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The ability of an organism to distinguish between various stimuli is limited by the structure and noise in

the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly

from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures

of stimulus similarity, this ‘‘neural metric’’ tells us how distinguishable a pair of stimulus clips is to the

retina, based on the similarity between the induced distributions of population responses. We show that the

retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we

identify the stimulus features that the neural population is jointly sensitive to, and show the support-

vector-machine-like kernel function relating the stimulus and neural response spaces. We show that the

non-Euclidean nature of the retinal distance has important consequences for neural decoding.

DOI: 10.1103/PhysRevLett.110.058104 PACS numbers: 87.18.Sn, 87.19.lo, 89.70.Cf

Neural populations convey information about their stim-
uli by their joint spiking patterns [1]. At the level of single
cells, the mapping from stimuli to spikes has often been
captured by linear-nonlinear (LN) models [2,3].
Geometrically, a single LN neuron can be viewed as a
perceptron [4], partitioning the stimulus space into two
domains—one of stimuli that evoke spikes and one of
stimuli that do not—by a decision boundary, or a hyper-
plane, determined by the linear feature of the LN model
[5–7]. The brain, listening for spikes coming from such a
neuron, will thus interpret stimuli as similar insofar as they
evoke similar spiking patterns. But how does an interacting
population of neurons, as a whole, partition the stimulus
space? Conversely, which stimuli are interpreted as differ-
ent, or similar, by an interacting population?

Answering these questions is fundamental to our under-
standing of the neural code and depends critically on
finding the correct ‘‘metric’’ for sensory stimuli in terms
of the information that neural populations carry. Since
neurons are noisy, repeated presentations of the same
stimulus can result in different neural responses, so the
stimulus-to-response mapping of the population needs to
be described by the probability distribution, Pð!jsÞ [8].
Two stimuli s1 and s2 may be far apart as measured by
a chosen distance function, e.g., Euclidean norm
D2ðs1; s2Þ ¼ jjs1 $ s2jj, yet they could evoke responses
drawn from almost overlapping distributions Pð!js1Þ and
Pð!js2Þ, making it nearly impossible for the brain, listen-
ing to the spikes ! arriving from the sensory system, to tell
those stimuli apart. Conversely, the sensory circuit could
be sensitive to specific stimulus changes that have a small
Euclidean norm, emphasizing those particular differences
as an important feature and encoding it in the neural
response. We therefore suggest that the biologically

relevant distance between pairs of stimuli should be de-
rived from the distance between the response distributions
evoked by these stimuli [9,10].
To characterize the structure of neural distance in a large

population, we recorded extracellularly the activity ofN ¼
100 retinal ganglion cells (RGCs) in the tiger salamander
using a multielectrode array [11,12]. The retina patch was
presented 626 times with a 10 s long segment of spatially
uniform flicker with Gaussian distributed luminance drawn
independently at 30 Hz [Figs. 1(a) and 1(b)]. Time was
discretized into T ¼ 961 bins of 10 ms and the joint
response of the neurons ! ¼ f!ag was represented in
each bin by a N-bit codeword, where !a ¼ 1 (0) denoted
that the neuron a ¼ 1; . . . ; N spiked (did not spike) in that
bin. Since direct sampling of the conditional distribution
Pð!jsÞ is impractical for such a large population [even with
hundreds of repeats, Fig. 1(c)], we inferred a stimulus-
dependent maximum entropy (SDME) model for this
data that predicts Pð!jsÞ for each time bin, as we report
in detail in Ref. [13].
Since only differences in retinal responses can guide the

organism’s behavior, the biologically relevant distance
between stimuli s1 and s2 must be a measure of similarity
between their corresponding response distributions. We
define the retinal distance between the stimuli as the
symmetrized Kullback-Leibler distance between the dis-
tributions of responses they elicit,

