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SUMMARY
Normative theories and statistical inference provide complementary approaches for the study of biological
systems. A normative theory postulates that organisms have adapted to efficiently solve essential tasks
and proceeds to mathematically work out testable consequences of such optimality; parameters that maxi-
mize the hypothesized organismal function can be derived ab initio, without reference to experimental data.
In contrast, statistical inference focuses on the efficient utilization of data to learn model parameters, without
reference to any a priori notion of biological function. Traditionally, these two approaches were developed
independently and applied separately. Here, we unify them in a coherent Bayesian framework that embeds
a normative theory into a family of maximum-entropy ‘‘optimization priors.’’ This family defines a smooth
interpolation between a data-rich inference regime and a data-limited prediction regime. Using three neuro-
science datasets, we demonstrate that our framework allows one to address fundamental challenges relating
to inference in high-dimensional, biological problems.
INTRODUCTION

Ideas about optimization are at the core of howwe approach bio-

logical complexity (Rosen, 2013; Bialek, 2012; Tka�cik andBialek,

2016). Quantitative predictions about biological systems have

been successfully derived from first principles in the context of

efficient coding (Laughlin, 1981; van Hateren, 1992); metabolic

(Kacser and Burns, 1995; Ibarra et al., 2002), reaction (Savir

et al., 2010; Tka�cik et al., 2008), and transport (Tero et al.,

2010) networks; evolution (Orzack, 2001); reinforcement learning

(Alexander, 2003); and decision making (Geisler, 2011; Gold and

Shadlen, 2007) by postulating that a system has evolved to opti-

mize some utility function under biophysical constraints. Norma-

tive theories generate such predictions about living systems ab

initio, with no (or minimal) appeal to experimental data. However,

as such theories become increasingly high-dimensional and

optimal solutions stop being unique, it gets progressively harder

to judge whether theoretical predictions are consistent with data

(Doi et al., 2012; Bittner et al., 2019) or to define rigorously what

that even means (Wang et al., 2016; Park and Pillow, 2017; Eich-

horn et al., 2009). Alternatively, data may be ‘‘close to’’ but not

‘‘at’’ optimality, and different instances of the system may

show variation ‘‘around’’ optima (Pérez-Escudero et al., 2009;

De Martino et al., 2018), but we lack a formal framework to

address such scenarios. Lastly, normative theories typically

make non-trivial predictions only under quantitative constraints,

which ultimately must have an empirical origin, blurring the ideal-
ized distinction between a data-free normative prediction and a

data-driven statistical inference.

In contrast to normative theories, which derive system param-

eters ab initio, the fundamental task of statistical inference is to

reliably estimate model parameters from experimental observa-

tions. Here, too, biology has presented us with new challenges.

While data are becoming increasingly high dimensional, they are

not correspondingly more plentiful; the resulting curse of dimen-

sionality that statistical models face is controlled by neither

intrinsic symmetries nor the simplicity of disorder, as in statistical

physics. To combat these issues and simultaneously deal with

the noise and variability inherent to the experimental process,

modern statistical methods often rely on prior assumptions

about system parameters. These priors act as statistical regular-

izers to prevent overfitting or to capture low-level regularities

such as smoothness, sparseness, or locality (Park and Pillow,

2011). Typically, however, their statistical structure is simple

and does not reflect prior knowledge about system function.

Normative theories and inference share a fundamental similar-

ity: they both make statements about parameters of biological

systems. While these statements have traditionally been made

in opposing ‘‘data regimes’’ (Figure 1), we observe that the two

approaches are not exclusive and could in fact be combined

withmutual benefit. To this end, we developed a Bayesian statis-

tical framework that combines data likelihood with an ‘‘optimiza-

tion prior’’ derived from a normative theory; contrary to simple,

typically applied priors, optimization priors can induce a
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Figure 1. Normative theories and statistical inference

Both approachesmake statements about values of system parameters (center

row; center panel). Normative theories predict which parameters would be of

highest utility to the system (center row in red; left panel) without reference to

experimental data. Data analysis infers parameter values from experimental

observations (center row in blue; right panel). Large amounts of data support

reliable inference of parameters. We consider a continuum of regimes that are

applicable with different amounts of data (bottom row).
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complex statistical structure on the space of parameters. This

construction allows us to rigorously formulate and answer the

following key questions: (1) Can one derive a statistical hypoth-

esis test for the consistency of data with a proposed normative

theory? (2) Can one define how close data are to the proposed

optimal solution? (3) How can data be used to set the constraints

in and resolve the degeneracies of a normative theory? (4) To

what extent do optimization priors aid inference in high-dimen-

sional statistical models?

The primary focus of this work is to develop conceptual and

theoretical links between normative theories and statistical

analyses. We illustrate the application of these developments

to simple model systems and demonstrate their relevance to

real-world data analysis on three diverse, yet still relatively trac-

table, examples. Applying similar methodology to large-scale

high-dimensional data would necessitate the further develop-

ment of sophisticated computational or approximative schemes.

We recognize that as an outstanding and highly relevant chal-

lenge for future research.

RESULTS

Bayesian inference and optimization priors
Given a probabilistic model for a system of interest, PðxjqÞ; with

parameters q and a set of T observations (or data) D= fxtgTt = 1;

Bayesian inference consists of formulating a (log) posterior

over parameters given the data:

log P qjDð Þ= log L qð Þ+ log P qð Þ+ const; (Equation 1)

where the constant term is independent of the parameters,

LðqÞ=QT
t = 1PðxtjqÞ is the likelihood assuming independent and

identically distributed observations xt, and PðqÞ is the prior or

the postulated distribution over the parameters in the absence

of any observation. Much work has focused on how the prior
2 Neuron 109, 1–15, April 7, 2021
should be chosen to permit optimal inference, ranging from un-

informative priors (Jeffreys, 1946), priors that regularize the infer-

ence and thus help models generalize to unseen data (MacKay,

2003; Murphy, 2012), or priors that can coarse-grain the model

depending on the amount of data samples, T (Machta

et al., 2013).

Our key intuition will lead us to a new class of priors that are

fundamentally different from those considered previously. A

normative theory for a system of interest with parameters q typi-

cally can be formalized through a notion of a (upper-bounded)

utility function, Uðq; xÞ, where x are optional parameters that

specify the properties of the utility function itself. Optimality

then amounts to the assumption that the real system operates

at a point in parameter space, q�, that maximizes utility,

q�ðxÞ= argmaxq Uðq; xÞ. Viewed in the Bayesian framework, the

assertion that the system is optimal thus represents an infinitely

strong prior where the parameters are concentrated at q�—in

other words, PðqjxÞ= dðq � q�ðxÞÞ. In this extreme case, no data

are needed to determine system parameters; the prior fixes their

values and typically no finite amount of data will suffice for the

likelihood in Equation 1 to move the posterior away from q�.
This concentrated prior can, however, be interpreted as a limiting

case of a softer prior that ‘‘prefers’’ solutions close to the

optimum.

Consistent with themaximum entropy principle put forward by

Jaynes (2003), we therefore consider for our prior distributions

that are as random and unstructured as possible while attaining

a prescribed average utility:

Pðqjb; xÞ = 1

Zðb; xÞ exp½bUðq; xÞ�: (Equation 2)

This is in fact a family of priors, whose strength is parametrized

by b; when b= 0, parameters are distributed uniformly over their

domain without any structure and in the absence of any optimi-

zation. As b/N, parameter probability localizes at the point

q�ðxÞ that maximizes the utility to UmaxðxÞ (if such a point is

unique), irrespective of whether data support this or not. At finite

b, however, the prior is ‘‘smeared’’ at ~q�ðxÞ so that the average

utility, Uðb; xÞ= R dq Pðqjb; xÞUðq; xÞ<UmaxðxÞ increases mono-

tonically with b. For this reason, we refer to b as the ‘‘optimization

parameter,’’ and to the family of priors in Equation 2 as ‘‘optimi-

zation priors.’’

The intermediate regime, 0< b<N, in the prior entering Equa-

tion 1 is interesting from an inference standpoint. It represents

the belief that the systemmay be ‘‘close to’’ optimal with respect

to the utility Uðq; xÞ but this belief is not absolute and can be out-

weighed by the data: the log likelihood, logL, grows linearly with

the number of observations, T, matching the roughly linear

growth of the log prior with b. Varying b thus literally corresponds

to the interpolation between an infinitely strong optimization prior

and pure theoretical prediction in the ‘‘no data regime’’ and the

uniform prior and pure statistical inference in the ‘‘data rich

regime,’’ as schematized in Figure 1.

Additional parameters of the utility function, x, determine its

shape in the domain of parameters q. Parameters x can be

known and fixed for a specific theory or, if unknown a priori, in-

ferred from the data in a Bayesian fashion. When there are no
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Figure 2. Efficient coding in a toy model neuron and the corresponding optimization prior

(A) Model neuron uses a logistic nonlinearity (middle panel) to map continuous stimuli xt (left panel) to a discrete spiking response rt (right panel). The shape of the

nonlinearity is described by 2 parameters: slope k and offset x0.

(B) An example dataset (left panel) consisting of stimulus values (black line) and associated spiking responses (empty circles, no spike; full circles, spike).

Likelihood function of the nonlinearity parameters defined by the observed data. Dark blue corresponds to most likely parameter values.

