more 
than 90% repression of the reference repression value. Specifically, starting from 
the wild type, each mutant (above the 20% repression threshold) was taken as a 
reference and repression of all other mutants that are exactly one mutation away 
was calculated. The relative count of robust neighbours was averaged for each 
reference operator and the mean was taken over each mutant class. This procedure 
was repeated with different values for cooperativity (1,3,5,7 kcal mol–1), repressor 
concentration (1,3,5,7 µ M) and RNAP concentration (1,3,5,7 µ M). We tested if 
the results were sensitive to the percentage repression thresholds by calculating 
robustness for 80% and 95% thresholds, and found no qualitative differences. For 
comparison with the experimental data and the definition of robustness used there, 
we also calculated robustness as the percentage of all mutants for which > 90% of 
the wild-type repression was retained.

Tunability. Tunability was determined for repressor binding to cognate mutants 
with repression values between 10% and 90%, as the standard deviation over those 
mutants for each mutant class. Tunability was calculated for different values of 
cooperativity (1,3,5,7 kcal mol–1), repressor concentration (1,3,5,7 µ M) and RNAP 
concentration (1,3,5,7 µ M). We tested if the results were sensitive to the percentage 
repression thresholds by calculating tunability for 5% and 20% lower, as well as 
80% and 95% upper threshold bound, and found no qualitative differences.

Evolvability. Evolvability was calculated for repressor binding to non-cognate 
mutants exceeding a threshold of 10% repression. For each mutant class the 
number of mutants above the threshold was counted and averaged. This procedure 
was repeated with different values for cooperativity (1,3,5,7 kcal mol–1), repressor 
concentration (1,3,5,7 µ M) and RNAP concentration (1,3,5,7 µ M). We tested if 
the results were sensitive to the percentage repression thresholds by calculating 
evolvability for 5% and 20% thresholds and found no qualitative differences.

Evolvability on random operators. The promoter region for the random sequence 
library was based on the lac operon68, because the binding sites for RNAP and 
repressor do not overlap in this system, thereby avoiding unwanted modifications 
of RNAP binding by an introduction of a random operator. Binding affinities for 
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RNAP were calculated for this system using the energy matrix from Kinney et al.68. 
For the operator sites, 1,000,000 random 17bp-long sequences for Lambda CI 
and 18bp-long sequences for P22 C2 were created in Matlab R2015a. The 1 bp 
difference in the length of the sites used for the two repressors corresponds to  
the actual length of their respective cognate operator sites. Binding affinities  
to these operators were calculated for Lambda and P22 repressors using their 
energy matrices.

Swapping model parameters of the two repressors and comparing evolutionary 
properties. We calculated robustness and tunability for Lambda CI after swapping 
the values for repressor concentration, cooperativity and offset with the respective 
values for P22 C2. The values were calculated separately for each mutant class 
(number of mutations). We first swapped each parameter value individually and 
then we swapped all three parameters with the values of P22 C2. For evolvability, 
only the values for repressor concentration and offset were swapped individually 
and simultaneously. The same simulations were done for P22 C2 with Lambda 
CI parameters. For each evolutionary property, we used a linear regression to 
determine the R2 value for the goodness of fit between the reference repressor 
with its wild-type parameter values and the other repressor with the swapped 
parameter(s). Regression was carried out across the six mutant classes. The fact 
that swapping repressor concentrations did not reconcile the evolutionary potential 
of the two repressors provides further evidence that the experimentally observed 
differences in the evolutionary potential between the two repressors (Fig. 2) 
could not be attributed solely to the measured differences in their intracellular 
concentrations (Supplementary Fig. 1).

Relationship between binding energy and repression. The total binding energy 
(Etot) is related to gene expression through

 =
+

= +μ−R
E E EGene expression 1

1 [ ]e
with ,E tot WT seqtot

where μ describes the chemical potential of a repressor. The relationship between 
binding energy and repression is sigmoidal, with the position of the curve for a 
given repressor determined by μ and repressor concentration (which we set to 1 for 
both repressors as we do not want to consider concentration effects here). The same 
chemical potential and repressor concentration was used for Lambda CI and P22 
C2 and taken from Hermsen et al.69. The positions of a certain operator sequence 
for a specific repressor on the curve are then given by the total binding energy, 
Etot, with concentrations for the two repressors being the same. We wanted to 
develop generic definitions of robustness, tunability and evolvability as properties 
of only the energy matrix and EWT. The average effect size of one mutation (m) is 
determined by taking the average of the energy matrix for a given repressor (grand 
mean over the non-zero entries of the energy matrix, calculated in our example for 
the six mutated positions) and the deviation in mutational effects (σ) is calculated 
as standard deviation over all non-zero entries of the energy matrix. Robustness 
can then be defined as =