Dretðs1; s2Þ ¼ Dsym
KL ðPð!js1Þ; Pð!js2ÞÞ (1)

where the symmetrized KL divergence is Dsym
KL ðp; qÞ ¼

0:5ðPx½pðxÞlog2pðxÞ=qðxÞ þ qðxÞlog2qðxÞ=pðxÞ'Þ [14].
We choose this principled information-theoretic measure
because it quantifies the difference between stimuli pre-
cisely to the extent that their response distributions are
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distinguishable [14,15]. Once constructed, the analysis of
Dret should help us uncover the fundamental aspects of the
stimulus space, in particular, whether the distance between
pairs of stimuli is determined by a small number of features
or stimulus projections.

Using the SDME model for Pð!jsÞ [16], we computed
the retinal distance, Dret, between every pair of stimulus
clips in the experiment. Figure 1(d) shows the profound
difference between the Euclidean and retinal distance for
all the pairs in a two-second interval of the stimulus. In
particular, the same value of Euclidean distance can be
obtained from very similar neural responses (as measured
by Dret), or very different ones, as shown in Fig. 1(e) for
selected pairs of stimulus clips.

To further explore the structure of retinal distance, we
used multidimensional scaling (MDS) to project the dis-
tance matrix Dretðsi; sjÞ, between all pairs (i, j ¼ 1; . . . ; T)
of presented stimulus clips, into a low-dimensional space
[17]. This embedding technique does not directly reveal
the structure of the stimulus space, but can approximate its
effective dimensionality. Every stimulus clip si is assigned
a K-dimensional point ~vi in Euclidean space, such that

Dretðsi; sjÞ ( fðjj ~vi $ ~vjjjÞ; (2)

with fð) ) )Þ being a monotonic function. It is possible to
find such accurate mappings for small K: Fig. 2(a) shows
the strong correspondence between low-dimensional MDS
projections and the retinal distance, for different K values.
Figure 2(b) summarizes the MDS performance at low
orders in terms of the information it captures about Dret;
higher information values correspond to a tighter relation-
ship with less scatter. Figure 2(c) shows the structure of
stimulus space using MDS with K ¼ 2, which already
captures most of the structure of the stimulus space. The

first coordinate of the MDS projection, vð1Þ, is strongly
correlated with the average firing rate in the population:
high values correspond to ‘‘off-like’’ stimuli, and small
values correspond to flat or ‘‘on-like’’ stimuli that do not
drive the neural population well. The increased sensitivity
to off-like features is consistent with the known prevalence
of off-type cells in the salamander retina and in our dataset.
Although on-like stimuli differ substantially in their shapes
and thus in their Euclidean distances D2, they are largely
indistinguishable for the retina. In contrast, groups of
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FIG. 1 (color). (a) Stimulus segment with two 400 ms stimulus clips s1 (red), s2 (blue). (b) Rasters for 100 RGCs shown for three
example repeats; response vectors to s1, s2 shown between dashed lines. (c) Measured response rasters to two highlighted stimulus
clips (s1, left; s2, right; spikes = white dots; colored bars = neuron firing rates). (d) For every pair of time bins in the experiment, the
Euclidean distance D2 between the corresponding stimulus clips is shown in the upper diagonal part of the matrix, and the retinal
distance Dret in the lower part. (e) Four pairs of stimulus clips (green and violet) are selected to demonstrate that D2 (increasing top to
bottom) and Dret (increasing left to right) are not monotonically related.
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FIG. 2 (color). MDS assigns to each stimulus clip si a

K-dimensional vector ~vi ¼ fvð1Þ
i ; . . . ; vðKÞ

i g. (a) Relationship be-
tween Dret (one dot ¼ one pair of stimuli) and the Euclidean
norm in MDS space, dði; jÞ ¼ jj ~vi $ ~vjjj, gets tighter with K.
(b) Information I between Dret and MDS distance d as a function
of embedding dimension K. (c) For K ¼ 2, all T ¼ 961 stimulus
clips are shown as points with MDS coordinates ðvð1Þ, vð2ÞÞ;
shade of red corresponds to mean population firing rate (scale at
right). Five groups of stimuli are denoted by circles
(gray lines ¼ individual stimulus clips, color lines ¼ average).
Equal distances in the plane correspond to equal Dret.