(C) Distribution of natural stimuli to which the neuronmay be adapted. In this example, eachmode corresponds to a behaviorally relevant state of the environment:

presence of a predator, a prey, or a mate.

(D) Efficient coding utility function, here, the mutual information between neural response rt and the state of the environment, ct , with stimuli drawn from the

distribution in (C). The amount of information conveyed by the neuron depends on the position and slope of the nonlinearity. Insets depict example nonlinearities

corresponding to parameter values marked with black crosses.

(E) Four maximum-entropy optimization priors over parameters for the neural nonlinearity (left panel). Distributions are specified by the utility of each slope-offset

combination. Increasing parameter b constrains the distribution (lowers its entropy) and increases the expected utility of the parameters (right panel). Here, we

plot the normalized utility ~UðqÞ, see main text for explanation. Orange numbers on the horizontal axis specify the fraction of the entire domain effectively occupied

by parameters at given b.
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utility parameters x to consider, we suppress them for notational

simplicity.

In the following, we apply this framework to a toy model sys-

tem, a single linear-nonlinear neuron, which is closely related

to logistic regression. This example is simple, well understood

across multiple fields, and low-dimensional so that all mathe-

matical quantities can be constructed explicitly; the framework

itself is, however, completely general. We then apply our frame-

work to amore complex neuronmodel and to three experimental

datasets. These examples demonstrate how the ability to

encode the entire shape of the utility measure into the optimiza-

tion prior opens up a more refined and richer set of optimality-

related statistical analyses.

Example: efficient coding in a simple model neuron
Let us consider a simple probabilistic model of a spiking neuron

(Figure 2A), a broadly applied paradigm in sensory neuroscience

(Sharpee and Bialek, 2007; Kastner et al., 2015; Paninski et al.,

2007; Tka�cik et al., 2010; Gjorgjieva et al., 2014). The neuron re-

sponds to one-dimensional continuous stimuli xt either by elicit-

ing a spike ðrt = 1Þ or by remaining silent ðrt = 0Þ. The probability
of eliciting a spike in response to a particular stimulus value is

determined by the nonlinear saturating stimulus-response func-

tion. The shape of this function is determined by two parameters:

position x0 and slope k (see Method details).

Parameters q= fx0; kg fully determine the function of the

neuron yet remain unknown to the external observer. Statistical

inference extracts parameter estimates bq using experimental

data D consisting of stimulus-response pairs (Figure 2B, left

panel), by first summarizing the data with the likelihoodLðqÞ (Fig-
ure 2B, right panel), followed either by maximization of the likeli-

hood bq = argmaxqLðqÞ in the maximum-likelihood (ML) paradigm

or by deriving bq from the posterior (Equation 1), in the Bayesian

paradigm.

To apply our reasoning, we must propose a normative theory

for neural function, for the optimization prior, and combine it with

the likelihood in Figure 2B, as prescribed by the Bayes rule in

Equation 1. An influential theory in neuroscience called efficient

coding postulates that sensory neurons maximize the amount

of information about natural stimuli that they encode into spikes

given biophysical constraints (Barlow, 1961; van Hateren, 1992;

Tka�cik et al., 2010; Olshausen and Field, 1996; Smith and
Neuron 109, 1–15, April 7, 2021 3
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Lewicki, 2006; Chalk et al., 2018). This information-theoretic

optimization principle (Shannon, 1948) has correctly predicted

neural parameters such as receptive field (RF) shapes (Olshau-

sen and Field, 1996; Hyv€arinen et al., 2009) and the distribution

of tuning curves (Ganguli and Simoncelli, 2014; Wang et al.,

2016), as well as other quantitative properties of sensory sys-

tems (Laughlin, 1981; Ratliff et al., 2010; Borghuis et al., 2008;

M1ynarski, 2015; M1ynarski and McDermott, 2018; Carlson

et al., 2012), ab initio, from the distribution of ecologically rele-

vant stimuli (Olshausen and Field, 1996; Bialek, 2012).

To apply efficient coding, we need to specify a distribution

from which the stimuli xt are drawn. In reality, neurons would

respond to complex and high-dimensional features of sensory

inputs, such as a particular combination of odorants, timbre of

a sound, or a visual texture, to help the animal discriminate

between environmental states of very different behavioral rele-

vance (e.g., a presence of a predator, prey, or a mate). To cap-

ture this intuition in our simplified setup, we imagine that the

stimuli xt are drawn from a multi-modal distribution, which is a

mixture of three different environmental states, labeled by ct
(Figure 2C). Efficient coding then postulates that the neuron

maximizes the mutual information, Iðrt; ctÞ, between the environ-

mental states, ct, that gave rise to the corresponding stimuli, xt,

and the neural responses, rt.

Mutual information, which can be evaluated for any choice of

parameters k, x0 provides the utility function, UMIðk;x0Þ= Iðrt; ctÞ,
relevant to our case; in this simple example, the utility function

has no extra parameters x. Figure 2D shows that UMI is bounded

between 0 and 1 bit (since the neuron is binary), but does not

have a unique maximum. Instead, there are four combinations

of parameters that define four degenerate maxima, correspond-

ing to the neuron’s nonlinearity being as steep as possible (high

positive or negative k) and located in any of the two ‘‘valleys’’ in

the stimulus distribution (red peaks in Figure 2D). Moreover, the

utility function forms broad ridges on the parameter surface, and

small deviations from optimal points result only in weak de-

creases of utility. Consequently, formulating clear and unambig-

uous theoretical predictions is difficult, an issue that has been

recurring in the analysis of real biological systems (Brinkman

et al., 2016; Pitkow and Meister, 2012).

Given the utility function, the construction of themaximum-en-

tropy optimization prior according to Equation 2 is straightfor-

ward. Explicit examples for different values of b are shown in Fig-

ure 2E (left panel). In general, the average utility of the prior

monotonically increases as the prior becomes more localized

around the optimal solutions, as measured by the decrease in

entropy of the prior (Figure 2E, right panel). This can be inter-

preted as restricting the system into a smaller part of the param-

eter domain. If an increase in average utility requires a reduction

in entropy by 1 bit, then this means that the parameters will be

sampled from at most half the available domain.

Before proceeding, we note that our approach depends on

several non-trivial choices. First, the fact that system parameter-

ization and the size of the parameter domain can affect Bayesian

inferences is well recognized (Gelman, 2004) and we discuss

how it relates to our case in the Supplemental information

(Methods S1 and S3; Figures S1 and S2). Second, b and the util-

ity function enter the optimization prior of Equation 2 as a prod-
4 Neuron 109, 1–15, April 7, 2021
uct, leaving the scale of each quantity arbitrary. For interpreta-

tion purposes, we therefore define the normalized utility,
~U= ðUðbÞ � Uðb = 0ÞÞ=ðUmax � Uðb = 0ÞÞ, which takes on values

between 0 and 1 for non-negative b and is insensitive to linear

scaling. We discuss the issue of b scaling in the Supplemental in-

formation (Method S4). Third, data and optimality theories could

be combined in multiple ways. However, combining them via

maxent optimization priors enjoys favorable theoretical guaran-

tees that alternative approaches may lack, which we demon-

strate in the Supplemental information (Method S5; Figures S4

and S5). These considerations complete our setup and allow

us to address the four questions posed in the Introduction.

Question 1: statistical test for the optimality hypothesis
Given a candidate normative theory and experimental data for a

system of interest, a natural question arises: do the data support

the postulated optimality? This question is non-trivial for two rea-

sons. First, optimality theories typically do not specify a sharp

boundary between optimal and non-optimal parameters, but

rather a smooth utility function UðqÞ (Figure 3A); how should

the test for optimality be defined in this case? Second, a finite da-

taset D may be insufficient to infer a precise estimate of the

parameters q, but will instead yield a (possibly broad) likelihood

surface (Figure 3B); how should the test for optimality be formu-

lated in the presence of such uncertainty?

Here, we devise an approach to address both issues. The

basis of our test is a null hypothesis that the system is not opti-

mized (i.e., that its parameters have been generated from a

uniform random distribution on the biophysically accessible

parameter domain). This distribution is exactly the optimization

prior P qjb= 0ð Þ. The alternative hypothesis states that the

parameters are drawn from a distribution PðqjbÞ, with b> 0.

To discriminate between the two hypotheses, we use a

likelihood ratio test with the statistic l, which probes the overlap

of high-likelihood and high-utility parameter regions. Specif-

ically, we define the marginal likelihood of b given data,
~LðbÞ=PðDjbÞ= R dqLðqÞPðqjbÞ (Figure 3C), and then define l

as the log ratio between the maximal marginal likelihood,

maxb> 0
~LðbÞ, and the marginal likelihood under the null hypothe-

sis, ~Lðb = 0Þ (see Method details). Here, we assumed for

simplicity that the utility functionU does not depend on any addi-

tional parameters x; this simplification is relaxed in the Supple-

mental information (Method S2; Figure S3).