−∕Rob
E E

m
1 2 WT and evolvability as =

−∕Evo
E E

m
1 2 random ,where 

E1/2 is the binding energy at half-repression (50%) and Erandom is the typical binding 
energy to a random sequence, which will be equal to non-specific binding above a 
certain number of mutations42 and is from that point on independent of the energy 
matrix. Derivation shows that evolvability and robustness are correlated by the 
number of average mutations between the cognate operator binding energy and the 
binding energy of a random sequence (#mut), as m determines the positioning of 
Erandom relative to EWT: =

−∕Evo
E E

m
1 2 random  =  − + ×∕E E m

m

( #mut )1 2 WT  =  Rob +  #mut. This 
correlation depends critically on two assumptions. First, we assume that the typical 
mutational effect size (m) is relatively small compared to the offset (EWT) and 
comparable between different repressors. We base this assumption on the notion 
that TF–DNA binding is determined by the strength of hydrogen bonds, which 
range between 1 and 3 kcal mol–1 (ref. 47). The second assumption is that the energy 
matrix is an intrinsic property of a repressor, meaning that it does not change 
depending on the DNA sequence that the repressor is binding to. In other words, 
we assume that m is constant across all binding sites, cognate and non-cognate. 
Tunability can be defined around E1/2 as 
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 gives the slope of the sigmoid curve at E1/2. Positions 
on the curve for both repressors were calculated for binding to cognate operators, 
non-cognate operators and the operator with weakest possible binding (according 
to the energy matrix). Moreover, mean energy values for each mutant class were 
calculated from model simulations for the cognate and non-cognate operators 
and placed on the curve. Their locations on the curve provide mean repression 
values that were then compared to the experimental data through linear regression 
(Supplementary Fig. 8). Matlab R2015a software was used to calculate the 
regression, R2 squared and P values. The fit was similar to the one obtained using 
the full model (Supplementary Fig. 2).

Lambda cognate OR2 mutant library. OR2 mutant operators were synthesized 
analogously to OR1 mutants. Based on the assumption that energy matrices between 
the two closely related operators are likely to be very similar, mutated base pairs in 

OR2 were chosen in positions corresponding to the mutations in OR1. However, the 
last two were discarded as possibly interfering with RNAP binding (− 35 region), 
leaving four base pairs for mutation (Fig. 2b). Four single, six double, four triple 
and the quadruple mutant were constructed in the Lambda cognate system and 
measured as described previously. The fit between data and model was determined 
through linear regression (Supplementary Fig. 9a).

Lambda cognate OR1–OR2 mutant library. OR1–OR2 mutant operators were 
synthesized analogously to OR1 mutants, but with one to three mutations in OR1 and 
one to four mutations in OR2. One single, one double and one triple OR1 mutant, 
that showed no decrease in repression, were combined with each of eight randomly 
selected OR2 mutants (two single, three double, two triple and the quadruple). 
OR1–OR2 mutant operators were constructed in the Lambda cognate system, as P22 
C2 had very low robustness and hence no trade-off, and measured as described 
previously. The fit between data and model was determined through linear 
regression (Supplementary Fig. 9b).

Calculation of epistasis in OR1–OR2 mutants. We measured epistasis in two ways. 
First, we considered its effect on the tunability of the system, where we considered 
that a given combination of OR1–OR2 mutations is in epistasis when the presence of 
mutations in both operators significantly increased the variance in the observed 
gene expression levels, compared to the variance achieved by mutations in OR1 
alone. We compared the variance independently for each mutant class (number of 
mutations). Second, we calculated epistasis between mutations in the two operators 
as a deviation from the multiplicative expectation of double mutant repression level 
based on single mutant effects,

=
×

−epistasis
percentage repression

percentage repression percentage repression
,O O

O O

R R

R R

1 2

1 2

and conducted FDR (false discovery rate)-corrected two-tailed t-tests for each of 
the double mutants, to determine whether epistasis was significantly different from 
the null multiplicative expectation (Supplementary Table 6).

Data availability. Experimental data that support the findings of this study 
have been deposited in IST DataRep and are publicly available at https://doi.
org/10.15479/AT:ISTA:108.
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