PRL 110, 058104 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

058104-2



stimuli sharing the same vð1Þ coordinate (yellow and green)
have a similar shape and evoke a similar population firing
rate, yet are distinguishable because they differ along the

second coordinate vð2Þ. To the retina, yellow and green
groups of stimuli are as distinct from each other as the

blue and magenta groups at constant vð2Þ but different vð1Þ.
Figure 3 presents a model that predicts the mapping of

an arbitrary stimulus s into vð1Þ, vð2Þ and thus allows us to
compute Dret. This model, obtained by using simple
reverse correlation analysis [3], relies on two coupled
linear-nonlinear transformations [Figs. 3(a)–3(d)], and
identifies two dominant population-level stimulus features
k1, k2: stimuli are distinguishable only insofar as their
projections onto k1, k2 differ. The model accurately pre-
dicts Dret [Fig. 3(e)], establishing the relation of Eq. ([2])
to be dði; jÞ ¼ jj ~vi $ ~vjjj ( "$1 expf#$1Dretðsi; sjÞg
[Fig. 3(d)]. Interestingly, this relation, which we did not
assume a priori, is exactly the kernel function used in
several very successful applications of support vector ma-
chine (SVM) classification in machine learning, where one
needs to distinguish between ‘‘classes’’ (here, stimulus
clips) based on the distributions over ‘‘features’’ (here,
neural responses) that they induce [18]. Our findings indi-
cate that the neural population, much like single neurons,
performs low-order dimensionality reduction on the
incoming stimuli; however, unlike single neurons that
can signal only a binary decision in every time bin, the
population has access to *2N states which can encode the
variation along the relevant directions with greater preci-
sion. This view is consistent with the reported highly
redundant code in the retina [19].

Given the failure of the Euclidean metric to predict
stimulus similarity, and the success of the low-dimensional
model, we asked whether a general quadratic form could
explain the retinal distance. We thus looked for an opti-

mal matrix g$%, such that Dretðsi; sjÞ (
P

$%ðsð$Þ
i $

sð$Þ
j Þg$%ðsð%Þi $ sð%Þj Þ, where $, % range over all 40 compo-

nents of stimulus clip vectors s. Using cross-validated
least-squares fitting, we found that the optimal g$% sub-
stantially outperformed the Euclidean metric, yet still only
captured *20% of the structure in Dret (Fig. 3(e)). The
best-fitting matrix g$% has a simple structure that is cap-
tured by two eigenvectors, matching the pair of population-
level stimulus features, k1, k2, independently inferred in
Fig. 3(b). Despite this, the best-fitting static g$% performs
poorly: the eigenvalues corresponding to k1, k2 would have
to depend on the stimulus in order to approximate well our
Dret model.
Our results carry important implications for stimulus

decoding. The accuracy of our model for stimulus similar-
ity enables us to create new stimuli that are similar to each
other up to any desired distance. We used Monte Carlo
simulation to generate ensembles of full-length stimuli,
such that each clip from the generated stimulus is less
than ! distant (as measured by Dret) from the correspond-
ing clip in the original stimulus displayed in the experiment
[Fig. 4(a)]. The average coherence between the original
stimulus and the generated stimuli at different ! is shown
in Fig. 4(b); it broadly peaks between 2–4 Hz, in agreement
with reported decoding performance [20]. Our analysis
predicts that for small enough !, all stimuli from such
an ensemble are essentially indistinguishable to the retina.
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FIG. 3 (color). (a) Sample clips from the stimulus space (five highlighted in color). (b) A model for Dret maps each stimulus clip s to
a point ~v ¼ ðvð1Þ; vð2ÞÞ in the 2D MDS space. Predictions for ~v are obtained by filtering the stimulus clip s with a linear filter k1;2 and
passing the result through a pointwise nonlinearity [for vð2Þ, the transformation is linear with the slope n that depends on the value
k1 ) s as shown by dashed arrows; small k1 ) s correspond to low n (dark green), large k1 ) s to high n (bright green)]. The predicted
MDS coordinates of s are ½vð1Þðk1 ) sÞ; nðk1 ) sÞk2 ) s'. (c) All T ¼ 961 stimulus clips represented as points in a plane with coordinates