The test statistic l has a null distribution that can be estimated

by sampling (Figure 3D), with large l implying evidence against

the null hypothesis; thus, given a significance threshold, we

can declare the system to show a significant degree of optimiza-

tion or to be consistent with no optimization. This is different from

asking whether the system is ‘‘at’’ an optimum; such a narrow

view seems too restrictive for complex biological systems (Bar-

ton and de Vladar, 2009; Wright, 1937). Evolution, for example,

may not have pushed the system all the way to the biophysical

optimum (e.g., due to mutational load or because the adaptation

is still ongoing), or the system may be optimal under utility func-

tion or resource constraints slightly different from those postu-

lated by our theory (De Martino et al., 2018). Instead, the pro-

posed test asks whether the system has relatively high utility,

compared to the utility distribution in the full parameter space.
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Figure 3. Statistical test and inference of the de-

gree of optimality

(A) Utility function UMIðk; x0Þ. Crosses and numbers show

the locations of ground truth parameters.

(B) Likelihood of the nonlinearity parameters obtained from

20 stimulus-response ðxi ; riÞ pairs. The 3 examples corre-

spond to 3 ground truth parameter values (black crosses in

A), and are ordered by increasing utility.

(C) Marginal likelihood of the optimality parameter b,
~LðbÞ=PðDjbÞ, corresponding to data in (A). Maximum

likelihood (ML) estimates bb1;2;3 (blue circles) indicate that

the data would be most probable with no preference for

high utility UMI (left panel, bb1 = 0; note that we do not allow

negative bb), some preference for high UMI (center panel,bb2 > 0 finite), and strong preference for high UMI (right

panel, bb3/N; blue circle displayed at b = 200 for illus-

tration purposes). Likelihood ratio statistic l1,2,3 compares

the marginal likelihood of b at b= 0 versus b= bb1;2;3 (see

Method details).

(D) Null distribution of the test statistic l. Point mass at l= 0

corresponds to cases in which theML optimality parameter

is zero, bb = 0. High values of l are evidence against the null

hypothesis that b = 0, and hence support optimality. The

dashed vertical line represents the p = 0.05 significance

threshold; blue circles show l1,2,3. Only l3 crosses the

threshold, indicating significant preference for high utility

parameters.

(E) Posterior over nonlinearity parameters, inferred for a

single system with a utility-derived prior at fixed optimality

parameter, b = b*.

(F) A hierarchical model of a population of optimized sys-

tems. Population optimality parameter b controls the dis-

tribution of parameters for individual systems ðn = 1;.;NÞ,
qn, which give rise to observed data, Dn.

(G) Nonlinearity parameters (64 red dots per distribution)

sampled from 3 different ground truth distributions (de-

noted by roman numerals in G–J): a strongly optimized

population (b = 12; left), a weakly optimized population

(b = 4; center), and a non-optimal distribution (Gaussian

distribution; right). For each model neuron qn, data Dn

consists of 100 stimulus-response pairs.

(H) Results of hierarchical inference. Posteriors over b

(purple lines) and MAP estimates, bb (dashed purple lines)

were obtained using simulated data from (G). Priors (gray

lines) were uniform on the ½0; 20� interval.
(I) Normalized utility ~U. Estimated values (purple bars)

closely match ground truth (gray bars).

(J) Entropy and normalized utility of ground truth distribu-

tions (gray, filled circles) and inferred distributions param-

etrized by bb (purple, empty circles).
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While principled, this hypothesis test is computationally

expensive, since it entails an integration over the whole param-

eter space to compute the marginal likelihoods, ~LðbÞ, as well

as Monte Carlo sampling to generate the null distribution. The

first difficulty can be resolved when the number of observations

T is sufficient such that the likelihood of the data, LðqÞ, is sharply
localized in the parameter space; in this case, the value of the

utility function at the peak of the likelihood itself becomes the

test statistic and the costly integration can be avoided (see

Method details). The second difficulty can be resolved when

we can observe many systems and collectively test them for

optimality; in this case, the distribution of the test statistic ap-

proaches the standard c2 distribution (see Method details).

Question 2: inferring the degree of optimality
Hypothesis testing provides a way to resolve the question of

whether the data provide evidence for system optimization (or

to quantify this evidence with a p value). However, statistical sig-

nificance does not necessarily imply biological significance: with

sufficient data, rigorous hypothesis testing can support the opti-

mality hypothesis, even if the associated utility increase is too

small to be biologically relevant. Therefore, we formulate a

more refined question: how strongly is the system optimized

with respect to a given utility, UðqÞ?
Methodologically, we are asking about the value of the optimi-

zation parameter, b, that is supported by the data D. In the stan-

dard Bayesian approach, all of the parameters of the prior are

considered fixed before performing the inference; the prior is

then combined with likelihood to generate the posterior (Fig-

ure 3E). Our case corresponds to a hierarchical Bayesian sce-

nario, where b is itself unknown and of interest. In the previous

section, we chose it by maximizing the marginal likelihood,
~LðbÞ, to devise a yes/no hypothesis test. Here, we consider a

fully Bayesian treatment, which is particularly applicable when

we observe many instances of the same system. In this case,

we interpret different instances (e.g., multiple recorded neurons)

as samples from a distribution determined by a single population

optimality parameter b (Figure 3F) that is to be estimated. Stim-

ulus-response data from multiple neurons are then used directly

to estimate a posterior over b via hierarchical Bayesian inference.

To explore this possibility, we generate parameters qn of n=

1;.;Nmodel neurons from three different distributions: strongly

optimized (b = 12; Figure 3G, left panel), weakly optimized (b = 4;

Figure 3G, center panel), and non-optimal (Gaussian distribution

of parameters; Figure 3G, right panel). For each of the three ex-

amples, we simulate stimulus-response data for all of the neu-

rons and use these data in a standard hierarchical Bayesian

inference to compute posterior distributions over the population

optimality parameter, b (Figure 3H; see Method details).

Following hierarchical inference, we can interpret the inferred

population optimality parameter bb bymapping it onto normalized

utility (cf. Figure 2E). This reports optimality on a ½0;1� scale, with

1 corresponding to the maximum achievable utility Umax, and

thus a fully optimal system, and 0 corresponding to the average

utility under random parameter sampling, Uðb = 0Þ. Normalized

utility for the three examples is shown in Figure 3I.

Our framework enables us to draw inferences about optimality

that are not possible otherwise. For example, in addition to esti-
6 Neuron 109, 1–15, April 7, 2021
mating the normalized utility, we can also quantify how restrictive

the optimization needs to be to achieve that level of utility. This

restriction is measured by the entropy associated with bb (Fig-

ure 3J). In example I from Figures 3G–3I, bb = 12:8 is associated

with a decrease in entropy of ~1.75 bits compared to b = 0,

meaning that nonlinearity parameters are effectively restricted

to a fraction ~2�1:75z0:3 of the parameter domain. Example III

with bb = 0 is consistent with a high-entropy optimization prior

and indicates almost no parameter space restriction. This is

despite the fact that the actual parameters were sampled from

a Gaussian highly concentrated (i.e., with low entropy) in the

parameter space, but not in a region of high utility. This mismatch

suggests that such a system could be optimized for a different

utility function or shaped by other constraints. The system could

also be anti-optimized (i.e., prefer negative values of ~U), which

could easily be identified by permitting negative b values during

inference. Another clear benefit of the probabilistic framework is

the possibility of computing uncertainty estimates of b and the

associated utility and entropy.

Question 3: data resolve ambiguous theoretical
predictions
Predictions derived from optimality theories can be non-

unique and ambiguous. This ambiguity can manifest itself in

different ways.

The first kind of ambiguity results from the existence of multi-

ple maxima of the utility function. Before formulating statistical

questions, it is important to pause and clarify the underlying bio-

logical context: could different observed instances of the system

freely sample from all utility maxima (as in Figure 3G, example I),

or is a single maximum relevant, perhaps because it is the only

one that nature realized by evolutionary adaptation? In the latter

case, the first task of statistical analysis is to identify that single

maximum. For low-dimensional systems, this ambiguity can be

resolved trivially; in our toy model, for example, a few data points

suffice to zero in on one of the four degenerate utility maxima

(Method S6; Figure S6). In contrast, in high-dimensional param-

eter spaces, the task of finding the ‘‘closest optimum’’ is non-

trivial (Doi et al., 2012) and could be aided by sampling methods

derived from optimization priors, which is a topic for further

research.

The second kind of ambiguity results from system parameters

that enter the utility function but are unconstrained by the optimi-

zation theory in question. Such parameters limit the performance

of the whole system, with the utility typically achieving its global

maximum when they take on extremal values (e.g., ±N, 0); yet,

these extremal values often correspond to physically implausible

scenarios (e.g., infinite averaging time or energy consumption,

zero noise, instantaneous response time). Optimization theory

cannot make a non-trivial prediction about these parameters,

so they must either be fixed a priori based on known external

constraints or inferred from data simultaneously with the optimi-

zation of the remaining parameters. An additional subtlety

comes into play when we analyze multiple instances of a system

(e.g., neurons); either each individual neuron has its own value of

the constraint parameter, to be determined from data (which we

address in the following paragraph), or all neurons share a single

value of the constraint that needs to be inferred jointly.
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Figure 4. Resolving ambiguities of theoretical predictions

(A) Prediction ambiguity due to an unconstrained system parameter. Utility is evaluated over the position parameter x0 (red), with the slope parameter k (green)

interpreted as an externally imposed biophysical constraint. k is inferred from data for each neuron separately; for different k, optimality may predict different

optimal positions, x0.

(B) Optimization priors for x0 are conditional maxent distributions over x0 parametrized by values of k (rows of the matrix), here at fixed b = 12 (left). Distributions

over x0 for 2 example values of k (dashed black lines at left) are displayed in the right panel, with optimal x0 values marked (pink and red circles for cases I and II,

respectively).

(C) Posteriors over the position (x0, left column, top) and the slope (k, left column, bottom) parameters, estimated for cases I and II (light and dark purple lines,

respectively; dashed lines, MAP estimates), by marginalizing the joint posterior. Ground-truth values are marked with circles. Normalized utility of x0, relative to

the maximal utility for k inferred separately for cases I and II.

(D) Prediction ambiguity due to an unspecified utility function. Utility prefers high mutual information I at a low average firing rate CrD, with an unknown trade-off

parameter x. Optimization prior with no firing rate constraint (left, x = 0) shows 4 degenerate maxima; the constraint (right, x = 2) partially lifts the degeneracy.

(E) Two ground truth distributions (gray) corresponding to different values of the firing rate constraint x. Red dots denote N = 64 sample neurons.

(F) Posteriors over the firing rate constraint x (left column, top) and the optimality parameter b (left column, bottom), estimated for cases I and II (light and dark

purple lines, respectively; dashed lines, MAP estimates), by marginalizing the joint posterior. Ground-truth values are marked with circles. Normalized utilities

computed for x inferred separately for cases I and II.
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In our model, the nonlinearity slope k is unconstrained by

optimization; mutual information increases monotonically as

jkj/N (Figure 4A). This corresponds to vanishing noise in neu-

ral spiking. Since such noise cannot physically vanish, we must

change the interpretation of the utility function, UMIðqÞ, and

evaluate it only over positions x0, while treating the slope k as

a constraint to be fit from data, which we indicate by writing

UMIðx0; kÞ. Here, slope k determines the entire shape of the util-

ity function (Figure 4B). Unreliable neurons with a small slope

have a unique optimal position x0 = 0, while for neurons with

large jkj the utility is bimodal, with optimal positions separating

peaks of the stimulus distribution. As before, we can infer both

parameters for a ‘‘noisy’’ (case I) and ‘‘precise’’ (case II) simu-

lated neuron (Figure 4C); this time, however, the optimization

prior acts only on x0, while the prior over slope k remains

uniform. To properly assess optimality, we must normalize

the utility by the maximal utility achievable at the estimated
value of k: ~Uðbx0; bkÞ= ðUðbx0; bkÞ � Uðb = 0; bkÞÞ=ðUmaxðx0; bkÞ �
Uðb = 0; bkÞÞ. In both cases, the relative utility exceeds 0.9 (Fig-

ure 4C). Because theoretical predictions now depend on the

biophysical constraint—which itself is a free parameter adjust-

able separately for each system instance—high values of

normalized utility can be achieved by neurons with very

different x0.

The third kind of ambiguity arises when the utility function itself

depends on additional parameters, x. The mutual information

utility UMI of our toy model can be extended by considering the

cost of neural spiking, resulting in a new compound function,

Uðx0; k; xÞ=UMIðx0; kÞ� xCrtD, with the trade-off parameter x.

Increasing x changes the shape of the new utility function (Fig-

ure 4D). Given multiple instances of a biological system (Fig-

ure 4E), we can ask about themost likely form ofU (i.e., the single

value of x shared across all instances of the system), together

with the most likely value of the optimization parameter, b.
Neuron 109, 1–15, April 7, 2021 7
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Note that such joint determination of b and x corresponds to

answering question 2 (‘‘Inferring the degree of optimality’’), in

the presence of ambiguity. This problem is solved by hyperpara-

meter inference, which generates joint posteriors and maximum

a posteriori (MAP) estimates of b and x (Figure 4F). Here, too, the

normalized utilities are defined relative to the inferred value of x

and can thus be comparable, even when the underlying utility

functions are substantially different.

The difference between ambiguities of the second and third

kind is subtle, yet important. Broadly speaking, the second

kind of ambiguity arises if only a subset of system parameters

q depends on the optimality parameter b, while the remaining pa-

rameters act as constraints that must be inferred. In the third kind

of ambiguity, all system parameters q depend on the optimality

parameter b and on additional parameters of the utility function

x. The corresponding differences in parameter dependency pat-

terns are summarized graphically in Method S6 and Figure S7.

Question 4: Optimization priors improve inference for
high-dimensional problems
Here, we extend our toy model neuron with two parameters to a

more realistic case with hundreds of parameters. We focus on a

linear-nonlinear-Poisson (LNP) model (Paninski et al., 2007),

whose responses to natural image stimuli are determined by a

linear filter (also referred to as an RF), f˛R16316 (Figure 5A).

The purpose of this exercise is to show the tractability of our

approach and the power of optimization priors for high-dimen-

sional inference problems. Inference of neural filters, f, from

data is a central data analysis challenge in sensory neurosci-

ence, making our example practically relevant.

Experimentally observed filters f in the visual cortex have

been suggested to maximize the sparsity of responses st to nat-

ural stimuli (Olshausen and Field, 1996). A random variable is

sparse when most of its mass is concentrated around 0 at fixed

variance. These experimental observations have been reflected

in the normative model of sparse coding, in which the maximiza-

tion of sparsity has been hypothesized to be beneficial for energy

efficiency, flexibility of neural representations, and noise robust-

ness (Hyv€arinen et al., 2009; Olshausen and Field, 2004). Filters

optimized for sparse utility USCðfÞ (see Method details) are ori-

ented and localized in space and frequency (Figure 5B, leftmost

panel) and famously resemble RFs of simple cells in the primary

visual cortex (V1). A significant fraction of neural RFs, however,

differ from optimally sparse filters (Ringach, 2002), perhaps

due to the existence of additional constraints. One possible

constraint is spatial locality, which leads to suboptimally sparse

filters that increasingly resemble localized blobs (Doi and Lew-

icki, 2014), as shown in Figure 5B.

In our framework, sparse coding utility USC and locality ULO

combine into a single utility function with a parameter x that

specifies the strength of the locality constraint. We wondered

whether an optimization prior based on sparsity, even in the

presence of an additional constraint of unknown strength, could

successfully regularize the inference of linear filters, f.

We first consider a scenario in which the locality constraint is

known a priori to equal zero. We simulate spike trains of 100

model neurons optimized under sparse utility USC responding

to a sequence of 2,000 natural image patches (see Method de-
8 Neuron 109, 1–15, April 7, 2021
tails). Using these simulated data we infer the filter estimates,bf, using spike triggered average (STA) (Sharpee, 2013; Park

and Pillow, 2017), which under our assumptions are equivalent

to the maximum likelihood (ML) estimates (Paninski et al.,

2007) (see Method details). STAs computed from limited data

recover noisy estimates of neural filters (Figure 5C; column sec-

ond from the left).

Can sparse coding provide a powerful prior to aid in the infer-

ence of high-dimensional filters? Using our sparse coding utility,

USCðfÞ, we formulate optimization priors for various values of b

and computeMAP filter estimates bfðbÞ from simulated data (Fig-

ure 5C; four rightmost columns; see Method details). Increasing

values of b interpolate between pure data-driven ML estimation

(Figure 5C, second column from the left) that ignores the utility

and pure utility maximization (Figure 5C, right column) at very

high b = 102, where the predicted filters become almost

completely decoupled from data; these two regimes seem

to be separated by a sharp transition. For intermediate

b = 1,10,20, MAP filter estimates show a significant improvement

in estimation performance relative to the ML estimate

(Figure 5D).

We next consider a scenario in which the locality constraint is

not known a priori, but can be identified together with the prior

strength b using cross-validation (Kass et al., 2014), as

described in question 3. To this end, we simulate responses of

a single neuron whose filter was optimized with the locality

constraint x = 0.2 (Figure 5E, ‘‘Gnd. Truth’’). We then use a subset

of 1,800 of 2,000 stimulus-response pairs to compute the MAP

estimate of the filter using a range of b and x values. Each MAP

estimate of the filter is used to compute the prediction error for

neural responses over withheld portion of the data. Cross-valida-

tion correctly identifies the true x and the optimal b values that

minimize the prediction error (Figure 5E); the resulting filter esti-

mate (Figure 5E, ‘‘MAP’’) closely resembles the ground truth.

Optimization priors achieve a boost in performance because

they quantitatively encode many characteristics we ascribe to

the observed receptive fields (localization in space and band-

width, orientation), which the typical regularizing priors (e.g., L2

or L1 regularization of f components) will fail to do. While hand-

crafted priors designed for receptive field estimation can capture

some of these characteristics (Park and Pillow, 2017; Savin and

Tkacik, 2016), optimization priors grounded in the relevant

normative theory represent the most succinct and complete

way of summarizing our prior beliefs. For flexible optimization

priors whose strength and additional parameters are set by

cross-validation, one may expect that the postulated optimality

theory need not be exactly correct to aid inference, so long as

it captures some of the statistical regularities in the data.

Application 1: receptive fields in the visual cortex
Here, we analyze receptive fields of neurons in the primary visual

cortex (V1) of the Macaque monkey (Ringach, 2002) (Figure 6A).