predicted by the model in (b) (colored squares ¼ highlighted stimuli). (d) Given predictions for coordinates ~vi ¼ ðvð1Þ
i ; vð2Þ

i Þ, the Dret

for all (* 4:6+ 105Þ pairs of clips ðsi; sjÞ can be predicted using a simple fitted relation in the inset (black line ¼ mean binned model
predictions vs true Dret, shaded area ¼ std of binned predictions). Red line shows Dret computed from true 2D MDS coordinates of
Fig. 2(c). Two highlighted distances from (c) denoted by arrows. (e) The fraction of information about the trueDret captured by theDret

model in (b), by the best-fit global metric g$%, and by the Euclidean distance, normalized by the success of the K ¼ 2 MDS.
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In contrast to Euclidean distance, which would allow the
generated stimuli to fluctuate around the original wave-
form equally at every point in time for a given threshold!,
the retinal distance constrains the possible set of stimuli
much more at certain times than at others, reflecting a
preference of the retina for encoding specific features in
the stimulus. This is in part due to compressive nonline-
arities, which squeeze large segments of stimulus space
with small feature overlap into a small volume as measured
by retinal distance [Fig. 2(c)], while emphasizing stimulus
differences with high feature overlap. Consequently, dis-
tance models (such as Euclidean distance) with constant
metrics are incapable of capturing the characteristics of the
retinal distance. We conjecture that decoding approaches
based on minimizing standard distance measures (e.g.,
Ref. [20]) may overly penalize deviations from aspects of
the stimulus that are simply not represented in the neural
responses, while not emphasizing strongly enough the
deviations from population-level stimulus features identi-
fied here.

Understanding the neural code crucially depends on our
ability to go beyond single-neuron spatiotemporal recep-
tive fields, and identify how many, and which, are the
population-level stimulus features encoded by an interact-
ing population. We introduced a novel, biologically rele-
vant distance measure on the space of stimuli based on the
activity of large populations of neurons. This approach
extended the single-neuron notions of stimulus feature
extraction to the neural population, determining how a
high-dimensional input space is partitioned and encoded
by population responses. Our work thus suggests a prin-
cipled alternative to arbitrary norms (like the Euclidean
norm) for stimulus similarity and decoding, generalizes
previous attempts to construct metrics for particular input
spaces from neural responses (e.g., Refs. [21,22]), and

complements existing work on the dual problem of con-
structing relevant spike-train distance measures [23–25].
The approach we presented here will be instrumental in

the analysis of upcoming experiments, which allow the
recording of large parts of sensory neural circuits, or
even of all the cells encoding some parts of the sensory
scene [26]. This approach can be immediately applied to
other sensory modalities, where it could reveal—much
as we have found here—that the neural metric deviates
considerably from our intuitive notions of similarity.
Moreover, it can be extended to sensory domains where
we lack any obvious notion of similarity, e.g., olfaction, for
which there exists no natural distance between chemical
stimuli [27]. More broadly, as the neural metric is based on
the spiking activity itself, this framework can be taken
beyond sensory modalities, to study perceptual metrics as
well (e.g., Ref. [28]) or used to define neural-based dis-
tances for motor behavior that would be critical for neural
prosthesis applications [29–31].
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