This system is a good test case, for which multiple candidate

optimality theories were developed and tested against data (Ol-

shausen and Field, 1996; Wiskott and Sejnowski, 2002; Hyv€ari-

nen et al., 2009; Van Hateren and van der Schaaf, 1998). As in

the example of Figure 5, we focus on sparse coding using utility

USC, which prioritizes RFs localized in space and frequency
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Figure 5. Optimality priors improve inference

of high-dimensional receptive fields

(A) Linear-nonlinear-Poisson (LNP) neuron re-

sponding to 163 16 pixel natural image patches, xt .

Stimuli are projected onto a linear filter f, which

transforms them via logistic nonlinearity into an

average firing rate of Poisson spiking, rt .

(B) Receptive fields optimized for maximally sparse

response to natural stimuli with a locality constraint

x. First 3 panels on the left display 2 3 2 example

filters optimized at increasing x. The rightmost panel

shows the decrease in average sparse utility of filters

with increasing x.

(C) MAP estimates of 2 optimally sparse filters (x = 0)

obtained with optimality prior of increasing strength

b. White digits denote correlation with the corre-

sponding ground truth.

(D) Average correlations of N = 100 filter estimates

with the ground truth as a function of prior strength b

for locality constraint x = 0. Dashed blue line denotes

the average correlation for ML estimates. MAP es-

timate correlations are significantly higher than ML

estimate correlations (t test; ***p < 0.001). Error bars

denote standard errors of the mean.

(E) Identification of prior strength b and locality

constraint x via cross-validation. Left panel, cross-

validation errors in predicting withheld neural re-

sponses for a range of b and x values (heatmap).

Parameter combination resulting in minimal error is

marked with a red frame. Top right, a ground truth

filter optimized with x = 0.2. Bottom right, MAP es-

timate of the filter, obtained with correctly identified

values for b and x.
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(Figure 6B; see Method details). An alternative utility prioritizing

slow features is presented in the Supplemental information

(Method S7; Figure S8).

We ask whether RFs of individual neurons support the opti-

mality hypothesis, as in question 1. Given the high quality of

RFs estimates, costly marginalization of the likelihood can be

avoided, and the utility of estimated RFs can be used directly as
a test statistic. To construct the null distribu-

tion for the test, we sample 106 random fil-

ters consistent with optimization prior

Pðfjb = 0Þ and declare the 95th percentile

to be the optimality threshold (Figure 6C).

As expected, a large majority (204 neurons,

green dots/example frame in Figure 6C) of

V1 neurons pass the optimality threshold,

with 46 neurons failing the test (orange

dots/example frame in Figure 6C).

We next ask whether all RFs can be

used together to quantify the degree of

population optimality, as in question 2.

We estimate approximate posteriors over

parameter b via rejection sampling (see

Method details), using all RFs in the popu-

lation (Figure 6D, purple line). For compar-

ison, we also compute posteriors using

250 utility-maximizing and 250 utility-mini-
mizing filters (Figure 6D, red and gray lines, respectively). MAP

estimates of b obtained with simulated maximal and minimal

utility RFs provide a reference for the interpretation of b esti-

mated from real data. This estimate, bbV1, is very close to the

parameter value of the optimally sparse filters, implying a

high degree of optimization. The normalized utility is 0.69,

implying a significant yet not complete degree of optimization.
Neuron 109, 1–15, April 7, 2021 9
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Figure 6. Optimality of V1 receptive fields

(A) Six example receptive fields (RFs) from Macaque visual cortex (courtesy of

Dario Ringach; Ringach, 2002).

(B) Example simulated RFs optimized for sparsity.

(C) Null distribution of utility values used to test for optimality under sparse

utility and the 95th percentile significance threshold (red dashed line). Signifi-

cant (green) and non-significant (orange) receptive fields denoted with dots

(x axis is truncated for visualization purposes); example RFs are shown in

frames of matching colors. Blue dot shows the average RF utility (99.6th

percentile of the null distribution).

(D) Approximate log-posteriors over population optimality parameter b derived

from 250 RFs estimates (purple line), 250 maximum-utility filters (red line), and

250 minimal-utility filters (gray line). Dashed lines mark MAP estimates.

(E) Empirical distribution of RF utilities (blue line) compared with utility distri-

bution consistent with the inferred bbV1 (purple line). Dots denote averages, and

horizontal lines denote standard deviations.

(F) Spatial autocorrelation of RFs predicted for different b values (reported in

top-right corner of each panel, cf. inferred values in D). Note a good match

between data-derived RF autocorrelation (black frame) and the predicted

autocorrelation at the inferred bbV1 (purple frame).

(G) Three clusters with different b, learned with a MaxEnt mixture model. For

each cluster, 3 3 3 sample receptive fields are displayed, together with the

corresponding normalized utility values in the bottom-right panel.
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Since population optimality b parametrizes the entire distribu-

tion of receptive fields, inferring b allows us to make predictions

inaccessible by other means. For example, given the inferred de-

gree of optimality, we predict the entire distribution of utility

values (not only its mean) across neurons. In principle, the pre-

dicted distribution (or its higher-order moments, for example,

variance) could deviate from the empirically observed distribu-

tion, if the real system were adapted to a different utility or set

of constraints. For V1 neurons, the predicted and empirical

sparse utility distributions are very similar (Figure 6E).

Another prediction concerns the correlation between system

parameters, in our case, RF shapes. Different values of b predict

very different spatial autocorrelation functions of RFs (Figure 6F),

with the prediction at inferred b resembling the data-derived

autocorrelation better than the alternative or extremal b values.

These examples demonstrate that once the single parameter b

is inferred, the optimality framework makes quantitative,

rigorous, and parameter-free predictions of non-trivial statistics

that can be directly tested against data.

Our framework can also be used to dissect sources of devia-

tion from optimality. We fit a mixture model, in which each

mixture component was parametrized by a separate value of b

(Figure 6G; see Method details). This procedure clusters the

RFs into three groups spanning a broad range of utility values.

The largest cluster (135 RFs) achieves a nearly maximal normal-

ized utility of 0.94; neurons in this cluster passed the significance

test in Figure 6C. The existence of second- and third-largest

clusters (95 RFs, normalized utility of 0.52; 20 RFs, normalized

utility ~0, respectively) suggests that these cells may be

subject to additional unknown constraints or may be optimizing

a different utility. We emphasize that we analyze the optimality of

individual neurons, whereas the optimization of complete popu-

lations could yield a more diverse set of RFs that are individually

suboptimally sparse (Olshausen and Field, 1996; Zylberberg

et al., 2011; Hyv€arinen et al., 2009), accounting for the deviations

we observe. Our analysis is intended as a demonstration of the

applicability of our framework, rather than a definitive optimality

claim about V1 neurons. Population-level analysis of optimality is

a subject of future work.

Application 2: receptive fields in the retina
Here, we analyze the temporal receptive fields of 117 retinal gan-

glion cells (RGCs) in the rat retina (Deny et al., 2017). Temporal

RFs have a characteristic bimodal shape (Figure 7A, left), which

can be captured well by a simple filter model with three param-

eters (Sun et al., 2017). Two parameters ðc1; c2Þ describe the am-

plitudes of both modes, while the third (a) determines the tempo-

ral scale of the filter (Figure 7A, right). In what follows, we focus

on the optimality of filter shapes in the space of these three

parameters.

RGC receptive fields long have been hypothesized to instan-

tiate predictive coding (PC), a canonical example of a normative

theory in sensory neuroscience (Srinivasan et al., 1982). Tempo-

ral PC postulates that instead of tracking the exact stimulus

value directly in their responses, neurons encode a difference

between the stimulus and its linear prediction computed using

past stimuli. Such a strategy has many potential benefits: it re-

duces the dynamic range of signals, minimizes the use of



A

B

C

D

Figure 7. Optimality of retinal receptive fields

(A) Two example temporal receptive fields of rat

retinal ganglion cells. Gray lines show RF estimates

(courtesy of Olivier Marre; Deny et al., 2017), dashed

blue lines show parametric fits. Fit parameters

correspond to amplitudes of filter modes (parame-

ters c1;c2, orange) and scale (parameter a, green).

(B) Example natural stimulus: light intensity of a

single pixel of a natural movie (top left, black).

Representative retinal RF and its linear response to

the natural stimulus (bottom left, blue line). Optimal

predictive coding filter and its response to the same

stimulus (top right, dark red line). Optimal instanta-

neous information transmission filter and its

response (bottom right, pink line).

(C) Analysis of temporal RFs with the generalized

predictive coding utility, UPC. First panel: utility

function of filter modes c1; c2 constrained by time-

scale a=25. Second panel: log-posterior (solid

purple line) over population optimality parameter b

(dashed vertical line, MAP estimate). Third panel:

normalized utility of the RF population. Fourth panel:

optimization prior distribution over ðc1; c2Þ at the

inferred bb, marginalized over all values of the time-

scale parameter a (black dots, data-derived RFs).

(D) Analysis of temporal RFs with the instantaneous

information utility, UII, analogous to (C).
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metabolic resources, and can lead to efficient coding in the low

noise limit, by performing stimulus decorrelation and response

whitening (Srinivasan et al., 1982; Bialek, 2012; Dong and

Atick, 1995; Van Hateren and van der Schaaf, 1998; Chalk

et al., 2019).

An optimal predictive coding filter must be adapted to the sta-

tistics of stimuli it encodes (Srinivasan et al., 1982). We optimize
PC filters using natural light intensity time

courses (see Method details). Optimal PC

filter responses qualitatively resemble the

responses of a representative retinal filter

convolved with the same natural stimulus

(Figure 7C). Both filters generate strong,

spike-like transients to sudden changes in

the stimulus mean, while their output re-

mains close to 0 when the stimulus is not

changing. This pattern is different from

the response of a parametric bimodal filter

(withparametersa;c1;c2) optimized to track

the stimulus, obtained by maximizing

instantaneous information transmission in

a low-noise regime (UII, see Method de-

tails).More important, predicted responses

can be very distinct despite the qualitative

similarity between retinal, PC, and instan-

taneous information filters.

To evaluate the optimality of retinal RFs,

we propose a new utility, UPC, that mathe-

matically generalizes the canonical formu-

lation of predictive coding (Srinivasan

et al., 1982). This utility prioritizes filters
that minimize power in their output, given a fixed filter norm,

while allowing the filters to operate on timescales that are distinct

from the stimulus frame rate (see Method details). We evaluate

UPCðq; aÞ as a function of the two filter mode parameters,

q= ðc1; c2Þ, but consider the timescale a to be an external

constraint to be inferred from data for each neuron separately,

as in question 3. Parameter a is a constraint because, much
Neuron 109, 1–15, April 7, 2021 11
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Figure 8. Optimality of neural wiring in C. elegans

(A) Left panel: connection schematic between example neuron at position x1
(black circle) and 3 muscles at positions m1;1;m1;2;m1;3 (green circles).

Number of synapses between neuron x1 and muscle m1;j is denoted n1;j. The

example neuron forms monosynaptic connections (green lines) only with the 3

muscles. Right panel: wiring cost utility,UWCðx1; xÞ, as a function of position x1,

corresponding to the scenario depicted at left. Position axis spans the entire

C. elegans body length. Utility functions are shown for 3 exponent values x.

(B) Neuron-muscle connection analysis. Left panel: utility UWCðx; x = 2Þ (red,
scaled to ½0; 1� for each neuron) for all 126 neurons (rows), as a function of

neuron positions x˛½0; 1�. The black line denotes positions of real neurons.

Center panel: joint posterior over optimality parameter b and the exponent x

(cross denotesMAP estimates reported in the legend). Right panel: normalized

utility of neuron-muscle connectivity.

(C) Neuron-sensor connection analysis, analogous to (B).
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like k in the toy neuron example of Figure 2, its value is not set by

optimality (which prefers a/0) but by biophysical constraints or

by the temporal horizon at which prediction is of highest use to

the organism. For a broad range of a values, UPC is highest close

to the diagonal of the ðc1; c2Þ plane, representing nearly

balanced filters, as shown in Figure 7C (left).

We use all of the retinal RFs jointly to compute the posterior

over the optimality parameter b (Figure 7C, second panel). The in-

ferred bbz11:7 yields a normalized utility of 0.85, implying strong

optimization for PC (Figure 7C, third panel from the left); even rela-

tive to the non-parametric optimal PC filter with no timescale

constraint, the utility of retinal filters remains as high as 0.74.

The high degree of optimization is visually evident in the ðc1; c2Þ
12 Neuron 109, 1–15, April 7, 2021
plane, where individual neurons fall onto high-utility regions of

the maximum entropy distribution given inferred bb and marginal-

ized over timescale a (Figure 7C, right). An analogous analysis

performed using maximization of instantaneous information UII

(see Method details) reveals a negative b estimate and thus

anti-optimization for this alternative utility, with real neurons

avoiding high-utility regions of the maximum entropy distribution.

Application 3: neural wiring in Caenorhabditis elegans

Here, we analyze neural wiring in C. elegans, which has been the

subject of several normative studies (Chen et al., 2006; Chklov-

skii, 2004; Pérez-Escudero et al., 2009; Pérez-Escudero and

de Polavieja, 2007). Relative positions of neurons could be

partially predicted by minimizing the total wiring cost under the

constraint that muscles and sensors need to be properly con-

nected (Chen et al., 2006; Pérez-Escudero and de Polavieja,

2007). Instead of trying to predict individual neuron positions,

we ask a different question: are the measured neuron positions

optimized to minimize the wiring cost to muscles and sensors?

For each neuron i, the wiring cost is determined by the number

of muscles it connects to, the distance between the neuron’s po-

sition, xi, the positions of muscles,mi;j, and the number of synap-

ses formed by each connection, ni;j (Figure 8A). The resulting util-

ity function for each neuron can be written asUWCðxi;mi;ni;xÞ= �PNi

j = 1ni;j
��xi �mi;j

��x, whereNi is the number ofmuscles the neuron

i connects with, and x is an exponent determining the form of the

utility as a function of distance (Chen et al., 2006) (Figure 8B). The

precise value of x is not specified by the theory and thus needs to

be inferred fromdata, following the ambiguity of the third kind (cf.

question 3).

Our analysis shows that a large proportion of 126 neurons that

form connections with muscles align closely with the maxima of

the utility function (Figure 8B, left panel). We estimate the joint

posterior distribution over the optimality parameter b and the

connection exponent x, for neuron-muscle and neuron-sensor

connections separately (Figures 8B and 8C, center panels). In

both cases, the normalized utility exceeds 90%, implying strong

optimization. Interestingly, the estimates for the exponent x are

relatively high: 1.6 for neuron-muscle connections and 1.9 for

neuron-sensor connections, suggesting that neurons are only

weakly penalized for small deviations from optimal positions.

This is in contrast to a previously published analysis that focused

instead on neuron-neuron connections (Pérez-Escudero et al.,

2009), inwhich theauthors find (andweconfirm) xz0.5.We inter-

pret this discrepancy to imply that neuron-muscle and neuron-

sensor connection costs are less important relative to neuron-

neuron connections so far as the overall C. elegans body plan is

concerned. One possible reason is that neuron-neuron wiring

cost scales quadratically with the number of neurons, implying

higher penalty (and thus lower x) for deviations from optimality.

DISCUSSION

Despite their theoretical appeal, the application of optimiza-

tion principles to biological systems has been hindered by statis-

tical issues that grow more pressing as the complexity and

dimensionality of the models increases. These issues are not

new. Instead of developing an ad hoc solution whenever called
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for by a particular application, we decided to tackle these issues

head on and flesh them out with simple examples. For instance,

the issue of an unconstrained optimization parameter or a trade-

off with unknown strength is well known to the practitioners but is

often solved ‘‘by hand’’; one manually adjusts the constraint until

the optimality predictions are (visually) consistent with data.

Such manual ‘‘fine-tuning’’ of constraints is clearly problematic

from the statistical viewpoint, as it could easily amount to

(over-)fitting that is not controlled for. In contrast, our framework

performs inference and optimization jointly and provides a full

posterior over constrained and unconstrained parameters alike.

Another problematic issue arises from degenerate maxima of the

utility functions. A frequent solution has been to postulate further

constraints within the theory itself, which disambiguate the pre-

dictions (Doi et al., 2012). Our framework proposes a comple-

mentary mechanism: using a small amount of data to localize

the theoretical predictions to the relevant optimum, against

which further statistical tests can be carried out. As a last

example, when fitting complex (e.g., nonlinear dynamical sys-

tems) models, one typically restricts parameters by hand to a

domain that is thought to be ‘‘biologically relevant.’’ In contrast,

optimization priors automatically suppress vast swaths of

parameter space that lead to non-functioning systems, even if

these systems are not fully optimized for the postulated utility.

In this way, the statistical power of the data can be used with

maximum effect in the parameter regime that is of actual biolog-

ical relevance, without sacrificing statistical rigor.

The ability to exclude biologically irrelevant regions of the

parameter space highlights a general advantage of optimality

priors over simple, unstructured distributions. Frequently

applied ‘‘regularization priors,’’ which penalize the norm of

parameter values (e.g., Laplace, Gaussian; Park and Pillow,

2017; Sharpee, 2013) assign the highest probability when all pa-

rameters are equal to 0. Moreover, these priors are isotropic—

they act with the same strength on each parameter and do not

take into account interactions between them—which is an

essential (and nontrivial) property of real systems. These two re-

quirements enforced by the prior are often contradictory to the

notion of a functioning biological system. For example, penal-

izing parameter magnitudes while inferring the shape of nonline-

arity in our toy-model neuron would bias the inferences toward

completely non-functional solutions (slope and offset equal to

0). Intuitively, the robustness against overfitting afforded by the

regularization prior thus comes at a cost of biasing inferences

away from functional solutions. Our approach, in contrast, at-

tempts to avoid such a disastrous trade-off by incorporating

knowledge about biological function directly into the structure

of the prior.

While our framework provides a principled way to navigate a

number of statistical issues in complex biological systems,

important questions remain. A key challenge is to identify the

relevant optimization criterion for a biological system and to ex-

press it in terms of experimentally measurable quantities. A

candidate utility function that embodies an optimality criterion

of interest could be selected from a possible discrete set of

such functions (Wang et al., 2016; M1ynarski and Hermundstad,

2018; Chalk et al., 2019) or by inferring utility function parame-

ters. Because we leverage the well-understood machinery of
Bayesian inference, one could perform model selection for the

utility function that best explains the data. Such an approach

could be used, for example, to rigorously verify whether entire

neural populations in the visual cortex are jointly optimized for

sparsity or a different utility, such as slowness (Wiskott and Sej-

nowski, 2002). An important caveat is that the more flexible our

choice of the utility function becomes, the easier it is to claim

an optimality for a system of interest. In principle, one could

postulate a utility function with a fully unconstrained shape. In

this limit, our framework would automatically recover the utility

function shape from data (if these were sufficient), assuming

the observed system is optimal, in a way reminiscent of inverse

reinforcement learning (Chalk et al., 2019). This connection is an

interesting topic for further research. In this article, however, we

focused on optimization theories in which the number of adjust-

able utility parameters is smaller than the number of system pa-

rameters being predicted.

Our framework dovetails with other approaches that address

the issues of ambiguity of theoretical predictions and model

identifiability given the limited data in biology. ‘‘Sloppy-

modeling’’ (O’Leary et al., 2015; Gutenkunst et al., 2007),

grounded in dynamical systems theory, characterizes the di-

mensions of the parameter space that yields qualitatively similar

behavior of the system. In our framework, these dimensions

correspond to regions of the parameter space of equal or similar

utility. Another important conceptual advance grounded in sta-

tistical inference has been the usage of limited data to coarse-

grain probabilistic models (Bialek et al., 1996; Chen et al., 2018;

Machta et al., 2013). In our framework, a related coarse-graining

occurs when, instead of inferring all system parameters from

data directly, optimization sets the values of most of these pa-

rameters, leaving only the unconstrained subset to be fitted. The

resulting dimensionality reduction could be sizable (e.g., with

optimization predicting high-dimensional RF shapes given in-

ferred firing rate, locality, or neural noise constraints) and could

efficiently parametrize neuronal heterogeneity in terms of a

small number of constraints that vary from neuron to neuron

or between neural populations. Another point of connection

with recent work concerns the ability to instantiate high-dimen-

sional maximum entropy distributions over parameters with

complicated dependency structures (De Martino et al., 2018;

Bittner et al., 2019; Gonçalves et al., 2020). Such computational

innovations will be essential for statistical analyses of optimality

that require sampling from maximum-entropy optimization

priors.
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METHOD DETAILS

Model neuron and mutual information utility function
A model neuron elicits a spike at time t ðrt = 1Þ with a probability:

Pðrt = 1jxtÞ = 1

1+ exp½ � kðxt � x0Þ�; (Equation 3)

the stimuli xt were distributed according to a Gaussian Mixture Model, PðxtÞ=
P3

i = 1wiNðmi;s
2
i Þ, where wi = 1=3 are weights of the

mixture components, m1;2;3 = � 2;0; 2 are the means, and si = 0:2 are standard deviations.

To estimatemutual information between class labels and neural responses, we generated 5$104 stimulus samples xt from the stim-

ulus distribution. Each sample was associated with a class label ct˛f1;2;3g, corresponding to a mixture component. We created a

discrete grid of logistic-nonlinearity parameters by uniformly discretizing ranges of slope k˛½�10;10� and position x0˛½�3;3� into 128

values each. For each pair of parameters on the grid, we simulated responses of the model neuron to the stimulus dataset and esti-

mated the mutual information directly from a joint histogram of responses rt and class labels ct.

Likelihood ratio test of optimality
The proposed test uses the likelihood ratio statistic,

l = 2log
maxb> 0PðDjbÞ
PðDjb= 0Þ : (Equation 4)

The null hypothesis is rejected for high values of l. The marginal likelihood of b, ~LðbÞ=PðDjbÞ, depends on the overlap of parameter

likelihood and the optimization prior, PðDjbÞ= R
Q

PðDjqÞ PðqjbÞ dq; where Q is the region of biophysically feasible parameter

combinations.

The null distribution of l is obtained by sampling in three steps: (i) sample a parameter combination q from a uniform distribution on

q, i.e., P qjb= 0ð Þ; (ii) sample a dataset D according to the likelihood PðDjqÞ; (iii) compute the test statistic l according to (4). This

computationally expensive process simplifies in two situations described below.
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Data-rich-regime simplification
In the data-rich regime, when the parameter likelihood PðDjqÞ is concentrated at a sharp peak positioned at bqML, likelihood ratio de-

pends only on the value of utility at bqML:

l= 2log
maxb> 0

R
Q
P DjqÞ Pðqjbð Þ dqR

Q

P Djqð Þ P qjb= 0ð Þ dq (Equation 5)
= 2log
maxb> 0PðbqMLjbÞ
PðbqMLjb= 0Þ

(Equation 6)
= 2log Z 0ð Þmax
b> 0

ebU bqML

� �
Z bð Þ

0@ 1A; (Equation 7)

which is a non-decreasing function of the utilityUðbqMLÞ. Thus, this test is equivalent to a test that uses the utility estimate itself,UðbqMLÞ,
as the test statistic, making it possible to avoid the costly integration overQ. The null distribution can then be obtained by computing

UðqÞ at uniformly sampled q.

Multiple system instances simplification
If multiple instances of the system are available and we can assume that their parameters q1; q2;.; qN are i.i.d. samples from the

same distribution PðqjbÞ, then the datasets D1;D2;.;DN are also i.i.d., PðD1;D2;.;DNjbÞ=
QN

n=1PðDnjbÞ. We test the hypotheses

b= 0 versus b> 0 with the likelihood ratio statistic

l = 2log
maxb>0

QN
n=1PðDnjbÞQN

n= 1PðDnjb= 0Þ : (Equation 8)

By Wilks’ theorem, for large N the null distribution of l approaches the c2
1 distribution (with a point mass of weight 1=2 at l= 0,

because we only consider bR0). This removes the need for sampling in order to obtain the null distribution.

Hierarchical inference of population optimality
Assuming that experimental datasets D1;D2;.;DN are i.i.d., the posterior over population optimality parameter b takes the form:

PðbjD1;.;DNÞfPðbÞ
YN
n=1

Z
qn

PðDnjqnÞPðqnjbÞdqn; (Equation 9)

where q= ðkn; x0;nÞ is a vector of neural parameters (slope and position), and PðbÞ is a prior over b. We approximated integrals numer-

ically via the method of squares. Neural parameter values were sampled from ground-truth distributions via rejection sampling.

Inference of receptive fields with optimality priors
We randomly sampled 163 16 pixel image patches from the van Hateren natural image database (van Hateren and van der Schaaf,

1998) and standardized them to zero mean and unit standard deviation. Neural responses were simulated using a Linear-Nonlinear

Poisson (LNP) model:

Pðrtjxt;f; k; x0Þ = lrtt e
�lt

rt!
; (Equation 10)

where lt is the rate parameter equal to:

lt =
L

1+ exp
��fTxt

�; (Equation 11)

where L= 20 was the maximal firing rate.

Given a linear filter f, we quantified sparsity of its responses to natural images using the following function:

USCðfÞ = � C
��fTxt

��D: (Equation 12)

Filter sparsity was averaged across the natural image dataset consisting of 5$104 standardized image patches randomly drawn from

the van Hateren image database. Themean and standard deviation of filtersfwas set to be 0 and 1 respectively. We optimized filters
Neuron 109, 1–15.e1–e5, April 7, 2021 e2
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which either maximize or minimize the sparse utility measure via gradient descent. Different random initializations led to different filter

shapes.

The locality utility of neural filters was defined as follows:

ULOðfÞ = �
X
i;j

�
ði � imaxÞ2 + ðj � jmaxÞ2

�
f2
i;j; (Equation 13)

where imax; jmax are positions of the RF pixel with the largest absolute value. This definition of locality was introduced in Doi

et al. (2012).

Sparsity and locality utilities were combined into a single utility:

Uðf; xÞ = USCðfÞ+ xULOðfÞ: (Equation 14)

To estimate receptive fields (neural filters), we first simulated the responses of the model population to 2000 natural image patches.

We estimated linear receptive fields from simulated data by computing the spike-triggered average (STA), a widely applied estimator

of neural receptive fields (Sharpee, 2013). In the STA model, response of neuron n at time t is assumed to follow the normal distri-

bution (Park and Pillow, 2017):

Pðrt;n
��st;n;fnÞ = N �fT

n st;s
2
�

(Equation 15)

where fn is the linear receptive field of the n-th neuron, and s2 is the noise variance.

To infer the receptive fields from simulated neural responses using our framework, we assumed the following optimization prior

over receptive fields derived from the sparsity utility in Equation 12:

P fnjbð Þfexp bUSC z fnð Þð Þ½ �; (Equation 16)

where zðfnÞ denotes normalization of the receptive field to zero mean and unit variance. The sparse utility was evaluated over 104

randomly sampled image patches. The resulting log-posterior took the following form:

EðfnjD;S; bÞf � 1

s2

XT
t = 1

�
fT
n st � rt;n

�2
+ bUSCðzðfnÞÞ: (Equation 17)

MAP inference was performed via gradient ascent on the log-posterior. Receptive fields were inferred with different priors corre-

sponding to following values of the b parameter: 0, 1, 10, 20, 100. Receptive fields were estimated after reducing the dimensionality

of stimuli with Principal Component Analysis to 64 dimensions. Estimation via gradient ascent on the log-posterior was performed in

the PCA domain. PCA preprocessing is equivalent to low-pass filtering the stimuli.

To estimate value of the locality constraint x aswell as the prior strength b via cross-validation, we split the data into the training and

testing datasets comprising of 80% and 20% of data respectively. We estimated receptive fields for a range of b and x values

(½0; 0:01; 0:1; 1;10� and ½0; 0:05;0:2; 1� respectively). For each MAP RF estimate, we predicted neural responses br t using stimuli

from the test dataset. We then computed the average error Cðbr t � rtÞ2D using neural responses in the test dataset. Combination of

hyperparameters x;b which resulted in the smallest error value was taken to be the estimate of the correct one.

Analysis of V1 receptive fields
Receptive fields of 250 neurons in the Macaque V1 were published and analyzed in Ringach (2002). All receptive fields were down-

sampled to 32332 pixels size and normalized to have zero mean and unit variance.

To evaluate sparseness of V1 receptive fields, we relied on the following sparse utility:

USC fð Þ= Clog 1+ z fT
� �

xt
� �2� �

Dt; (Equation 18)

where xt are individual image patches and zðfnÞ denotes normalization of the receptive field to zero mean and unit variance. The

sparse utility was evaluated over 53104 randomly sampled image patches. This form of the sparse utility was proposed in Olshausen

and Field (1997), and together with the measure specified in Equation 12 it belongs to a broad class of equivalent sparsity measures

defined by convex functions (Hyv€arinen et al., 2009).

To test individual RFs for optimality, we generated the null distribution of utility values by bootstrapping 106 random filters as fol-

lows: (i) draw a random integer K between 1 and 128; (ii) superimpose K randomly selected principal components of natural image

patches; each component is multiplied by a random coefficient veNð0;1Þ; (iii) generate a 2D Gaussian spatial mask centered at a

random position on the image patch; lengths of horizontal and vertical axes of the Gaussian ellipse were drawn independently;

(iv) multiply the random filter and the Gaussian mask. This procedure ensures that a range of filters of different sparsity and slowness

will be randomly generated. Filters were standardized to zero mean and unit standard deviation.

To establish a measure of optimality at a population level, we needed to simplify the integration over all receptive field parameters,

which was intractable due to their high-dimensionality. Computation of posteriors over b in Equation 9 was therefore approximated

as follows:
e3 Neuron 109, 1–15.e1–e5, April 7, 2021
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PðbjD1;.;DNÞzPðbÞ
YN
n= 1

1

ZðbÞPð
bqnjbÞ: (Equation 19)

where bq are receptive fields estimates computed in Ringach (2002).

We approximated PðbqnjbÞ via rejection sampling, noting that PðbqnjbÞ =PðUðbqnÞjbÞ, i.e., the probability of a high dimensional recep-

tive field is determined solely by a one-dimensional utility function.

For each bwe randomly sampled 106 filters from the proposal distribution, as described above, and retained only those consistent

with PðUSCðqÞjbÞ via rejection sampling. Obtained utility values were fitted with a Gaussian distribution, used to evaluate posteriors

over b, with point estimates being posterior maxima; the prior over b was uniform over the range displayed in the figures. For sparse

utility, we discretized b values into 20 values equally spaced on the ½�5;5� interval. Filters accepted for each b value were used to

compute the average spatial autocorrelation.

For comparison we used optimally sparse receptive fields learned from natural image patches preprocessed with PCA. We note

that this preprocessing step might not have a direct biological counterpart. To compare optimal solutions and neural data, we there-

fore evaluated sparsity of model and real V1 RFs in the domain of natural images without PCA preprocessing.

To cluster receptive fields according to optimality, we defined a mixture model:

P

 
qnjfw1;.;wKg; fb1;.;bKgÞ =

XK
k =1

wkPðUSCðqnÞjbk

!
(Equation 20)

where wk is the weight of the kth mixture component and bk is the optimality of that component. To approximate utility-defined dis-

tributions, we used the Gaussian approximation described above i.e.: PðqnjbÞ =PðUSCðqnÞjbÞ=NðUSCðqnÞ;mb;s
2
bÞ

Parameters of the model were learned via the standard expectation-maximization algorithm (EM).

Analysis of retinal receptive fields
Temporal receptive fields of retinal ganglion cells were published and analyzed in Deny et al. (2017). We analyzed RFs of 117 neurons

selected by temporal smoothness. Each RFwas normalized to unit norm and fittedwith a parameteric biphasic filter model described

in Sun et al. (2017).

We considered two different utility functions. First one was a generalization of the predictive coding objective introduced in Srini-

vasan et al. (1982). The predictive coding objective minimizes the squared difference between the stimulus value st at time t and the

linear prediction of that stimulus value computed fromN past values: EðfÞ= ½PN
t = 0ftst�t �2, where ft are theweights of the linear filter.

In the classical approach it has been assumed that the linear weight of the current stimulus st is equal to 1 i.e., f0 = 1. We note that

such form makes it difficult to evaluate predictive coding filters adapted to stimuli of unknown temporal scale. In particular, we opti-

mize and evaluate our filters on natural movies whose frame rate might be mismatched with the timescale of the retina. We therefore

relax the assumption that the predictive coding filter reduces the dynamic range by subtracting only the current stimulus from its pre-

diction, and assume that what is being predicted is itself a linear combination of stimulus values (e.g., integrating stimulus value over

some recent period of time). In practice this means that we allow all values of the filter including f0 to vary freely. To avoid trivial so-

lutions, where the residue EðfÞ is minimized by setting all weights to 0, we impose a unit norm constraint on the filter f. The utility

function of a filter f is then equal to:

UPCðfÞ = � C

"XN
t = 0

zðfÞtsn;t�t

#2
Dn (Equation 21)

where z denotes the unit norm operator, and n indexes stimulus epochs sn.

We evaluated the utility UPC using 50000, 21-sample long excerpts of single-pixel luminance extracted from natural movies of

scenes in the African savanna (van Hateren and Ruderman, 1998).

We used these natural stimulus data to learn the optimal predictive-coding filter, as described in Srinivasan et al. (1982) via gradient

descent.

The second considered utility wasmeasuring the amount of information between the stimulus and the instantaneous filter output in

a low-noise regime. Under the Gaussian approximation of stimulus and output distribution this utility takes the form:

UIIðfÞ = � 1

2
log
�
1� r2

�
; (Equation 22)

where r is the Pearson correlation coefficient between the stimulus st and the filter output rt. This utility is high when the neural re-

sponses track the stimulus with high fidelity. Note that this is not the general solution to an efficient coding (infomax) problem, where

the full response trajectory, not the instantaneous response, should encode high information about the stimulus, which leads to de-

correlation / whitening in the low-noise regime. We evaluated UII using a trajectory of 20000 samples of pixel intensity values ex-

tracted from the natural movie dataset.

To compute utility-defined distributions of the filter mode amplitude parameters c1;c2, we first discretized values of these param-

eters into 100 values uniformly spaced on the ½0:01; 13� interval, where 13 was themaximum amplitude parameter value among fits to
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normalized retinal RFs. For each filter we evaluated utility for each pair of discretized amplitude parameter values and a fixed value of

the scale parameter a fitted to that filter. We used such utility surfaces to estimate the normalization constant of the utility-defined

distribution parametrized by b and the scale parameter a.

We discretized the parameter b into 100 values uniformly spaced on the ½�10; 64� interval. We estimated the posterior over b by

numerically integrating over filter parameters c1;c2;a. We assumed a uniform prior over b.

Analysis of connectivity in C. elegans

For our analysis we used theC. elegans neural wiring dataset available onWorm Atlas (https://www.wormatlas.org). This dataset has

been published and analyzed before in Chen et al. (2006) as well as Pérez-Escudero et al. (2009; Pérez-Escudero and de Polavieja

(2007) – for details about the dataset please refer to this prior work.

For the analyses depicted in Figure 8 we selected two sets of neurons. The first set consisted of 126 neurons connected to at least

onemuscle, and the second set consisted of 86 neurons connected to at least one sensor. ’’i-th’’ neuron was therefore characterized

by its position, xi, number of landmark cells (muscles or sensors) it was connected to,Ni, vectors of positions of the landmark cells,mi

(muscles), and si (sensors), and vectors of the number of synapses in each neuron-to-landmark connection, ni. For each neuron the

utility of its position was defined as:

UWC xi;Ni; li;ni; xð Þ= �
XNi

j = 1

ni;j

��xi � li;jjx: (Equation 23)

where li˛fmi;sig, denotes the vector of landmark cell positions. We evaluated the utility function on the ½0; 1� interval representing the

linear extent of the worm body axis, discretized into 100 linearly spaced values. To compute the posterior distribution over param-

eters b and xwe discretized them into 64 linearly spaced values. For neuron-muscle connections, bwas defined over a [1.5, 4] interval

and x over a [1.3, 1.9] interval. For neuron-sensor connections, bwas defined over a [10, 25] interval and x over a [1.5, 2.2] interval. We

assumed a uniform prior over parameters b;x.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical test performed in Figure 5D was a two-tailed t test. Stars denote p values lower than 0.001. Error bars in the figure denote

standard errors of the mean.
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